Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoTokenizer,
|
| 5 |
+
AutoModelForCausalLM,
|
| 6 |
+
SpeechT5Processor,
|
| 7 |
+
SpeechT5ForTextToSpeech,
|
| 8 |
+
SpeechT5HifiGan,
|
| 9 |
+
WhisperProcessor, # New: For Speech-to-Text
|
| 10 |
+
WhisperForConditionalGeneration # New: For Speech-to-Text
|
| 11 |
+
)
|
| 12 |
+
from datasets import load_dataset # To get a speaker embedding for TTS
|
| 13 |
+
import os
|
| 14 |
+
import spaces # Import the spaces library for GPU decorator
|
| 15 |
+
import tempfile # For creating temporary audio files
|
| 16 |
+
import soundfile as sf # To save audio files
|
| 17 |
+
import librosa # New: For loading audio files for transcription
|
| 18 |
+
|
| 19 |
+
# --- Configuration for Language Model (LLM) ---
|
| 20 |
+
HUGGINGFACE_MODEL_ID = "HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd"
|
| 21 |
+
TORCH_DTYPE = torch.bfloat16
|
| 22 |
+
MAX_NEW_TOKENS = 512
|
| 23 |
+
DO_SAMPLE = True
|
| 24 |
+
TEMPERATURE = 0.7
|
| 25 |
+
TOP_K = 50
|
| 26 |
+
TOP_P = 0.95
|
| 27 |
+
|
| 28 |
+
# --- Configuration for Text-to-Speech (TTS) ---
|
| 29 |
+
TTS_MODEL_ID = "microsoft/speecht5_tts"
|
| 30 |
+
TTS_VOCODER_ID = "microsoft/speecht5_hifigan"
|
| 31 |
+
|
| 32 |
+
# --- Configuration for Speech-to-Text (STT) ---
|
| 33 |
+
STT_MODEL_ID = "openai/whisper-tiny" # Using a smaller Whisper model for faster inference
|
| 34 |
+
|
| 35 |
+
# --- Global variables for models and tokenizers/processors ---
|
| 36 |
+
tokenizer = None
|
| 37 |
+
llm_model = None
|
| 38 |
+
tts_processor = None
|
| 39 |
+
tts_model = None
|
| 40 |
+
tts_vocoder = None
|
| 41 |
+
speaker_embeddings = None
|
| 42 |
+
whisper_processor = None # New: Global for Whisper processor
|
| 43 |
+
whisper_model = None # New: Global for Whisper model
|
| 44 |
+
|
| 45 |
+
# --- Load All Models Function ---
|
| 46 |
+
@spaces.GPU # Decorate with @spaces.GPU to signal this function needs GPU access
|
| 47 |
+
def load_models():
|
| 48 |
+
"""
|
| 49 |
+
Loads the language model, tokenizer, TTS models, speaker embeddings,
|
| 50 |
+
and STT (Whisper) models from Hugging Face Hub.
|
| 51 |
+
This function will be called once when the Gradio app starts up.
|
| 52 |
+
"""
|
| 53 |
+
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
|
| 54 |
+
global whisper_processor, whisper_model
|
| 55 |
+
|
| 56 |
+
if (tokenizer is not None and llm_model is not None and tts_model is not None and
|
| 57 |
+
whisper_processor is not None and whisper_model is not None):
|
| 58 |
+
print("All models and tokenizers/processors already loaded.")
|
| 59 |
+
return
|
| 60 |
+
|
| 61 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 62 |
+
|
| 63 |
+
# Load Language Model (LLM)
|
| 64 |
+
print(f"Loading LLM tokenizer from: {HUGGINGFACE_MODEL_ID}")
|
| 65 |
+
try:
|
| 66 |
+
tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_ID, token=hf_token)
|
| 67 |
+
if tokenizer.pad_token is None:
|
| 68 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 69 |
+
print(f"Set tokenizer.pad_token to tokenizer.eos_token ({tokenizer.pad_token_id})")
|
| 70 |
+
|
| 71 |
+
print(f"Loading LLM model from: {HUGGINGFACE_MODEL_ID}...")
|
| 72 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 73 |
+
HUGGINGFACE_MODEL_ID,
|
| 74 |
+
torch_dtype=TORCH_DTYPE,
|
| 75 |
+
device_map="auto",
|
| 76 |
+
token=hf_token
|
| 77 |
+
)
|
| 78 |
+
llm_model.eval()
|
| 79 |
+
print("LLM model loaded successfully.")
