Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os.path | |
| import numpy as np | |
| from collections import OrderedDict | |
| import torch | |
| import cv2 | |
| from PIL import Image, ImageOps | |
| import utils_image as util | |
| from network_fbcnn import FBCNN as net | |
| import requests | |
| import datetime | |
| for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']: | |
| if os.path.exists(model_path): | |
| print(f'{model_path} exists.') | |
| else: | |
| print("downloading model") | |
| url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) | |
| r = requests.get(url, allow_redirects=True) | |
| open(model_path, 'wb').write(r.content) | |
| def inference(input_img, is_gray, input_quality, zoom, x_shift, y_shift): | |
| print("datetime:",datetime.datetime.utcnow()) | |
| input_img_width, input_img_height = Image.fromarray(input_img).size | |
| print("img size:",(input_img_width,input_img_height)) | |
| if is_gray: | |
| n_channels = 1 # set 1 for grayscale image, set 3 for color image | |
| model_name = 'fbcnn_gray.pth' | |
| else: | |
| n_channels = 3 # set 1 for grayscale image, set 3 for color image | |
| model_name = 'fbcnn_color.pth' | |
| nc = [64,128,256,512] | |
| nb = 4 | |
| input_quality = 100 - input_quality | |
| model_path = model_name | |
| if os.path.exists(model_path): | |
| print(f'{model_path} already exists.') | |
| else: | |
| print("downloading model") | |
| os.makedirs(os.path.dirname(model_path), exist_ok=True) | |
| url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) | |
| r = requests.get(url, allow_redirects=True) | |
| open(model_path, 'wb').write(r.content) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| print("device:",device) | |
| # ---------------------------------------- | |
| # load model | |
| # ---------------------------------------- | |
| print(f'loading model from {model_path}') | |
| model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R') | |
| print("#model.load_state_dict(torch.load(model_path), strict=True)") | |
| model.load_state_dict(torch.load(model_path), strict=True) | |
| print("#model.eval()") | |
| model.eval() | |
| print("#for k, v in model.named_parameters()") | |
| for k, v in model.named_parameters(): | |
| v.requires_grad = False | |
| print("#model.to(device)") | |
| model = model.to(device) | |
| print("Model loaded.") | |
| test_results = OrderedDict() | |
| test_results['psnr'] = [] | |
| test_results['ssim'] = [] | |
| test_results['psnrb'] = [] | |
| # ------------------------------------ | |
| # (1) img_L | |
| # ------------------------------------ | |
| print("#if n_channels") | |
| if n_channels == 1: | |
| open_cv_image = Image.fromarray(input_img) | |
| open_cv_image = ImageOps.grayscale(open_cv_image) | |
| open_cv_image = np.array(open_cv_image) # PIL to open cv image | |
| img = np.expand_dims(open_cv_image, axis=2) # HxWx1 | |
| elif n_channels == 3: | |
| open_cv_image = np.array(input_img) # PIL to open cv image | |
| if open_cv_image.ndim == 2: | |
| open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG | |
| else: | |
| open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB | |
| print("#util.uint2tensor4(open_cv_image)") | |
| img_L = util.uint2tensor4(open_cv_image) | |
| print("#img_L.to(device)") | |
| img_L = img_L.to(device) | |
| # ------------------------------------ | |
| # (2) img_E | |
| # ------------------------------------ | |
| print("#model(img_L)") | |
| img_E,QF = model(img_L) | |
| print("#util.tensor2single(img_E)") | |
| img_E = util.tensor2single(img_E) | |
| print("#util.single2uint(img_E)") | |
| img_E = util.single2uint(img_E) | |
| print("#torch.tensor([[1-input_quality/100]]).cuda() || torch.tensor([[1-input_quality/100]])") | |
| qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]]) | |
| print("#util.single2uint(img_E)") | |
| img_E,QF = model(img_L, qf_input) | |
| print("#util.tensor2single(img_E)") | |
| img_E = util.tensor2single(img_E) | |
| print("#util.single2uint(img_E)") | |
| img_E = util.single2uint(img_E) | |
| if img_E.ndim == 3: | |
| img_E = img_E[:, :, [2, 1, 0]] | |
| print("--inference finished") | |
| out_img = Image.fromarray(img_E) | |
| out_img_w, out_img_h = out_img.size # output image size | |
| zoom = zoom/100 | |
| x_shift = x_shift/100 | |
| y_shift = y_shift/100 | |
| zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom | |
| zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift) | |
| zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift) | |
| in_img = Image.fromarray(input_img) | |
| in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) | |
| in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) | |
| out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) | |
| out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) | |
| print("--generating preview finished") | |
| return img_E, in_img, out_img | |
| gr.Interface( | |
| fn = inference, | |
| inputs = [gr.inputs.Image(label="Input Image"), | |
| gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"), | |
| gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)"), | |
| gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image " | |
| "(Use this to see a copy of the output image up close. " | |
| "100 = original size)"), | |
| gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom horizontal shift " | |
| "(Increase to shift to the right)"), | |
| gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom vertical shift " | |
| "(Increase to shift downwards)") | |
| ], | |
| outputs = [gr.outputs.Image(label="Result"), | |
| gr.outputs.Image(label="Before:"), | |
| gr.outputs.Image(label="After:")], | |
| title = "JPEG Artifacts Removal [FBCNN]", | |
| description = "Gradio Demo for JPEG Artifacts Removal. To use it, simply upload your image, " | |
| "Check out the paper and the original GitHub repo at the links below. " | |
| "JPEG artifacts are noticeable distortions of images caused by JPEG lossy compression. " | |
| "This is not a super-resolution AI but a JPEG compression artifact remover. " | |
| "Written below are the limitations of the input image. ", | |
| article = "<p style='text-align: left;'>Uploaded images with transparency will be incorrectly reconstructed at the output.</p>" | |
| "<p style='text-align: center;'><a href='https://github.com/jiaxi-jiang/FBCNN'>FBCNN GitHub Repo</a><br>" | |
| "<a href='https://arxiv.org/abs/2109.14573'>Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)</a><br>" | |
| "<a href='https://jiaxi-jiang.github.io/'>Jiaxi Jiang, </a>" | |
| "<a href='https://cszn.github.io/'>Kai Zhang, </a>" | |
| "<a href='http://people.ee.ethz.ch/~timofter/'>Radu Timofte</a></p>", | |
| allow_flagging="never" | |
| ).launch(enable_queue=True) |