Spaces:
Sleeping
Sleeping
Khushi Dahiya
commited on
Commit
·
1e137e7
1
Parent(s):
7edd7b4
trying out melodyflow api implementation
Browse files- README.md +1 -1
- demos/melodyflow_api.py +439 -0
README.md
CHANGED
|
@@ -5,7 +5,7 @@ tags:
|
|
| 5 |
- music generation
|
| 6 |
- music editing
|
| 7 |
- flow matching
|
| 8 |
-
app_file: demos/
|
| 9 |
emoji: 🎵
|
| 10 |
colorFrom: gray
|
| 11 |
colorTo: blue
|
|
|
|
| 5 |
- music generation
|
| 6 |
- music editing
|
| 7 |
- flow matching
|
| 8 |
+
app_file: demos/melodyflow_api.py
|
| 9 |
emoji: 🎵
|
| 10 |
colorFrom: gray
|
| 11 |
colorTo: blue
|
demos/melodyflow_api.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
Optimized MelodyFlow API for concurrent request handling on T4 GPU
|
| 6 |
+
This version focuses on high-throughput API serving with batching
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
# Fix OpenMP threading issues
|
| 11 |
+
os.environ.setdefault('OMP_NUM_THREADS', '1')
|
| 12 |
+
os.environ.setdefault('MKL_NUM_THREADS', '1')
|
| 13 |
+
|
| 14 |
+
import spaces
|
| 15 |
+
import asyncio
|
| 16 |
+
import threading
|
| 17 |
+
import time
|
| 18 |
+
import uuid
|
| 19 |
+
import base64
|
| 20 |
+
import logging
|
| 21 |
+
from concurrent.futures import ThreadPoolExecutor, Future
|
| 22 |
+
from queue import Queue, Empty
|
| 23 |
+
from tempfile import NamedTemporaryFile
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
import typing as tp
|
| 26 |
+
from dataclasses import dataclass
|
| 27 |
+
|
| 28 |
+
import torch
|
| 29 |
+
import gradio as gr
|
| 30 |
+
from audiocraft.data.audio_utils import convert_audio
|
| 31 |
+
from audiocraft.data.audio import audio_read, audio_write
|
| 32 |
+
from audiocraft.models import MelodyFlow
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# Configuration
|
| 36 |
+
MODEL_PREFIX = "facebook/"
|
| 37 |
+
BATCH_SIZE = 4 # Optimal for T4 GPU memory
|
| 38 |
+
BATCH_TIMEOUT = 1.5 # Seconds to wait for batch formation
|
| 39 |
+
MAX_QUEUE_SIZE = 100
|
| 40 |
+
MAX_CONCURRENT_BATCHES = 2 # Number of concurrent batch processors
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@dataclass
|
| 44 |
+
class GenerationRequest:
|
| 45 |
+
"""Represents a single generation request"""
|
| 46 |
+
request_id: str
|
| 47 |
+
text: str
|
| 48 |
+
melody: tp.Optional[str]
|
| 49 |
+
solver: str
|
| 50 |
+
steps: int
|
| 51 |
+
target_flowstep: float
|
| 52 |
+
regularize: bool
|
| 53 |
+
regularization_strength: float
|
| 54 |
+
duration: float
|
| 55 |
+
model: str
|
| 56 |
+
future: Future
|
| 57 |
+
created_at: float
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class OptimizedBatchProcessor:
|
| 61 |
+
"""Highly optimized batch processor for T4 GPU"""
|
| 62 |
+
|
| 63 |
+
def __init__(self):
|
| 64 |
+
self.model = None
|
| 65 |
+
self.model_lock = threading.Lock()
|
| 66 |
+
self.request_queue = Queue(maxsize=MAX_QUEUE_SIZE)
|
| 67 |
+
self.current_batch = []
|
| 68 |
+
self.batch_start_time = None
|
| 69 |
+
self.processing = False
|
| 70 |
+
self.stop_event = threading.Event()
|
| 71 |
+
self.executor = ThreadPoolExecutor(max_workers=MAX_CONCURRENT_BATCHES)
|
| 72 |
+
|
| 73 |
+
def start(self):
|
| 74 |
+
"""Start the batch processing service"""
|
| 75 |
+
self.thread = threading.Thread(target=self._batch_loop, daemon=True)
|
| 76 |
+
self.thread.start()
|
| 77 |
+
logging.info("Batch processor started")
|
| 78 |
+
|
| 79 |
+
def stop(self):
|
| 80 |
+
"""Stop the batch processing service"""
|
| 81 |
+
self.stop_event.set()
|
| 82 |
+
self.executor.shutdown(wait=True)
|
| 83 |
+
|
| 84 |
+
def submit_request(self, text: str, melody: tp.Optional[str],