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"Error loading LLM model or tokenizer: {e}")
|
| 82 |
+
raise RuntimeError("Failed to load LLM model. Check your model ID/path and internet connection.")
|
| 83 |
+
|
| 84 |
+
# Load TTS models
|
| 85 |
+
print(f"Loading TTS processor, model, and vocoder from: {TTS_MODEL_ID}, {TTS_VOCODER_ID}")
|
| 86 |
+
try:
|
| 87 |
+
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
| 88 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
| 89 |
+
tts_vocoder = SpeechT5HifiGan.from_pretrained(TTS_VOCODER_ID, token=hf_token)
|
| 90 |
+
|
| 91 |
+
print("Loading speaker embeddings for TTS...")
|
| 92 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", token=hf_token)
|
| 93 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 94 |
+
|
| 95 |
+
device = llm_model.device if llm_model else 'cpu'
|
| 96 |
+
tts_model.to(device)
|
| 97 |
+
tts_vocoder.to(device)
|
| 98 |
+
speaker_embeddings = speaker_embeddings.to(device)
|
| 99 |
+
print(f"TTS models and speaker embeddings loaded successfully to device: {device}.")
|
| 100 |
+
|
| 101 |
+
except Exception as e:
|
| 102 |
+
print(f"Error loading TTS models or speaker embeddings: {e}")
|
| 103 |
+
tts_processor = None
|
| 104 |
+
tts_model = None
|
| 105 |
+
tts_vocoder = None
|
| 106 |
+
speaker_embeddings = None
|
| 107 |
+
raise RuntimeError("Failed to load TTS components. Check model IDs and internet connection.")
|
| 108 |
+
|
| 109 |
+
# Load STT (Whisper) model
|
| 110 |
+
print(f"Loading STT (Whisper) processor and model from: {STT_MODEL_ID}")
|
| 111 |
+
try:
|
| 112 |
+
whisper_processor = WhisperProcessor.from_pretrained(STT_MODEL_ID, token=hf_token)
|
| 113 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained(STT_MODEL_ID, token=hf_token)
|
| 114 |
+
|
| 115 |
+
device = llm_model.device if llm_model else 'cpu' # Use the same device as LLM
|
| 116 |
+
whisper_model.to(device)
|
| 117 |
+
print(f"STT (Whisper) model loaded successfully to device: {device}.")
|
| 118 |
+
except Exception as e:
|
| 119 |
+
print(f"Error loading STT (Whisper) model or processor: {e}")
|
| 120 |
+
whisper_processor = None
|
| 121 |
+
whisper_model = None
|
| 122 |
+
raise RuntimeError("Failed to load STT (Whisper) components. Check model ID and internet connection.")
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# --- Generate Response and Audio Function ---
|
| 126 |
+
@spaces.GPU # Decorate with @spaces.GPU as this function performs GPU-intensive inference
|
| 127 |
+
def generate_response_and_audio(
|
| 128 |
+
message: str, # Current user message
|
| 129 |
+
history: list # Gradio Chatbot history format (list of dictionaries with 'role' and 'content')
|
| 130 |
+
) -> tuple: # Returns (updated_history, audio_file_path)
|
| 131 |
+
"""
|
| 132 |
+
Generates a text response from the loaded LLM and then converts it to audio
|
| 133 |
+
using the loaded TTS model.
