Spaces:
No application file
No application file
| import gradio as gr | |
| import pandas as pd | |
| import numpy as np | |
| from scipy.fft import fft, fftfreq | |
| from sklearn.preprocessing import MinMaxScaler | |
| from tensorflow.keras.models import Sequential, load_model | |
| import requests | |
| # --- Pre-trained Model (Simple LSTM) --- | |
| def build_model(): | |
| model = Sequential([ | |
| tf.keras.layers.LSTM(32, input_shape=(30, 1)), | |
| tf.keras.layers.Dense(1) | |
| ]) | |
| model.compile(loss='mse', optimizer='adam') | |
| return model | |
| # --- Core Functions --- | |
| def analyze_data(data_url, prediction_days=30): | |
| try: | |
| # 1. Fetch data | |
| df = pd.read_csv(data_url) | |
| dates = df.columns[4:] # COVID data format | |
| values = df.drop(columns=['Province/State', 'Country/Region', 'Lat', 'Long']).sum(axis=0)[4:].values.astype(float) | |
| # 2. Detect cycles | |
| N = len(values) | |
| yf = fft(values) | |
| xf = fftfreq(N, 1)[:N//2] | |
| dominant_freq = xf[np.argmax(np.abs(yf[0:N//2]))] | |
| cycle_days = int(1/dominant_freq) | |
| # 3. Make predictions (simplified) | |
| scaler = MinMaxScaler() | |
| scaled = scaler.fit_transform(values.reshape(-1, 1)) | |
| model = build_model() | |
| model.fit(scaled[:-10], scaled[10:], epochs=5, verbose=0) # Quick training | |
| preds = model.predict(scaled[-30:].reshape(1, 30, 1)) | |
| preds = scaler.inverse_transform(preds).flatten().tolist() | |
| # 4. Generate insights | |
| insights = [ | |
| f"Dominant cycle: {cycle_days} days", | |
| f"Next {prediction_days}-day trend: {'β Upward' if preds[-1] > preds[0] else 'β Downward'}", | |
| "Action: Monitor closely around cycle peaks" | |
| ] | |
| # Simple plot | |
| plot = pd.DataFrame({ | |
| 'Historical': values, | |
| 'Predicted': [None]*(len(values)) + preds | |
| }).plot(title="Cases Analysis").figure | |
| return plot, insights | |
| except Exception as e: | |
| return None, [f"Error: {str(e)}"] | |
| # --- Gradio Interface --- | |
| interface = gr.Interface( | |
| fn=analyze_data, | |
| inputs=[ | |
| gr.Textbox(label="Data URL", | |
| value="https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/data/time_series_covid19_confirmed_global.csv"), | |
| gr.Number(label="Days to Predict", value=30) | |
| ], | |
| outputs=[ | |
| gr.Plot(label="Analysis"), | |
| gr.JSON(label="Insights") | |
| ], | |
| title="DeepSeek Lite Analyzer", | |
| description="Analyze time-series data from public URLs. Works best with COVID-19 format data." | |
| ) | |
| interface.launch() |