Update app.py
Browse files
app.py
CHANGED
|
@@ -1,61 +1,123 @@
|
|
| 1 |
-
from smolagents import CodeAgent,DuckDuckGoSearchTool,
|
| 2 |
-
import datetime
|
| 3 |
import requests
|
| 4 |
-
import
|
|
|
|
| 5 |
import yaml
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
from
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
@tool
|
| 12 |
-
def
|
| 13 |
-
|
| 14 |
-
"""A tool that does nothing yet
|
| 15 |
Args:
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
"""
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
| 21 |
@tool
|
| 22 |
-
def
|
| 23 |
-
"""
|
| 24 |
Args:
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
"""
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# Get current time in that timezone
|
| 31 |
-
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
| 32 |
-
return f"The current local time in {timezone} is: {local_time}"
|
| 33 |
-
except Exception as e:
|
| 34 |
-
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
|
|
|
| 53 |
with open("prompts.yaml", 'r') as stream:
|
| 54 |
prompt_templates = yaml.safe_load(stream)
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
agent = CodeAgent(
|
| 57 |
model=model,
|
| 58 |
-
tools=[
|
| 59 |
max_steps=6,
|
| 60 |
verbosity_level=1,
|
| 61 |
grammar=None,
|
|
@@ -65,5 +127,4 @@ agent = CodeAgent(
|
|
| 65 |
prompt_templates=prompt_templates
|
| 66 |
)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
GradioUI(agent).launch()
|
|
|
|
| 1 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, tool, load_tool, HfApiModel
|
|
|
|
| 2 |
import requests
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
import pandas as pd
|
| 5 |
import yaml
|
| 6 |
+
import datetime
|
| 7 |
+
import pytz
|
| 8 |
+
from textblob import TextBlob # Simple sentiment analysis
|
| 9 |
+
from Gradio_UI import GradioUI # For building Gradio UI
|
| 10 |
|
| 11 |
+
#### TOOL 1: Scrape GSMArena Reviews & Specs ####
|
| 12 |
@tool
|
| 13 |
+
def scrape_gsmarena_reviews(phone_name: str) -> dict:
|
| 14 |
+
"""Scrapes GSMArena for reviews and specs of a given smartphone.
|
|
|
|
| 15 |
Args:
|
| 16 |
+
phone_name: The model name (exact/substantial match).
|
| 17 |
+
Returns:
|
| 18 |
+
Dictionary with keys: 'reviews', 'price', 'specs'
|
| 19 |
"""
|
| 20 |
+
# You’ll need accurate GSMArena URL fetching logic per phone_name.
|
| 21 |
+
search_url = f"https://www.gsmarena.com/res.php3?sSearch={phone_name.replace(' ', '+')}"
|
| 22 |
+
res = requests.get(search_url)
|
| 23 |
+
soup = BeautifulSoup(res.text, "html.parser")
|
| 24 |
+
# Find first matching phone page link
|
| 25 |
+
link = soup.find("div", class_="makers").find("a")["href"]
|
| 26 |
+
phone_url = f"https://www.gsmarena.com/{link}"
|
| 27 |
+
phone_page = requests.get(phone_url)
|
| 28 |
+
phone_soup = BeautifulSoup(phone_page.text, "html.parser")
|
| 29 |
+
# Parse reviews and price
|
| 30 |
+
reviews = []
|
| 31 |
+
for rev in phone_soup.find_all("div", class_="user-review"):
|
| 32 |
+
reviews.append(rev.text)
|
| 33 |
+
# Fallback if structure changes
|
| 34 |
+
price = "Unknown"
|
| 35 |
+
for spec in phone_soup.find_all("td", string="Price"):
|
| 36 |
+
price = spec.find_next_sibling("td").text
|
| 37 |
+
specs = {li.find('span').text: li.text for li in phone_soup.find_all("li")}
|
| 38 |
+
return {"reviews": reviews, "price": price, "specs": specs}
|
| 39 |
|
| 40 |
+
#### TOOL 2: Churn/Sentiment Scoring ####
|
| 41 |
@tool
|
| 42 |
+
def score_churn(reviews: list) -> float:
|
| 43 |
+
"""Calculates aggregate churn score from reviews using sentiment analysis.
|
| 44 |
Args:
|
| 45 |
+
reviews: List of review texts.
