Spaces:
No application file
No application file
| # -*- coding: utf-8 -*- | |
| """TurjumanDemo | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1VVJ7uPEYD8Q1pR-IINWWAQVpqyP1XnzD | |
| """ | |
| # Installing dependencies | |
| !pip install gradio | |
| !pip install turjuman transformers | |
| !git clone https://huggingface.co/spaces/ahmedoumar/TurjumanDemo | |
| # Import our modules | |
| import gradio as gr | |
| from turjuman import turjuman | |
| import logging | |
| import os | |
| from transformers import AutoTokenizer | |
| logging.basicConfig( | |
| format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", | |
| datefmt="%Y-%m-%d %H:%M:%S", | |
| level=os.environ.get("LOGLEVEL", "INFO").upper(), | |
| ) | |
| logger = logging.getLogger("turjuman.translate") | |
| cache_dir="/content/mycache" | |
| # Get the turjuman object and its tokenizer | |
| turj = turjuman.turjuman(logger, cache_dir) | |
| tokenizer = AutoTokenizer.from_pretrained('UBC-NLP/AraT5-base-title-generation') | |
| # The translate function | |
| def translate(sent): | |
| beam_options = {"search_method":"beam", "seq_length": 300, "num_beams":5, "no_repeat_ngram_size":2, "max_outputs":1} | |
| targets = turj.translate(sent,**beam_options) | |
| #print(targets) | |
| ans = "" | |
| for target in targets: | |
| target = tokenizer.decode(target, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
| ans += target | |
| return ans | |
| print(translate('Здравствуй, друг')) | |
| gr.Interface(fn=translate, inputs=['text'], outputs=['text']).launch(width=1000, height=1000) | |