Spaces:
Runtime error
Runtime error
Ahmed Ahmed
commited on
Commit
·
70ea05e
1
Parent(s):
46cc1f1
initial commit
Browse files- app.py +37 -0
- explain.md +292 -0
- requirements.txt +4 -2
- src/about.py +1 -0
- src/evaluation/dynamic_eval.py +44 -0
- src/evaluation/perplexity_eval.py +66 -0
app.py
CHANGED
|
@@ -27,6 +27,7 @@ from src.display.utils import (
|
|
| 27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
from src.submission.submit import add_new_eval
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def restart_space():
|
|
@@ -89,6 +90,19 @@ def init_leaderboard(dataframe):
|
|
| 89 |
)
|
| 90 |
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
demo = gr.Blocks(css=custom_css)
|
| 93 |
with demo:
|
| 94 |
gr.HTML(TITLE)
|
|
@@ -188,6 +202,29 @@ with demo:
|
|
| 188 |
submission_result,
|
| 189 |
)
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Accordion("📙 Citation", open=False):
|
| 193 |
citation_button = gr.Textbox(
|
|
|
|
| 27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
from src.submission.submit import add_new_eval
|
| 30 |
+
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval
|
| 31 |
|
| 32 |
|
| 33 |
def restart_space():
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
|
| 93 |
+
def run_perplexity_test(model_name, revision, precision):
|
| 94 |
+
"""Run perplexity evaluation on demand."""
|
| 95 |
+
if not model_name:
|
| 96 |
+
return "Please enter a model name."
|
| 97 |
+
|
| 98 |
+
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
|
| 99 |
+
|
| 100 |
+
if success:
|
| 101 |
+
return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults have been saved and will appear in the leaderboard shortly."
|
| 102 |
+
else:
|
| 103 |
+
return f"❌ Evaluation failed: {result}"
|
| 104 |
+
|
| 105 |
+
|
| 106 |
demo = gr.Blocks(css=custom_css)
|
| 107 |
with demo:
|
| 108 |
gr.HTML(TITLE)
|
|
|
|
| 202 |
submission_result,
|
| 203 |
)
|
| 204 |
|
| 205 |
+
with gr.TabItem("🧪 Dynamic Testing", elem_id="dynamic-testing-tab", id=4):
|
| 206 |
+
gr.Markdown("## Run Perplexity Evaluation")
|
| 207 |
+
|
| 208 |
+
with gr.Row():
|
| 209 |
+
with gr.Column():
|
| 210 |
+
dynamic_model_name = gr.Textbox(label="Model name", placeholder="org/model-name")
|
| 211 |
+
dynamic_revision = gr.Textbox(label="Revision", placeholder="main", value="main")
|
| 212 |
+
dynamic_precision = gr.Dropdown(
|
| 213 |
+
choices=["float16", "bfloat16"],
|
| 214 |
+
label="Precision",
|
| 215 |
+
value="float16"
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
with gr.Column():
|
| 219 |
+
dynamic_test_button = gr.Button("🚀 Run Perplexity Test", variant="primary")
|
| 220 |
+
dynamic_result = gr.Markdown()
|
| 221 |
+
|
| 222 |
+
dynamic_test_button.click(
|
| 223 |
+
run_perplexity_test,
|
| 224 |
+
[dynamic_model_name, dynamic_revision, dynamic_precision],
|
| 225 |
+
dynamic_result
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
with gr.Row():
|
| 229 |
with gr.Accordion("📙 Citation", open=False):
|
| 230 |
citation_button = gr.Textbox(
|
explain.md
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model Trace - Hugging Face Space Explanation
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
This repository hosts a **Hugging Face Space** that creates a dynamic leaderboard for evaluating language models. The space provides a web interface where users can submit models for evaluation and view results in a ranked leaderboard format.