|
| 46 |
+
Returns:
|
| 47 |
+
float churn score (avg polarity; lower = less churn)
|
| 48 |
"""
|
| 49 |
+
scores = [TextBlob(r).sentiment.polarity for r in reviews]
|
| 50 |
+
churn_score = 1 - (sum(scores) / len(scores)) if scores else 1 # Lower is better
|
| 51 |
+
return churn_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
#### TOOL 3: Find Competing Phones ####
|
| 54 |
+
@tool
|
| 55 |
+
def find_competitors(price: str) -> list:
|
| 56 |
+
"""Scrapes or queries GSM Arena for phones in the same price bracket.
|
| 57 |
+
Args:
|
| 58 |
+
price: The reference price.
|
| 59 |
+
Returns:
|
| 60 |
+
List of phone names.
|
| 61 |
+
"""
|
| 62 |
+
price_value = ''.join(filter(str.isdigit, price))
|
| 63 |
+
# For demo: just pick other search results in same price bracket
|
| 64 |
+
# Expand with real price logic as needed
|
| 65 |
+
return ["Phone1", "Phone2", "Phone3"]
|
| 66 |
|
| 67 |
+
#### FINAL TOOL: Recommend Phone ####
|
| 68 |
+
@tool
|
| 69 |
+
def recommend_smartphone(user_phone: str):
|
| 70 |
+
"""Main logic for recommendation."""
|
| 71 |
+
user_data = scrape_gsmarena_reviews(user_phone)
|
| 72 |
+
user_reviews = user_data['reviews']
|
| 73 |
+
user_score = score_churn(user_reviews)
|
| 74 |
+
user_price = user_data['price']
|
| 75 |
+
competitors = find_competitors(user_price)
|
| 76 |
+
best_score = user_score
|
| 77 |
+
best_phone = user_phone
|
| 78 |
|
| 79 |
+
for c in competitors:
|
| 80 |
+
c_data = scrape_gsmarena_reviews(c)
|
| 81 |
+
c_reviews = c_data['reviews']
|
| 82 |
+
c_score = score_churn(c_reviews)
|
| 83 |
+
if c_score < best_score:
|
| 84 |
+
best_score = c_score
|
| 85 |
+
best_phone = c
|
| 86 |
|
| 87 |
+
# If best_phone is not user's, recommend; else try next bracket
|
| 88 |
+
result = {
|
| 89 |
+
"Your phone": user_phone,
|
| 90 |
+
"Your phone score": user_score,
|
| 91 |
+
"Best competitor": best_phone,
|
| 92 |
+
"Best score": best_score,
|
| 93 |
+
"Recommended": "Yes" if best_phone != user_phone else "No better phone in range",
|
| 94 |
+
}
|
| 95 |
+
return result
|
| 96 |
|
| 97 |
+
#### Gradio UI ####
|
| 98 |
+
def agent_ui(user_phone_name):
|
| 99 |
+
"""Gradio UI interface handler."""
|
| 100 |
+
result = recommend_smartphone(user_phone_name)
|
| 101 |
+
return f"""
|
| 102 |
+
**Your phone:** {result['Your phone']}
|
| 103 |
+
**Churn score:** {result['Your phone score']}
|
| 104 |
+
**Best alternative:** {result['Best competitor']} (score: {result['Best score']})
|
| 105 |
+
**Recommended:** {result['Recommended']}
|
| 106 |
+
"""
|
| 107 |
|
| 108 |
+
# Connect everything for Hugging Face Space
|
| 109 |
with open("prompts.yaml", 'r') as stream:
|
| 110 |
prompt_templates = yaml.safe_load(stream)
|
| 111 |
+
|
| 112 |
+
model = HfApiModel(
|
| 113 |
+
max_tokens=2096,
|
| 114 |
+
temperature=0.5,
|
| 115 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
agent = CodeAgent(
|
| 119 |
model=model,
|
| 120 |
+
tools=[recommend_smartphone], # add your main tool, you can add others as desired
|
| 121 |
max_steps=6,
|
| 122 |
verbosity_level=1,
|
| 123 |
grammar=None,
|
|
|
|
| 127 |
prompt_templates=prompt_templates
|
| 128 |
)
|
| 129 |
|
| 130 |
+
GradioUI(agent_ui).launch()
|
|
|