File size: 5,606 Bytes
6f1aa4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python

import gradio as gr
import polars as pl
from gradio_modal import Modal

from app_mcp import demo as demo_mcp
from search import search
from table import df_orig

DESCRIPTION = "# NeurIPS 2025"

df_main = df_orig.select(
    "title",
    "authors_str",
    "paper_page_md",
    "upvotes",
    "num_comments",
    "project_page_md",
    "github_md",
    "Spaces",
    "Models",
    "Datasets",
    "claimed",
    "abstract",
    "paper_id",
)

# TODO: remove this once https://github.com/gradio-app/gradio/issues/10916 https://github.com/gradio-app/gradio/issues/11001 https://github.com/gradio-app/gradio/issues/11002 are fixed  # noqa: TD002, FIX002
df_main = df_main.with_columns(
    [
        pl.when(pl.col(col) == "").then(None).otherwise(pl.col(col)).cast(pl.Int64).fill_null(0).alias(col)
        for col in ["upvotes", "num_comments"]
    ]
)

df_main = df_main.rename(
    {
        "title": "Title",
        "authors_str": "Authors",
        "paper_page_md": "Paper page",
        "upvotes": "👍",
        "num_comments": "💬",
        "project_page_md": "Project page",
        "github_md": "GitHub",
    }
)

COLUMN_INFO = {
    "Title": ("str", "40%"),
    "Authors": ("str", "20%"),
    "Paper page": ("markdown", "135px"),
    "👍": ("number", "50px"),
    "💬": ("number", "50px"),
    "Project page": ("markdown", None),
    "GitHub": ("markdown", None),
    "Spaces": ("markdown", None),
    "Models": ("markdown", None),
    "Datasets": ("markdown", None),
    "claimed": ("markdown", None),
}


DEFAULT_COLUMNS = [
    "Title",
    "Paper page",
    "👍",
    "💬",
    "Project page",
    "GitHub",
    "Spaces",
    "Models",
    "Datasets",
]


def update_num_papers(df: pl.DataFrame) -> str:
    if "claimed" in df.columns:
        return f"{len(df)} / {len(df_main)} ({df.select(pl.col('claimed').str.contains('✅').sum()).item()} claimed)"
    return f"{len(df)} / {len(df_main)}"


def update_df(
    search_query: str,
    candidate_pool_size: int,
    num_results: int,
    column_names: list[str],
) -> gr.Dataframe:
    if num_results > candidate_pool_size:
        raise gr.Error("Number of results must be less than or equal to candidate pool size", print_exception=False)

    df = df_main.clone()
    column_names = ["Title", *column_names]

    if search_query:
        results = search(search_query, candidate_pool_size, num_results)
        if not results:
            df = df.head(0)
        else:
            df = pl.DataFrame(results).join(df, on="paper_id", how="inner")
            df = df.sort("ce_score", descending=True).drop("ce_score")

    sorted_column_names = [col for col in COLUMN_INFO if col in column_names]
    df = df.select(sorted_column_names)
    return gr.Dataframe(
        value=df,
        datatype=[COLUMN_INFO[col][0] for col in sorted_column_names],
        column_widths=[COLUMN_INFO[col][1] for col in sorted_column_names],
    )


def df_row_selected(
    evt: gr.SelectData,
) -> tuple[
    Modal,
    gr.Textbox,  # title
    gr.Textbox,  # abstract
]:
    if evt.index[1] != 0:
        return Modal(), gr.Textbox(), gr.Textbox()

    title = evt.row_value[0]
    row = df_main.filter(pl.col("Title") == title)
    return (
        Modal(visible=True),
        gr.Textbox(value=row["Title"].item()),  # title
        gr.Textbox(value=row["abstract"].item()),  # abstract
    )


with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    search_query = gr.Textbox(label="Search", submit_btn=True, show_label=False, placeholder="Search...")
    with gr.Accordion(label="Advanced Search Options", open=False) as advanced_search_options:
        with gr.Row():
            candidate_pool_size = gr.Slider(label="Candidate Pool Size", minimum=1, maximum=600, step=1, value=200)
            num_results = gr.Slider(label="Number of Results", minimum=1, maximum=400, step=1, value=100)

    column_names = gr.CheckboxGroup(
        label="Columns",
        choices=[col for col in COLUMN_INFO if col != "Title"],
        value=[col for col in DEFAULT_COLUMNS if col != "Title"],
    )

    num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(df_orig), interactive=False)

    df = gr.Dataframe(
        value=df_main,
        datatype=list(COLUMN_INFO.values()),
        type="polars",
        row_count=(0, "dynamic"),
        show_row_numbers=True,
        interactive=False,
        max_height=1000,
        elem_id="table",
        column_widths=[COLUMN_INFO[col][1] for col in COLUMN_INFO],
    )
    with Modal(visible=False, elem_id="abstract-modal") as abstract_modal:
        title = gr.Textbox(label="Title")
        abstract = gr.Textbox(label="Abstract")

    df.select(fn=df_row_selected, outputs=[abstract_modal, title, abstract])

    inputs = [
        search_query,
        candidate_pool_size,
        num_results,
        column_names,
    ]
    gr.on(
        triggers=[
            search_query.submit,
            column_names.input,
        ],
        fn=update_df,
        inputs=inputs,
        outputs=df,
        api_name=False,
    ).then(
        fn=update_num_papers,
        inputs=df,
        outputs=num_papers,
        queue=False,
        api_name=False,
    )
    demo.load(
        fn=update_df,
        inputs=inputs,
        outputs=df,
        api_name=False,
    ).then(
        fn=update_num_papers,
        inputs=df,
        outputs=num_papers,
        queue=False,
        api_name=False,
    )

    with gr.Row(visible=False):
        demo_mcp.render()


if __name__ == "__main__":
    demo.launch(mcp_server=True)