|
| 134 |
+
"""
|
| 135 |
+
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
|
| 136 |
+
|
| 137 |
+
# Initialize all models if not already loaded
|
| 138 |
+
if tokenizer is None or llm_model is None or tts_model is None:
|
| 139 |
+
load_models()
|
| 140 |
+
|
| 141 |
+
if tokenizer is None or llm_model is None: # Check LLM loading status
|
| 142 |
+
history.append({"role": "user", "content": message})
|
| 143 |
+
history.append({"role": "assistant", "content": "Error: Chatbot LLM not loaded. Please check logs."})
|
| 144 |
+
return history, None
|
| 145 |
+
|
| 146 |
+
# --- 1. Generate Text Response (LLM) ---
|
| 147 |
+
messages = history
|
| 148 |
+
messages.append({"role": "user", "content": message})
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f"Error applying chat template: {e}")
|
| 154 |
+
input_text = ""
|
| 155 |
+
for item in history:
|
| 156 |
+
if item["role"] == "user":
|
| 157 |
+
input_text += f"User: {item['content']}\n"
|
| 158 |
+
elif item["role"] == "assistant":
|
| 159 |
+
input_text += f"Assistant: {item['content']}\n"
|
| 160 |
+
input_text += f"User: {message}\nAssistant:"
|
| 161 |
+
|
| 162 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(llm_model.device)
|
| 163 |
+
|
| 164 |
+
with torch.no_grad():
|
| 165 |
+
output_ids = llm_model.generate(
|
| 166 |
+
input_ids,
|
| 167 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 168 |
+
do_sample=DO_SAMPLE,
|
| 169 |
+
temperature=TEMPERATURE,
|
| 170 |
+
top_k=TOP_K,
|
| 171 |
+
top_p=TOP_P,
|
| 172 |
+
pad_token_id=tokenizer.eos_token_id
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
generated_token_ids = output_ids[0][input_ids.shape[-1]:]
|
| 176 |
+
generated_text = tokenizer.decode(generated_token_ids, skip_special_tokens=True).strip()
|
| 177 |
+
|
| 178 |
+
# --- 2. Generate Audio from Response (TTS) ---
|
| 179 |
+
audio_path = None
|
| 180 |
+
if tts_processor and tts_model and tts_vocoder and speaker_embeddings is not None:
|
| 181 |
+
try:
|
| 182 |
+
device = llm_model.device if llm_model else 'cpu'
|
| 183 |
+
tts_model.to(device)
|
| 184 |
+
tts_vocoder.to(device)
|
| 185 |
+
speaker_embeddings = speaker_embeddings.to(device)
|
| 186 |
+
|
| 187 |
+
tts_inputs = tts_processor(
|
| 188 |
+
text=generated_text,
|
| 189 |
+
return_tensors="pt",
|
| 190 |
+
max_length=550,
|
| 191 |
+
truncation=True
|
| 192 |
+
).to(device)
|
| 193 |
+
|
| 194 |
+
with torch.no_grad():
|
| 195 |
+
speech = tts_model.generate_speech(tts_inputs["input_ids"], speaker_embeddings, vocoder=tts_vocoder)
|
| 196 |
+
|
| 197 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
| 198 |
+
audio_path = tmp_file.name
|
| 199 |
+
sf.write(audio_path, speech.cpu().numpy(), samplerate=16000)
|
| 200 |
+
print(f"Audio saved to: {audio_path}")
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
print(f"Error generating audio: {e}")
|
| 204 |
+
audio_path = None
|
| 205 |
+
else:
|
| 206 |
+
print("TTS components not loaded. Skipping audio generation.")
|
| 207 |
+
|
| 208 |
+
# --- 3. Update Chat History ---
|
| 209 |
+
history.append({"role": "assistant", "content": generated_text})
|
| 210 |
+
|
| 211 |
+
return history, audio_path
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# --- Transcribe Audio Function (NEW) ---
|
| 215 |
+
@spaces.GPU # This function also needs GPU access for Whisper inference
|
| 216 |
+
def transcribe_audio(audio_filepath):
|
| 217 |
+
"""
|
| 218 |
+
Transcribes an audio file using the loaded Whisper model.
|
| 219 |
+
Handles audio files of varying lengths.
|
| 220 |
+
"""
|
| 221 |
+
global whisper_processor, whisper_model
|
| 222 |
+
|
| 223 |
+
if whisper_processor is None or whisper_model is None:
|
| 224 |
+
load_models() # Attempt to load if not already loaded
|
| 225 |
+
|
| 226 |
+
if whisper_processor is None or whisper_model is None:
|
| 227 |
+
return "Error: Speech-to-Text model not loaded. Please check logs."
|
| 228 |
+
|
| 229 |
+
if audio_filepath is None:
|
| 230 |
+
return "No audio input provided for transcription."
