Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoTokenizer, AutoModelForCausalLM,
|
| 5 |
+
SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan,
|
| 6 |
+
WhisperProcessor, WhisperForConditionalGeneration
|
| 7 |
+
)
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
import os
|
| 10 |
+
import spaces
|
| 11 |
+
import tempfile
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
import librosa
|
| 14 |
+
import yaml
|
| 15 |
+
|
| 16 |
+
# ================== Configuration ==================
|
| 17 |
+
HUGGINGFACE_MODEL_ID = "HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd"
|
| 18 |
+
TORCH_DTYPE = torch.bfloat16
|
| 19 |
+
MAX_NEW_TOKENS = 512
|
| 20 |
+
DO_SAMPLE = True
|
| 21 |
+
TEMPERATURE = 0.7
|
| 22 |
+
TOP_K = 50
|
| 23 |
+
TOP_P = 0.95
|
| 24 |
+
|
| 25 |
+
TTS_MODEL_ID = "microsoft/speecht5_tts"
|
| 26 |
+
TTS_VOCODER_ID = "microsoft/speecht5_hifigan"
|
| 27 |
+
STT_MODEL_ID = "openai/whisper-small"
|
| 28 |
+
|
| 29 |
+
# ================== Global Variables ==================
|
| 30 |
+
tokenizer = None
|
| 31 |
+
llm_model = None
|
| 32 |
+
tts_processor = None
|
| 33 |
+
tts_model = None
|
| 34 |
+
tts_vocoder = None
|
| 35 |
+
speaker_embeddings = None
|
| 36 |
+
whisper_processor = None
|
| 37 |
+
whisper_model = None
|
| 38 |
+
first_load = True
|
| 39 |
+
|
| 40 |
+
# ================== UI Helpers ==================
|
| 41 |
+
def generate_pretty_html(data):
|
| 42 |
+
html = """
|
| 43 |
+
<div style="font-family: Arial, sans-serif; max-width: 600px; margin: auto;
|
| 44 |
+
background-color: #f9f9f9; border-radius: 10px; padding: 20px;
|
| 45 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
|
| 46 |
+
<h2 style="color: #2c3e50; border-bottom: 2px solid #ddd; padding-bottom: 10px;">Model Info</h2>
|
| 47 |
+
"""
|
| 48 |
+
for key, value in data.items():
|
| 49 |
+
html += f"""
|
| 50 |
+
<div style="margin-bottom: 12px;">
|
| 51 |
+
<strong style="color: #34495e; display: inline-block; width: 160px;">{key}:</strong>
|
| 52 |
+
<span style="color: #2c3e50;">{value}</span>
|
| 53 |
+
</div>
|
| 54 |
+
"""
|
| 55 |
+
html += "</div>"
|
| 56 |
+
return html
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def load_config():
|
| 60 |
+
with open("config.yaml", "r", encoding="utf-8") as f:
|
| 61 |
+
return yaml.safe_load(f)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def render_modern_info():
|
| 65 |
+
try:
|
| 66 |
+
config = load_config()
|
| 67 |
+
return generate_pretty_html(config)
|
| 68 |
+
except Exception as e:
|
| 69 |
+
return f"<div style='color: red;'>Error loading config: {str(e)}</div>"
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def load_readme():
|
| 73 |
+
with open("README.md", "r", encoding="utf-8") as f:
|
| 74 |
+
return f.read()
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# ================== Helper Functions ==================
|
| 78 |
+
def split_text_into_chunks(text, max_chars=400):
|
| 79 |
+
sentences = text.replace("...", ".").split(". ")
|
| 80 |
+
chunks = []
|
| 81 |
+
current_chunk = ""
|
| 82 |
+
for sentence in sentences:
|
| 83 |
+
if len(current_chunk) + len(sentence) + 2 < max_chars:
|
| 84 |
+
current_chunk += ". " + sentence if current_chunk else sentence
|
| 85 |
+
else:
|
| 86 |
+
chunks.append(current_chunk)
|
| 87 |
+
current_chunk = sentence
|
| 88 |
+
if current_chunk:
|
| 89 |
+
chunks.append(current_chunk)
|
| 90 |
+
return [f"{chunk}." for chunk in chunks if chunk.strip()]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# ================== Model Loading ==================
|
| 94 |
+
@spaces.GPU
|
| 95 |
+
def load_models():
|
| 96 |
+
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings, whisper_processor, whisper_model
|
| 97 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 98 |
+
|
| 99 |
+
# LLM
|
| 100 |
+
if tokenizer is None or llm_model is None:
|
| 101 |
+
try:
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_ID, token=hf_token)
|
| 103 |
+
if tokenizer.pad_token is None:
|
| 104 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 105 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 106 |
+
HUGGINGFACE_MODEL_ID,
|
| 107 |
+
torch_dtype=TORCH_DTYPE,
|
| 108 |
+
device_map="auto",
|
| 109 |
+
token=hf_token
|
| 110 |
+
).eval()
|
| 111 |
+
print("LLM loaded successfully.")