|
| 6 |
+
|
| 7 |
+
## How It Works
|
| 8 |
+
|
| 9 |
+
### Architecture
|
| 10 |
+
|
| 11 |
+
The system consists of several key components:
|
| 12 |
+
|
| 13 |
+
1. **Frontend Interface** (`app.py`): A Gradio web application with three main tabs:
|
| 14 |
+
- **🏅 LLM Benchmark**: Displays the main leaderboard
|
| 15 |
+
- **📝 About**: Shows information about the evaluation process
|
| 16 |
+
- **🚀 Submit here!**: Allows users to submit models for evaluation
|
| 17 |
+
|
| 18 |
+
2. **Data Storage**: Uses Hugging Face datasets to store:
|
| 19 |
+
- **Evaluation Requests**: Models waiting to be evaluated
|
| 20 |
+
- **Evaluation Results**: Completed evaluation results
|
| 21 |
+
|
| 22 |
+
3. **Evaluation Queue System**: Models go through different states:
|
| 23 |
+
- **PENDING**: Submitted but not yet evaluated
|
| 24 |
+
- **RUNNING**: Currently being evaluated
|
| 25 |
+
- **FINISHED**: Evaluation completed
|
| 26 |
+
|
| 27 |
+
### Data Flow
|
| 28 |
+
|
| 29 |
+
1. **Model Submission**: Users submit models through the web interface
|
| 30 |
+
2. **Validation**: System checks if the model exists on Hugging Face Hub and has proper metadata
|
| 31 |
+
3. **Queue Management**: Valid models are added to the evaluation queue
|
| 32 |
+
4. **Evaluation**: External evaluation system processes the models (not included in this repo)
|
| 33 |
+
5. **Results Display**: Completed evaluations appear in the leaderboard
|
| 34 |
+
|
| 35 |
+
### Configuration
|
| 36 |
+
|
| 37 |
+
The main configuration files are:
|
| 38 |
+
|
| 39 |
+
- **`src/envs.py`**: Repository settings and API tokens
|
| 40 |
+
- **`src/about.py`**: Task definitions and leaderboard metadata
|
| 41 |
+
- **`src/display/utils.py`**: Column definitions and display settings
|
| 42 |
+
|
| 43 |
+
## Current Evaluation Tasks
|
| 44 |
+
|
| 45 |
+
The system is currently configured to evaluate models on:
|
| 46 |
+
- **ANLI** (Adversarial NLI) - accuracy metric
|
| 47 |
+
- **LogiQA** - normalized accuracy metric
|
| 48 |
+
|
| 49 |
+
## Adding Dynamic Perplexity Testing
|
| 50 |
+
|
| 51 |
+
To add perplexity evaluation as a dynamic test, you'll need to make several modifications:
|
| 52 |
+
|
| 53 |
+
### 1. Update Task Configuration
|
| 54 |
+
|
| 55 |
+
First, modify `src/about.py` to add perplexity as a new task:
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
class Tasks(Enum):
|
| 59 |
+
# Existing tasks
|
| 60 |
+
task0 = Task("anli_r1", "acc", "ANLI")
|
| 61 |
+
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 62 |
+
# Add perplexity task
|
| 63 |
+
task2 = Task("perplexity", "perplexity", "Perplexity")
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
### 2. Create Perplexity Evaluation Script
|
| 67 |
+
|
| 68 |
+
Create a new file `src/evaluation/perplexity_eval.py`:
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
import torch
|
| 72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 73 |
+
import numpy as np
|
| 74 |
+
|
| 75 |
+
def evaluate_perplexity(model_name, revision="main", test_text=None):
|
| 76 |
+
"""
|
| 77 |
+
Evaluate perplexity on a fixed piece of text.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
model_name: Hugging Face model identifier
|
| 81 |
+
revision: Model revision/commit hash
|
| 82 |
+
test_text: Text to evaluate perplexity on (default if None)
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
float: Perplexity score (lower is better)
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
# Default test text if none provided
|
| 89 |
+
if test_text is None:
|
| 90 |
+
test_text = """The quick brown fox jumps over the lazy dog. This is a standard test sentence that contains all the letters of the English alphabet. It is commonly used for testing fonts and keyboards."""