|
| 85 |
+
solver: str, steps: int, target_flowstep: float,
|
| 86 |
+
regularize: bool, regularization_strength: float,
|
| 87 |
+
duration: float, model: str) -> Future:
|
| 88 |
+
"""Submit a generation request and return a future"""
|
| 89 |
+
|
| 90 |
+
request = GenerationRequest(
|
| 91 |
+
request_id=str(uuid.uuid4()),
|
| 92 |
+
text=text,
|
| 93 |
+
melody=melody,
|
| 94 |
+
solver=solver,
|
| 95 |
+
steps=steps,
|
| 96 |
+
target_flowstep=target_flowstep,
|
| 97 |
+
regularize=regularize,
|
| 98 |
+
regularization_strength=regularization_strength,
|
| 99 |
+
duration=duration,
|
| 100 |
+
model=model,
|
| 101 |
+
future=Future(),
|
| 102 |
+
created_at=time.time()
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
try:
|
| 106 |
+
self.request_queue.put_nowait(request)
|
| 107 |
+
return request.future
|
| 108 |
+
except:
|
| 109 |
+
# Queue is full
|
| 110 |
+
request.future.set_exception(Exception("Server is busy, please try again"))
|
| 111 |
+
return request.future
|
| 112 |
+
|
| 113 |
+
def _batch_loop(self):
|
| 114 |
+
"""Main batch processing loop"""
|
| 115 |
+
while not self.stop_event.is_set():
|
| 116 |
+
try:
|
| 117 |
+
# Try to get a request
|
| 118 |
+
try:
|
| 119 |
+
request = self.request_queue.get(timeout=0.1)
|
| 120 |
+
self.current_batch.append(request)
|
| 121 |
+
|
| 122 |
+
if self.batch_start_time is None:
|
| 123 |
+
self.batch_start_time = time.time()
|
| 124 |
+
|
| 125 |
+
except Empty:
|
| 126 |
+
# No new requests, check if we should process current batch
|
| 127 |
+
if self._should_process_batch():
|
| 128 |
+
self._submit_batch()
|
| 129 |
+
continue
|
| 130 |
+
|
| 131 |
+
# Check if we should process the batch
|
| 132 |
+
if self._should_process_batch():
|
| 133 |
+
self._submit_batch()
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
logging.error(f"Error in batch loop: {e}")
|
| 137 |
+
|
| 138 |
+
def _should_process_batch(self) -> bool:
|
| 139 |
+
"""Determine if current batch should be processed"""
|
| 140 |
+
if not self.current_batch:
|
| 141 |
+
return False
|
| 142 |
+
|
| 143 |
+
batch_age = time.time() - (self.batch_start_time or time.time())
|
| 144 |
+
return (len(self.current_batch) >= BATCH_SIZE or
|
| 145 |
+
batch_age >= BATCH_TIMEOUT)
|
| 146 |
+
|
| 147 |
+
def _submit_batch(self):
|
| 148 |
+
"""Submit current batch for processing"""
|
| 149 |
+
if not self.current_batch:
|
| 150 |
+
return
|
| 151 |
+
|
| 152 |
+
batch = self.current_batch.copy()
|
| 153 |
+
self.current_batch = []
|
| 154 |
+
self.batch_start_time = None
|
| 155 |
+
|
| 156 |
+
# Submit to thread pool
|
| 157 |
+
self.executor.submit(self._process_batch, batch)
|
| 158 |
+
|
| 159 |
+
@spaces.GPU(duration=60) # Longer duration for batch processing
|
| 160 |
+
def _process_batch(self, batch: tp.List[GenerationRequest]):
|
| 161 |
+
"""Process a batch of requests on GPU"""
|
| 162 |
+
try:
|
| 163 |
+
logging.info(f"Processing batch of {len(batch)} requests")
|
| 164 |
+
start_time = time.time()
|
| 165 |
+
|
| 166 |
+
# Load model (assume all requests use same model for simplicity)
|
| 167 |
+
model_version = batch[0].model
|
| 168 |
+
self._load_model(model_version)
|
| 169 |
+
|
| 170 |
+
# Separate generation vs editing requests
|
| 171 |
+
gen_requests = [req for req in batch if req.melody is None]
|
| 172 |
+
edit_requests = [req for req in batch if req.melody is not None]
|
| 173 |
+
|
| 174 |
+
results = {}
|
| 175 |
+
|
| 176 |
+
# Process generation requests in batch
|
| 177 |
+
if gen_requests:
|
| 178 |
+
gen_results = self._process_generation_batch(gen_requests)
