Spaces:
Running
on
Zero
Running
on
Zero
Delete app-backup.py
Browse files- app-backup.py +0 -117
app-backup.py
DELETED
|
@@ -1,117 +0,0 @@
|
|
| 1 |
-
import random
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
import torch
|
| 5 |
-
import spaces
|
| 6 |
-
from diffusers import FluxPipeline
|
| 7 |
-
from PIL import Image
|
| 8 |
-
from diffusers.utils import export_to_gif
|
| 9 |
-
from transformers import pipeline
|
| 10 |
-
|
| 11 |
-
HEIGHT = 256
|
| 12 |
-
WIDTH = 1024
|
| 13 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
-
|
| 15 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
-
pipe = FluxPipeline.from_pretrained(
|
| 17 |
-
"black-forest-labs/FLUX.1-dev",
|
| 18 |
-
torch_dtype=torch.bfloat16
|
| 19 |
-
).to(device)
|
| 20 |
-
|
| 21 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 22 |
-
|
| 23 |
-
def split_image(input_image, num_splits=4):
|
| 24 |
-
output_images = []
|
| 25 |
-
for i in range(num_splits):
|
| 26 |
-
left = i * 256
|
| 27 |
-
right = (i + 1) * 256
|
| 28 |
-
box = (left, 0, right, 256)
|
| 29 |
-
output_images.append(input_image.crop(box))
|
| 30 |
-
return output_images
|
| 31 |
-
|
| 32 |
-
def translate_to_english(text):
|
| 33 |
-
return translator(text)[0]['translation_text']
|
| 34 |
-
|
| 35 |
-
@spaces.GPU()
|
| 36 |
-
def predict(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 37 |
-
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
| 38 |
-
prompt = translate_to_english(prompt)
|
| 39 |
-
|
| 40 |
-
prompt_template = f"""
|
| 41 |
-
A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. The gif is of {prompt}.
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
if randomize_seed:
|
| 45 |
-
seed = random.randint(0, MAX_SEED)
|
| 46 |
-
|
| 47 |
-
image = pipe(
|
| 48 |
-
prompt=prompt_template,
|
| 49 |
-
guidance_scale=guidance_scale,
|
| 50 |
-
num_inference_steps=num_inference_steps,
|
| 51 |
-
num_images_per_prompt=1,
|
| 52 |
-
generator=torch.Generator("cpu").manual_seed(seed),
|
| 53 |
-
height=HEIGHT,
|
| 54 |
-
width=WIDTH
|
| 55 |
-
).images[0]
|
| 56 |
-
|
| 57 |
-
return export_to_gif(split_image(image, 4), "flux.gif", fps=4), image, seed
|
| 58 |
-
|
| 59 |
-
css = """
|
| 60 |
-
footer { visibility: hidden;}
|
| 61 |
-
"""
|
| 62 |
-
|
| 63 |
-
examples = [
|
| 64 |
-
"๊ณ ์์ด๊ฐ ๊ณต์ค์์ ๋ฐ์ ํ๋๋ ๋ชจ์ต",
|
| 65 |
-
"ํฌ๋๊ฐ ์๋ฉ์ด๋ฅผ ์ข์ฐ๋ก ํ๋๋ ๋ชจ์ต",
|
| 66 |
-
"๊ฝ์ด ํผ์ด๋๋ ๊ณผ์ "
|
| 67 |
-
]
|
| 68 |
-
|
| 69 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 70 |
-
with gr.Column(elem_id="col-container"):
|
| 71 |
-
with gr.Row():
|
| 72 |
-
prompt = gr.Text(label="ํ๋กฌํํธ", show_label=False, max_lines=1, placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์")
|
| 73 |
-
submit = gr.Button("์ ์ถ", scale=0)
|
| 74 |
-
output = gr.Image(label="GIF", show_label=False)
|
| 75 |
-
output_stills = gr.Image(label="์คํธ ์ด๋ฏธ์ง", show_label=False, elem_id="stills")
|
| 76 |
-
|
| 77 |
-
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
|
| 78 |
-
seed = gr.Slider(
|
| 79 |
-
label="์๋",
|
| 80 |
-
minimum=0,
|
| 81 |
-
maximum=MAX_SEED,
|
| 82 |
-
step=1,
|
| 83 |
-
value=0,
|
| 84 |
-
)
|
| 85 |
-
randomize_seed = gr.Checkbox(label="์๋ ๋ฌด์์ํ", value=True)
|
| 86 |
-
with gr.Row():
|
| 87 |
-
guidance_scale = gr.Slider(
|
| 88 |
-
label="๊ฐ์ด๋์ค ์ค์ผ์ผ",
|
| 89 |
-
minimum=1,
|
| 90 |
-
maximum=15,
|
| 91 |
-
step=0.1,
|
| 92 |
-
value=3.5,
|
| 93 |
-
)
|
| 94 |
-
num_inference_steps = gr.Slider(
|
| 95 |
-
label="์ถ๋ก ๋จ๊ณ ์",
|
| 96 |
-
minimum=1,
|
| 97 |
-
maximum=50,
|
| 98 |
-
step=1,
|
| 99 |
-
value=28,
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
gr.Examples(
|
| 103 |
-
examples=examples,
|
| 104 |
-
fn=predict,
|
| 105 |
-
inputs=[prompt],
|
| 106 |
-
outputs=[output, output_stills, seed],
|
| 107 |
-
cache_examples="lazy"
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
gr.on(
|
| 111 |
-
triggers=[submit.click, prompt.submit],
|
| 112 |
-
fn=predict,
|
| 113 |
-
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
| 114 |
-
outputs=[output, output_stills, seed]
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|