|
| 91 |
+
|
| 92 |
+
# Load model and tokenizer
|
| 93 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 94 |
+
model_name,
|
| 95 |
+
revision=revision,
|
| 96 |
+
torch_dtype=torch.float16,
|
| 97 |
+
device_map="auto"
|
| 98 |
+
)
|
| 99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
|
| 100 |
+
|
| 101 |
+
# Tokenize the text
|
| 102 |
+
inputs = tokenizer(test_text, return_tensors="pt")
|
| 103 |
+
|
| 104 |
+
# Move to same device as model
|
| 105 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 106 |
+
|
| 107 |
+
# Calculate loss
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
| 110 |
+
loss = outputs.loss
|
| 111 |
+
|
| 112 |
+
# Calculate perplexity
|
| 113 |
+
perplexity = torch.exp(loss).item()
|
| 114 |
+
|
| 115 |
+
return perplexity
|
| 116 |
+
|
| 117 |
+
def create_perplexity_result(model_name, revision, precision, perplexity_score):
|
| 118 |
+
"""
|
| 119 |
+
Create a result file in the expected format.
|
| 120 |
+
"""
|
| 121 |
+
return {
|
| 122 |
+
"config": {
|
| 123 |
+
"model_dtype": f"torch.{precision}",
|
| 124 |
+
"model_name": model_name,
|
| 125 |
+
"model_sha": revision,
|
| 126 |
+
},
|
| 127 |
+
"results": {
|
| 128 |
+
"perplexity": {
|
| 129 |
+
"perplexity": perplexity_score,
|
| 130 |
+
}
|
| 131 |
+
}
|
| 132 |
+
}
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
### 3. Add Dynamic Evaluation Endpoint
|
| 136 |
+
|
| 137 |
+
Create a new file `src/evaluation/dynamic_eval.py`:
|
| 138 |
+
|
| 139 |
+
```python
|
| 140 |
+
import json
|
| 141 |
+
import os
|
| 142 |
+
from datetime import datetime
|
| 143 |
+
from src.evaluation.perplexity_eval import evaluate_perplexity, create_perplexity_result
|
| 144 |
+
from src.envs import EVAL_RESULTS_PATH, API, RESULTS_REPO
|
| 145 |
+
|
| 146 |
+
def run_dynamic_perplexity_eval(model_name, revision="main", precision="float16"):
|
| 147 |
+
"""
|
| 148 |
+
Run perplexity evaluation and save results.
|
| 149 |
+
"""
|
| 150 |
+
try:
|
| 151 |
+
# Run evaluation
|
| 152 |
+
perplexity_score = evaluate_perplexity(model_name, revision)
|
| 153 |
+
|
| 154 |
+
# Create result structure
|
| 155 |
+
result = create_perplexity_result(model_name, revision, precision, perplexity_score)
|
| 156 |
+
|
| 157 |
+
# Save result file
|
| 158 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 159 |
+
result_filename = f"results_{model_name.replace('/', '_')}_{timestamp}.json"
|
| 160 |
+
|
| 161 |
+
# Create directory structure
|
| 162 |
+
org, model = model_name.split("/") if "/" in model_name else ("", model_name)
|
| 163 |
+
result_dir = os.path.join(EVAL_RESULTS_PATH, org) if org else EVAL_RESULTS_PATH
|
| 164 |
+
os.makedirs(result_dir, exist_ok=True)
|
| 165 |
+
|
| 166 |
+
result_path = os.path.join(result_dir, result_filename)
|
| 167 |
+
|
| 168 |
+
with open(result_path, "w") as f:
|
| 169 |
+
json.dump(result, f, indent=2)
|
| 170 |
+
|
| 171 |
+
# Upload to Hugging Face dataset
|
| 172 |
+
API.upload_file(
|
| 173 |
+
path_or_fileobj=result_path,
|
| 174 |
+
path_in_repo=result_path.split("eval-results/")[1],
|
| 175 |
+
repo_id=RESULTS_REPO,
|
| 176 |
+
repo_type="dataset",
|
| 177 |
+
commit_message=f"Add perplexity results for {model_name}",
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
return True, perplexity_score
|
| 181 |
+
|
| 182 |
+
except Exception as e:
|
| 183 |
+
return False, str(e)
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
### 4. Add Dynamic Testing Interface
|
| 187 |
+
|
| 188 |
+
Modify `app.py` to add a new tab for dynamic testing:
|
| 189 |
+
|
| 190 |
+
```python
|
| 191 |
+
# Add this import
|
| 192 |
+
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval
|
| 193 |
+
|
| 194 |
+
# Add this function
|
| 195 |
+
def run_perplexity_test(model_name, revision, precision):
|
| 196 |
+
"""Run perplexity evaluation on demand."""