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"Error loading LLM: {e}")
|
| 114 |
+
|
| 115 |
+
# TTS
|
| 116 |
+
if tts_processor is None or tts_model is None or tts_vocoder is None:
|
| 117 |
+
try:
|
| 118 |
+
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
| 119 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
| 120 |
+
tts_vocoder = SpeechT5HifiGan.from_pretrained(TTS_VOCODER_ID, token=hf_token)
|
| 121 |
+
embeddings = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", token=hf_token)
|
| 122 |
+
speaker_embeddings = torch.tensor(embeddings[7306]["xvector"]).unsqueeze(0)
|
| 123 |
+
device = llm_model.device if llm_model else 'cpu'
|
| 124 |
+
tts_model.to(device)
|
| 125 |
+
tts_vocoder.to(device)
|
| 126 |
+
speaker_embeddings = speaker_embeddings.to(device)
|
| 127 |
+
print("TTS models loaded.")
|
| 128 |
+
except Exception as e:
|
| 129 |
+
print(f"Error loading TTS: {e}")
|
| 130 |
+
|
| 131 |
+
# STT
|
| 132 |
+
if whisper_processor is None or whisper_model is None:
|
| 133 |
+
try:
|
| 134 |
+
whisper_processor = WhisperProcessor.from_pretrained(STT_MODEL_ID, token=hf_token)
|
| 135 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained(STT_MODEL_ID, token=hf_token)
|
| 136 |
+
device = llm_model.device if llm_model else 'cpu'
|
| 137 |
+
whisper_model.to(device)
|
| 138 |
+
print("Whisper loaded.")
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"Error loading Whisper: {e}")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# ================== Chat & Audio Functions ==================
|
| 144 |
+
@spaces.GPU
|
| 145 |
+
def generate_response_and_audio(message, history):
|
| 146 |
+
global first_load
|
| 147 |
+
if first_load:
|
| 148 |
+
load_models()
|
| 149 |
+
first_load = False
|
| 150 |
+
|
| 151 |
+
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
|
| 152 |
+
|
| 153 |
+
if tokenizer is None or llm_model is None:
|
| 154 |
+
return [{"role": "assistant", "content": "Error: LLM not loaded."}], None
|
| 155 |
+
|
| 156 |
+
messages = history.copy()
|
| 157 |
+
messages.append({"role": "user", "content": message})
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 161 |
+
except:
|
| 162 |
+
input_text = ""
|
| 163 |
+
for item in history:
|
| 164 |
+
input_text += f"{item['role'].capitalize()}: {item['content']}\n"
|
| 165 |
+
input_text += f"User: {message}\nAssistant:"
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).to(llm_model.device)
|
| 169 |
+
output_ids = llm_model.generate(
|
| 170 |
+
inputs["input_ids"],
|
| 171 |
+
attention_mask=inputs["attention_mask"],
|
| 172 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 173 |
+
do_sample=DO_SAMPLE,
|
| 174 |
+
temperature=TEMPERATURE,
|
| 175 |
+
top_k=TOP_K,
|
| 176 |
+
top_p=TOP_P,
|
| 177 |
+
pad_token_id=tokenizer.eos_token_id
|
| 178 |
+
)
|
| 179 |
+
generated_text = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True).strip()
|
| 180 |
+
except Exception as e:
|
| 181 |
+
print(f"LLM error: {e}")
|
| 182 |
+
return history + [{"role": "assistant", "content": "I had an issue generating a response."}], None
|
| 183 |
+
|
| 184 |
+
audio_path = None
|
| 185 |
+
if None not in [tts_processor, tts_model, tts_vocoder, speaker_embeddings]:
|
| 186 |
+
try:
|
| 187 |
+
device = llm_model.device
|
| 188 |
+
text_chunks = split_text_into_chunks(generated_text)
|
| 189 |
+
|
| 190 |
+
full_speech = []
|
| 191 |
+
for chunk in text_chunks:
|
| 192 |
+
tts_inputs = tts_processor(text=chunk, return_tensors="pt", max_length=512, truncation=True).to(device)
|
| 193 |
+
speech = tts_model.generate_speech(tts_inputs["input_ids"], speaker_embeddings, vocoder=tts_vocoder)
|
| 194 |
+
full_speech.append(speech.cpu())
|
| 195 |
+
|
| 196 |
+
full_speech_tensor = torch.cat(full_speech, dim=0)
|
| 197 |
+
|
| 198 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
| 199 |
+
audio_path = tmp_file.name
|
| 200 |
+
sf.write(audio_path, full_speech_tensor.numpy(), samplerate=16000)
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
print(f"TTS error: {e}")
|
| 204 |
+
|
| 205 |
+
return history + [{"role": "assistant", "content": generated_text}], audio_path
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
@spaces.GPU
|
| 209 |
+
def transcribe_audio(filepath):
|
| 210 |
+
global first_load
|
| 211 |
+
if first_load:
|
| 212 |
+
load_models()
|
| 213 |
+
first_load = False
|
| 214 |
+
|
| 215 |
+
global whisper_processor, whisper_model
|
| 216 |
+
if whisper_model is None:
|
| 217 |
+
return "Whisper model not loaded."