|
| 231 |
+
|
| 232 |
+
print(f"Transcribing audio from: {audio_filepath}")
|
| 233 |
+
try:
|
| 234 |
+
# Load audio file and resample to 16kHz (Whisper's required sample rate)
|
| 235 |
+
audio, sample_rate = librosa.load(audio_filepath, sr=16000)
|
| 236 |
+
|
| 237 |
+
# Process audio input for the Whisper model
|
| 238 |
+
input_features = whisper_processor(
|
| 239 |
+
audio,
|
| 240 |
+
sampling_rate=sample_rate,
|
| 241 |
+
return_tensors="pt"
|
| 242 |
+
).input_features.to(whisper_model.device)
|
| 243 |
+
|
| 244 |
+
# Generate transcription IDs
|
| 245 |
+
predicted_ids = whisper_model.generate(input_features)
|
| 246 |
+
|
| 247 |
+
# Decode the IDs to text
|
| 248 |
+
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 249 |
+
print(f"Transcription: {transcription}")
|
| 250 |
+
return transcription
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
print(f"Error during transcription: {e}")
|
| 254 |
+
return f"Transcription failed: {e}"
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
# --- Gradio Interface ---
|
| 258 |
+
with gr.Blocks() as demo:
|
| 259 |
+
gr.Markdown(
|
| 260 |
+
"""
|
| 261 |
+
# HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd chat bot with Voice Input & Output
|
| 262 |
+
Type your message or speak into the microphone to chat with the model.
|
| 263 |
+
The chatbot's response will be spoken, and your audio input can be transcribed!
|
| 264 |
+
"""
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
with gr.Tab("Chat with Voice"):
|
| 268 |
+
chatbot = gr.Chatbot(label="Conversation", type='messages')
|
| 269 |
+
with gr.Row():
|
| 270 |
+
text_input = gr.Textbox(
|
| 271 |
+
label="Your message",
|
| 272 |
+
placeholder="Type your message here...",
|
| 273 |
+
scale=4
|
| 274 |
+
)
|
| 275 |
+
submit_button = gr.Button("Send", scale=1)
|
| 276 |
+
|
| 277 |
+
audio_output = gr.Audio(
|
| 278 |
+
label="Listen to Response",
|
| 279 |
+
autoplay=True,
|
| 280 |
+
interactive=False
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
submit_button.click(
|
| 284 |
+
fn=generate_response_and_audio,
|
| 285 |
+
inputs=[text_input, chatbot],
|
| 286 |
+
outputs=[chatbot, audio_output],
|
| 287 |
+
queue=True
|
| 288 |
+
)
|
| 289 |
+
text_input.submit(
|
| 290 |
+
fn=generate_response_and_audio,
|
| 291 |
+
inputs=[text_input, chatbot],
|
| 292 |
+
outputs=[chatbot, audio_output],
|
| 293 |
+
queue=True
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
with gr.Tab("Audio Transcription"):
|
| 297 |
+
stt_audio_input = gr.Audio(
|
| 298 |
+
type="filepath",
|
| 299 |
+
label="Upload Audio or Record from Microphone",
|
| 300 |
+
# Removed 'microphone=True' and 'source' as they cause TypeError with older Gradio versions
|
| 301 |
+
format="wav" # Ensure consistent format
|
| 302 |
+
)
|
| 303 |
+
transcribe_button = gr.Button("Transcribe Audio")
|
| 304 |
+
transcribed_text_output = gr.Textbox(
|
| 305 |
+
label="Transcription",
|
| 306 |
+
placeholder="Transcription will appear here...",
|
| 307 |
+
interactive=False
|
| 308 |
+
)
|
| 309 |
+
transcribe_button.click(
|
| 310 |
+
fn=transcribe_audio,
|
| 311 |
+
inputs=[stt_audio_input],
|
| 312 |
+
outputs=[transcribed_text_output],
|
| 313 |
+
queue=True
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# Clear button for the entire interface
|
| 317 |
+
def clear_all():
|
| 318 |
+
return [], "", None, None, "" # Clear chatbot, text_input, audio_output, stt_audio_input, transcribed_text_output
|
| 319 |
+
clear_button = gr.Button("Clear All")
|
| 320 |
+
clear_button.click(
|
| 321 |
+
clear_all,
|
| 322 |
+
inputs=None,
|
| 323 |
+
outputs=[chatbot, text_input, audio_output, stt_audio_input, transcribed_text_output]
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# Load all models when the app starts up
|
| 327 |
+
load_models()
|
| 328 |
+
|
| 329 |
+
# Launch the Gradio app
|
| 330 |
+
demo.queue().launch()
|