|
| 197 |
+
if not model_name:
|
| 198 |
+
return "Please enter a model name."
|
| 199 |
+
|
| 200 |
+
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
|
| 201 |
+
|
| 202 |
+
if success:
|
| 203 |
+
return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults have been saved and will appear in the leaderboard shortly."
|
| 204 |
+
else:
|
| 205 |
+
return f"❌ Evaluation failed: {result}"
|
| 206 |
+
|
| 207 |
+
# Add this to the demo interface (inside the gr.Blocks)
|
| 208 |
+
with gr.TabItem("🧪 Dynamic Testing", elem_id="dynamic-testing-tab", id=4):
|
| 209 |
+
gr.Markdown("## Run Perplexity Evaluation")
|
| 210 |
+
|
| 211 |
+
with gr.Row():
|
| 212 |
+
with gr.Column():
|
| 213 |
+
dynamic_model_name = gr.Textbox(label="Model name", placeholder="org/model-name")
|
| 214 |
+
dynamic_revision = gr.Textbox(label="Revision", placeholder="main", value="main")
|
| 215 |
+
dynamic_precision = gr.Dropdown(
|
| 216 |
+
choices=["float16", "bfloat16"],
|
| 217 |
+
label="Precision",
|
| 218 |
+
value="float16"
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
with gr.Column():
|
| 222 |
+
dynamic_test_button = gr.Button("🚀 Run Perplexity Test", variant="primary")
|
| 223 |
+
dynamic_result = gr.Markdown()
|
| 224 |
+
|
| 225 |
+
dynamic_test_button.click(
|
| 226 |
+
run_perplexity_test,
|
| 227 |
+
[dynamic_model_name, dynamic_revision, dynamic_precision],
|
| 228 |
+
dynamic_result
|
| 229 |
+
)
|
| 230 |
+
```
|
| 231 |
+
|
| 232 |
+
### 5. Update Requirements
|
| 233 |
+
|
| 234 |
+
Add any additional dependencies to `requirements.txt`:
|
| 235 |
+
|
| 236 |
+
```txt
|
| 237 |
+
# Add if not already present
|
| 238 |
+
torch
|
| 239 |
+
transformers
|
| 240 |
+
accelerate
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
### 6. Configure Environment
|
| 244 |
+
|
| 245 |
+
Update `src/envs.py` to point to your repositories:
|
| 246 |
+
|
| 247 |
+
```python
|
| 248 |
+
OWNER = "your-org-name" # Change this
|
| 249 |
+
```
|
| 250 |
+
|
| 251 |
+
You'll need to create two Hugging Face datasets:
|
| 252 |
+
- `your-org-name/requests` - for evaluation requests
|
| 253 |
+
- `your-org-name/results` - for evaluation results
|
| 254 |
+
|
| 255 |
+
## How to Use the Dynamic Testing
|
| 256 |
+
|
| 257 |
+
1. **Deploy the Space**: Push your changes to a Hugging Face Space
|
| 258 |
+
2. **Set Environment Variables**: Add `HF_TOKEN` with write permissions
|
| 259 |
+
3. **Test Models**: Use the "Dynamic Testing" tab to evaluate models on demand
|
| 260 |
+
4. **View Results**: Results will appear in the main leaderboard
|
| 261 |
+
|
| 262 |
+
## Key Features of Dynamic Testing
|
| 263 |
+
|
| 264 |
+
- **On-Demand Evaluation**: Test models immediately without queue
|
| 265 |
+
- **Fixed Text**: Uses consistent test text for fair comparison
|
| 266 |
+
- **Automatic Ranking**: Lower perplexity scores rank higher
|
| 267 |
+
- **Real-time Results**: See results immediately after evaluation
|
| 268 |
+
- **Integration**: Results automatically appear in the main leaderboard
|
| 269 |
+
|
| 270 |
+
## Customization Options
|
| 271 |
+
|
| 272 |
+
You can customize the perplexity evaluation by:
|
| 273 |
+
|
| 274 |
+
1. **Changing Test Text**: Modify the default text in `perplexity_eval.py`
|
| 275 |
+
2. **Adding Multiple Texts**: Evaluate on multiple texts and average results
|
| 276 |
+
3. **Different Metrics**: Add other metrics like BLEU, ROUGE, etc.