|
| 218 |
+
|
| 219 |
+
try:
|
| 220 |
+
audio, sr = librosa.load(filepath, sr=16000)
|
| 221 |
+
inputs = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
| 222 |
+
outputs = whisper_model.generate(inputs)
|
| 223 |
+
return whisper_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 224 |
+
except Exception as e:
|
| 225 |
+
return f"Transcription failed: {e}"
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# ================== Gradio UI ==================
|
| 229 |
+
with gr.Blocks(head="""
|
| 230 |
+
<script src="https://cdn.tailwindcss.com "></script>
|
| 231 |
+
""") as demo:
|
| 232 |
+
gr.Markdown("""
|
| 233 |
+
<div class="bg-gray-900 text-white p-4 rounded-lg shadow-md mb-6">
|
| 234 |
+
<h1 class="text-2xl font-bold">Qwen2.5 Chatbot with Voice Input/Output</h1>
|
| 235 |
+
<p class="text-gray-300">Powered by Gradio + TailwindCSS</p>
|
| 236 |
+
</div>
|
| 237 |
+
""")
|
| 238 |
+
|
| 239 |
+
with gr.Tab("Chat"):
|
| 240 |
+
gr.HTML("""
|
| 241 |
+
<div class="bg-gray-800 p-4 rounded-lg mb-4">
|
| 242 |
+
<label class="block text-gray-300 font-medium mb-2">Chat Interface</label>
|
| 243 |
+
</div>
|
| 244 |
+
""")
|
| 245 |
+
chatbot = gr.Chatbot(type='messages', elem_classes=["bg-gray-800", "text-white"])
|
| 246 |
+
text_input = gr.Textbox(
|
| 247 |
+
placeholder="Type your message...",
|
| 248 |
+
label="User Input",
|
| 249 |
+
elem_classes=["bg-gray-700", "text-white", "border-gray-600"]
|
| 250 |
+
)
|
| 251 |
+
audio_output = gr.Audio(label="Response Audio", autoplay=True)
|
| 252 |
+
text_input.submit(generate_response_and_audio, [text_input, chatbot], [chatbot, audio_output])
|
| 253 |
+
|
| 254 |
+
with gr.Tab("Transcribe"):
|
| 255 |
+
gr.HTML("""
|
| 256 |
+
<div class="bg-gray-800 p-4 rounded-lg mb-4">
|
| 257 |
+
<label class="block text-gray-300 font-medium mb-2">Audio Transcription</label>
|
| 258 |
+
</div>
|
| 259 |
+
""")
|
| 260 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
| 261 |
+
transcribed = gr.Textbox(
|
| 262 |
+
label="Transcription",
|
| 263 |
+
elem_classes=["bg-gray-700", "text-white", "border-gray-600"]
|
| 264 |
+
)
|
| 265 |
+
audio_input.upload(transcribe_audio, audio_input, transcribed)
|
| 266 |
+
|
| 267 |
+
clear_btn = gr.Button("Clear All", elem_classes=["bg-gray-600", "hover:bg-gray-500", "text-white", "mt-4"])
|
| 268 |
+
clear_btn.click(lambda: ([], "", None), None, [chatbot, text_input, audio_output])
|
| 269 |
+
|
| 270 |
+
html_output = gr.HTML("""
|
| 271 |
+
<div class="bg-gray-800 text-white p-4 rounded-lg mt-6 text-center">
|
| 272 |
+
Loading model info...
|
| 273 |
+
</div>
|
| 274 |
+
""")
|
| 275 |
+
demo.load(fn=render_modern_info, outputs=html_output)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
# ================== Launch App ==================
|
| 279 |
+
demo.queue().launch()
|