Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # Copyright 2019 Tomoki Hayashi | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| """Decode with trained Parallel WaveGAN Generator.""" | |
| import argparse | |
| import logging | |
| import os | |
| import time | |
| import numpy as np | |
| import soundfile as sf | |
| import torch | |
| import yaml | |
| from tqdm import tqdm | |
| from parallel_wavegan.datasets import MelDataset | |
| from parallel_wavegan.datasets import MelSCPDataset | |
| from parallel_wavegan.utils import load_model | |
| from parallel_wavegan.utils import read_hdf5 | |
| def main(): | |
| """Run decoding process.""" | |
| parser = argparse.ArgumentParser( | |
| description="Decode dumped features with trained Parallel WaveGAN Generator " | |
| "(See detail in parallel_wavegan/bin/decode.py)." | |
| ) | |
| parser.add_argument( | |
| "--feats-scp", | |
| "--scp", | |
| default=None, | |
| type=str, | |
| help="kaldi-style feats.scp file. " | |
| "you need to specify either feats-scp or dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--dumpdir", | |
| default=None, | |
| type=str, | |
| help="directory including feature files. " | |
| "you need to specify either feats-scp or dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--outdir", | |
| type=str, | |
| required=True, | |
| help="directory to save generated speech.", | |
| ) | |
| parser.add_argument( | |
| "--checkpoint", | |
| type=str, | |
| required=True, | |
| help="checkpoint file to be loaded.", | |
| ) | |
| parser.add_argument( | |
| "--config", | |
| default=None, | |
| type=str, | |
| help="yaml format configuration file. if not explicitly provided, " | |
| "it will be searched in the checkpoint directory. (default=None)", | |
| ) | |
| parser.add_argument( | |
| "--normalize-before", | |
| default=False, | |
| action="store_true", | |
| help="whether to perform feature normalization before input to the model. " | |
| "if true, it assumes that the feature is de-normalized. this is useful when " | |
| "text2mel model and vocoder use different feature statistics.", | |
| ) | |
| parser.add_argument( | |
| "--verbose", | |
| type=int, | |
| default=1, | |
| help="logging level. higher is more logging. (default=1)", | |
| ) | |
| args = parser.parse_args() | |
| # set logger | |
| if args.verbose > 1: | |
| logging.basicConfig( | |
| level=logging.DEBUG, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| elif args.verbose > 0: | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| else: | |
| logging.basicConfig( | |
| level=logging.WARN, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| logging.warning("Skip DEBUG/INFO messages") | |
| # check directory existence | |
| if not os.path.exists(args.outdir): | |
| os.makedirs(args.outdir) | |
| # load config | |
| if args.config is None: | |
| dirname = os.path.dirname(args.checkpoint) | |
| args.config = os.path.join(dirname, "config.yml") | |
| with open(args.config) as f: | |
| config = yaml.load(f, Loader=yaml.Loader) | |
| config.update(vars(args)) | |
| # check arguments | |
| if (args.feats_scp is not None and args.dumpdir is not None) or ( | |
| args.feats_scp is None and args.dumpdir is None | |
| ): | |
| raise ValueError("Please specify either --dumpdir or --feats-scp.") | |
| # get dataset | |
| if args.dumpdir is not None: | |
| if config["format"] == "hdf5": | |
| mel_query = "*.h5" | |
| mel_load_fn = lambda x: read_hdf5(x, "feats") # NOQA | |
| elif config["format"] == "npy": | |
| mel_query = "*-feats.npy" | |
| mel_load_fn = np.load | |
| else: | |
| raise ValueError("Support only hdf5 or npy format.") | |
| dataset = MelDataset( | |
| args.dumpdir, | |
| mel_query=mel_query, | |
| mel_load_fn=mel_load_fn, | |
| return_utt_id=True, | |
| ) | |
| else: | |
| dataset = MelSCPDataset( | |
| feats_scp=args.feats_scp, | |
| return_utt_id=True, | |
| ) | |
| logging.info(f"The number of features to be decoded = {len(dataset)}.") | |
| # setup model | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| else: | |
| device = torch.device("cpu") | |
| model = load_model(args.checkpoint, config) | |
| logging.info(f"Loaded model parameters from {args.checkpoint}.") | |
| if args.normalize_before: | |
| assert hasattr(model, "mean"), "Feature stats are not registered." | |
| assert hasattr(model, "scale"), "Feature stats are not registered." | |
| model.remove_weight_norm() | |
| model = model.eval().to(device) | |
| # start generation | |
| total_rtf = 0.0 | |
| with torch.no_grad(), tqdm(dataset, desc="[decode]") as pbar: | |
| for idx, (utt_id, c) in enumerate(pbar, 1): | |
| # generate | |
| c = torch.tensor(c, dtype=torch.float).to(device) | |
| start = time.time() | |
| y = model.inference(c, normalize_before=args.normalize_before).view(-1) | |
| rtf = (time.time() - start) / (len(y) / config["sampling_rate"]) | |
| pbar.set_postfix({"RTF": rtf}) | |
| total_rtf += rtf | |
| # save as PCM 16 bit wav file | |
| sf.write( | |
| os.path.join(config["outdir"], f"{utt_id}_gen.wav"), | |
| y.cpu().numpy(), | |
| config["sampling_rate"], | |
| "PCM_16", | |
| ) | |
| # report average RTF | |
| logging.info( | |
| f"Finished generation of {idx} utterances (RTF = {total_rtf / idx:.03f})." | |
| ) | |
| if __name__ == "__main__": | |
| main() | |