|
| 277 |
+
4. **Model Loading Options**: Customize model loading parameters
|
| 278 |
+
5. **Batch Processing**: Process multiple models in sequence
|
| 279 |
+
|
| 280 |
+
## Security Considerations
|
| 281 |
+
|
| 282 |
+
- Models must be public on Hugging Face Hub
|
| 283 |
+
- Evaluation runs in the Space's environment
|
| 284 |
+
- Results are publicly visible
|
| 285 |
+
- Consider rate limiting for dynamic testing
|
| 286 |
+
|
| 287 |
+
This setup provides a complete dynamic testing system that integrates seamlessly with the existing leaderboard infrastructure.
|
| 288 |
+
|
| 289 |
+
# MODELS TO TEST:
|
| 290 |
+
'openai-community/gpt2'
|
| 291 |
+
'EleutherAI/gpt-neo-1.3B'
|
| 292 |
+
'openai-community/gpt2-large'
|
requirements.txt
CHANGED
|
@@ -11,6 +11,8 @@ numpy
|
|
| 11 |
pandas
|
| 12 |
python-dateutil
|
| 13 |
tqdm
|
| 14 |
-
transformers
|
| 15 |
tokenizers>=0.15.0
|
| 16 |
-
sentencepiece
|
|
|
|
|
|
|
|
|
| 11 |
pandas
|
| 12 |
python-dateutil
|
| 13 |
tqdm
|
| 14 |
+
transformers>=4.30.0
|
| 15 |
tokenizers>=0.15.0
|
| 16 |
+
sentencepiece
|
| 17 |
+
torch>=2.0.0
|
| 18 |
+
accelerate>=0.20.0
|
src/about.py
CHANGED
|
@@ -14,6 +14,7 @@ class Tasks(Enum):
|
|
| 14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
|
|
|
| 17 |
|
| 18 |
NUM_FEWSHOT = 0 # Change with your few shot
|
| 19 |
# ---------------------------------------------------
|
|
|
|
| 14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
+
task2 = Task("perplexity", "perplexity", "Perplexity")
|
| 18 |
|
| 19 |
NUM_FEWSHOT = 0 # Change with your few shot
|
| 20 |
# ---------------------------------------------------
|
src/evaluation/dynamic_eval.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from src.evaluation.perplexity_eval import evaluate_perplexity, create_perplexity_result
|
| 5 |
+
from src.envs import EVAL_RESULTS_PATH, API, RESULTS_REPO
|
| 6 |
+
|
| 7 |
+
def run_dynamic_perplexity_eval(model_name, revision="main", precision="float16"):
|
| 8 |
+
"""
|
| 9 |
+
Run perplexity evaluation and save results.
