Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,606 Bytes
6f1aa4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#!/usr/bin/env python
import gradio as gr
import polars as pl
from gradio_modal import Modal
from app_mcp import demo as demo_mcp
from search import search
from table import df_orig
DESCRIPTION = "# NeurIPS 2025"
df_main = df_orig.select(
"title",
"authors_str",
"paper_page_md",
"upvotes",
"num_comments",
"project_page_md",
"github_md",
"Spaces",
"Models",
"Datasets",
"claimed",
"abstract",
"paper_id",
)
# TODO: remove this once https://github.com/gradio-app/gradio/issues/10916 https://github.com/gradio-app/gradio/issues/11001 https://github.com/gradio-app/gradio/issues/11002 are fixed # noqa: TD002, FIX002
df_main = df_main.with_columns(
[
pl.when(pl.col(col) == "").then(None).otherwise(pl.col(col)).cast(pl.Int64).fill_null(0).alias(col)
for col in ["upvotes", "num_comments"]
]
)
df_main = df_main.rename(
{
"title": "Title",
"authors_str": "Authors",
"paper_page_md": "Paper page",
"upvotes": "👍",
"num_comments": "💬",
"project_page_md": "Project page",
"github_md": "GitHub",
}
)
COLUMN_INFO = {
"Title": ("str", "40%"),
"Authors": ("str", "20%"),
"Paper page": ("markdown", "135px"),
"👍": ("number", "50px"),
"💬": ("number", "50px"),
"Project page": ("markdown", None),
"GitHub": ("markdown", None),
"Spaces": ("markdown", None),
"Models": ("markdown", None),
"Datasets": ("markdown", None),
"claimed": ("markdown", None),
}
DEFAULT_COLUMNS = [
"Title",
"Paper page",
"👍",
"💬",
"Project page",
"GitHub",
"Spaces",
"Models",
"Datasets",
]
def update_num_papers(df: pl.DataFrame) -> str:
if "claimed" in df.columns:
return f"{len(df)} / {len(df_main)} ({df.select(pl.col('claimed').str.contains('✅').sum()).item()} claimed)"
return f"{len(df)} / {len(df_main)}"
def update_df(
search_query: str,
candidate_pool_size: int,
num_results: int,
column_names: list[str],
) -> gr.Dataframe:
if num_results > candidate_pool_size:
raise gr.Error("Number of results must be less than or equal to candidate pool size", print_exception=False)
df = df_main.clone()
column_names = ["Title", *column_names]
if search_query:
results = search(search_query, candidate_pool_size, num_results)
if not results:
df = df.head(0)
else:
df = pl.DataFrame(results).join(df, on="paper_id", how="inner")
df = df.sort("ce_score", descending=True).drop("ce_score")
sorted_column_names = [col for col in COLUMN_INFO if col in column_names]
df = df.select(sorted_column_names)
return gr.Dataframe(
value=df,
datatype=[COLUMN_INFO[col][0] for col in sorted_column_names],
column_widths=[COLUMN_INFO[col][1] for col in sorted_column_names],
)
def df_row_selected(
evt: gr.SelectData,
) -> tuple[
Modal,
gr.Textbox, # title
gr.Textbox, # abstract
]:
if evt.index[1] != 0:
return Modal(), gr.Textbox(), gr.Textbox()
title = evt.row_value[0]
row = df_main.filter(pl.col("Title") == title)
return (
Modal(visible=True),
gr.Textbox(value=row["Title"].item()), # title
gr.Textbox(value=row["abstract"].item()), # abstract
)
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
search_query = gr.Textbox(label="Search", submit_btn=True, show_label=False, placeholder="Search...")
with gr.Accordion(label="Advanced Search Options", open=False) as advanced_search_options:
with gr.Row():
candidate_pool_size = gr.Slider(label="Candidate Pool Size", minimum=1, maximum=600, step=1, value=200)
num_results = gr.Slider(label="Number of Results", minimum=1, maximum=400, step=1, value=100)
column_names = gr.CheckboxGroup(
label="Columns",
choices=[col for col in COLUMN_INFO if col != "Title"],
value=[col for col in DEFAULT_COLUMNS if col != "Title"],
)
num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(df_orig), interactive=False)
df = gr.Dataframe(
value=df_main,
datatype=list(COLUMN_INFO.values()),
type="polars",
row_count=(0, "dynamic"),
show_row_numbers=True,
interactive=False,
max_height=1000,
elem_id="table",
column_widths=[COLUMN_INFO[col][1] for col in COLUMN_INFO],
)
with Modal(visible=False, elem_id="abstract-modal") as abstract_modal:
title = gr.Textbox(label="Title")
abstract = gr.Textbox(label="Abstract")
df.select(fn=df_row_selected, outputs=[abstract_modal, title, abstract])
inputs = [
search_query,
candidate_pool_size,
num_results,
column_names,
]
gr.on(
triggers=[
search_query.submit,
column_names.input,
],
fn=update_df,
inputs=inputs,
outputs=df,
api_name=False,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
api_name=False,
)
demo.load(
fn=update_df,
inputs=inputs,
outputs=df,
api_name=False,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
api_name=False,
)
with gr.Row(visible=False):
demo_mcp.render()
if __name__ == "__main__":
demo.launch(mcp_server=True)
|