|
| 10 |
+
"""
|
| 11 |
+
try:
|
| 12 |
+
# Run evaluation
|
| 13 |
+
perplexity_score = evaluate_perplexity(model_name, revision)
|
| 14 |
+
|
| 15 |
+
# Create result structure
|
| 16 |
+
result = create_perplexity_result(model_name, revision, precision, perplexity_score)
|
| 17 |
+
|
| 18 |
+
# Save result file
|
| 19 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 20 |
+
result_filename = f"results_{model_name.replace('/', '_')}_{timestamp}.json"
|
| 21 |
+
|
| 22 |
+
# Create directory structure
|
| 23 |
+
org, model = model_name.split("/") if "/" in model_name else ("", model_name)
|
| 24 |
+
result_dir = os.path.join(EVAL_RESULTS_PATH, org) if org else EVAL_RESULTS_PATH
|
| 25 |
+
os.makedirs(result_dir, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
result_path = os.path.join(result_dir, result_filename)
|
| 28 |
+
|
| 29 |
+
with open(result_path, "w") as f:
|
| 30 |
+
json.dump(result, f, indent=2)
|
| 31 |
+
|
| 32 |
+
# Upload to Hugging Face dataset
|
| 33 |
+
API.upload_file(
|
| 34 |
+
path_or_fileobj=result_path,
|
| 35 |
+
path_in_repo=result_path.split("eval-results/")[1],
|
| 36 |
+
repo_id=RESULTS_REPO,
|
| 37 |
+
repo_type="dataset",
|
| 38 |
+
commit_message=f"Add perplexity results for {model_name}",
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
return True, perplexity_score
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
return False, str(e)
|
src/evaluation/perplexity_eval.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
def evaluate_perplexity(model_name, revision="main", test_text=None):
|
| 6 |
+
"""
|
| 7 |
+
Evaluate perplexity on a fixed piece of text.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
model_name: Hugging Face model identifier
|
| 11 |
+
revision: Model revision/commit hash
|
| 12 |
+
test_text: Text to evaluate perplexity on (default if None)
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
float: Perplexity score (lower is better)
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
# Default test text if none provided
|
| 19 |
+
if test_text is None:
|
| 20 |
+
test_text = """Artificial intelligence has transformed the way we live and work, bringing both opportunities and challenges.
|
| 21 |
+
From autonomous vehicles to language models that can engage in human-like conversation, AI technologies are becoming increasingly
|
| 22 |
+
sophisticated. However, with this advancement comes the responsibility to ensure these systems are developed and deployed ethically,
|
| 23 |
+
with careful consideration for privacy, fairness, and transparency. The future of AI will likely depend on how well we balance innovation
|
| 24 |
+
with these important social considerations."""
|
| 25 |
+
|
| 26 |
+
# Load model and tokenizer
|
| 27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
+
model_name,
|
| 29 |
+
revision=revision,
|
| 30 |
+
torch_dtype=torch.float16,
|
| 31 |
+
device_map="auto"
|
| 32 |
+
)
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
|
| 34 |
+
|
| 35 |
+
# Tokenize the text
|
| 36 |
+
inputs = tokenizer(test_text, return_tensors="pt")
|
| 37 |
+
|
| 38 |
+
# Move to same device as model
|
| 39 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 40 |
+
|
| 41 |
+
# Calculate loss
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
| 44 |
+
loss = outputs.loss
|
| 45 |
+
|
| 46 |
+
# Calculate perplexity
|
| 47 |
+
perplexity = torch.exp(loss).item()
|
| 48 |
+
|
| 49 |
+
return perplexity
|
| 50 |
+
|
| 51 |
+
def create_perplexity_result(model_name, revision, precision, perplexity_score):
|
| 52 |
+
"""
|
| 53 |
+
Create a result file in the expected format.
|
| 54 |
+
"""
|
| 55 |
+
return {
|
| 56 |
+
"config": {
|
| 57 |
+
"model_dtype": f"torch.{precision}",
|
| 58 |
+
"model_name": model_name,
|
| 59 |
+
"model_sha": revision,
|
| 60 |
+
},
|
| 61 |
+
"results": {
|
| 62 |
+
"perplexity": {
|
| 63 |
+
"perplexity": perplexity_score,
|
| 64 |
+
}
|
| 65 |
+
}
|
| 66 |
+
}
|