|
| 179 |
+
results.update(gen_results)
|
| 180 |
+
|
| 181 |
+
# Process editing requests individually (due to melody constraints)
|
| 182 |
+
if edit_requests:
|
| 183 |
+
edit_results = self._process_editing_batch(edit_requests)
|
| 184 |
+
results.update(edit_results)
|
| 185 |
+
|
| 186 |
+
# Set results for all requests
|
| 187 |
+
for request in batch:
|
| 188 |
+
if request.request_id in results:
|
| 189 |
+
request.future.set_result(results[request.request_id])
|
| 190 |
+
else:
|
| 191 |
+
request.future.set_exception(Exception("Processing failed"))
|
| 192 |
+
|
| 193 |
+
processing_time = time.time() - start_time
|
| 194 |
+
logging.info(f"Batch processed in {processing_time:.2f}s")
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logging.error(f"Batch processing error: {e}")
|
| 198 |
+
for request in batch:
|
| 199 |
+
request.future.set_exception(e)
|
| 200 |
+
|
| 201 |
+
def _load_model(self, version: str):
|
| 202 |
+
"""Thread-safe model loading"""
|
| 203 |
+
with self.model_lock:
|
| 204 |
+
if self.model is None or self.model.name != version:
|
| 205 |
+
if self.model is not None:
|
| 206 |
+
del self.model
|
| 207 |
+
if torch.cuda.is_available():
|
| 208 |
+
torch.cuda.empty_cache()
|
| 209 |
+
self.model = MelodyFlow.get_pretrained(version)
|
| 210 |
+
logging.info(f"Model {version} loaded")
|
| 211 |
+
|
| 212 |
+
def _process_generation_batch(self, requests: tp.List[GenerationRequest]) -> dict:
|
| 213 |
+
"""Process generation requests in batch"""
|
| 214 |
+
if not requests:
|
| 215 |
+
return {}
|
| 216 |
+
|
| 217 |
+
# Use parameters from first request (assuming similar params for batch)
|
| 218 |
+
params = requests[0]
|
| 219 |
+
self.model.set_generation_params(
|
| 220 |
+
solver=params.solver,
|
| 221 |
+
steps=params.steps,
|
| 222 |
+
duration=params.duration
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# Extract texts
|
| 226 |
+
texts = [req.text for req in requests]
|
| 227 |
+
|
| 228 |
+
# Generate
|
| 229 |
+
outputs = self.model.generate(texts, progress=False, return_tokens=False)
|
| 230 |
+
outputs = outputs.detach().cpu().float()
|
| 231 |
+
|
| 232 |
+
# Create results
|
| 233 |
+
results = {}
|
| 234 |
+
for i, request in enumerate(requests):
|
| 235 |
+
audio_base64 = self._audio_to_base64(outputs[i])
|
| 236 |
+
results[request.request_id] = {
|
| 237 |
+
"audio": audio_base64,
|
| 238 |
+
"format": "wav"
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
return results
|
| 242 |
+
|
| 243 |
+
def _process_editing_batch(self, requests: tp.List[GenerationRequest]) -> dict:
|
| 244 |
+
"""Process editing requests individually"""
|
| 245 |
+
results = {}
|
| 246 |
+
|
| 247 |
+
for request in requests:
|
| 248 |
+
try:
|
| 249 |
+
self.model.set_editing_params(
|
| 250 |
+
solver=request.solver,
|
| 251 |
+
steps=request.steps,
|
| 252 |
+
target_flowstep=request.target_flowstep,
|
| 253 |
+
regularize=request.regularize,
|
| 254 |
+
lambda_kl=request.regularization_strength
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Process melody
|
| 258 |
+
melody, sr = audio_read(request.melody)
|
| 259 |
+
if melody.dim() == 2:
|
| 260 |
+
melody = melody[None]
|
| 261 |
+
if melody.shape[-1] > int(sr * self.model.duration):
|
| 262 |
+
melody = melody[..., :int(sr * self.model.duration)]
|
| 263 |
+
|
| 264 |
+
melody = convert_audio(melody, sr, 48000, 2)
|
| 265 |
+
melody = self.model.encode_audio(melody.to(self.model.device))
|
| 266 |
+
|
| 267 |
+
# Edit
|
| 268 |
+
output = self.model.edit(
|
| 269 |
+
prompt_tokens=melody,
|
| 270 |
+
descriptions=[request.text],
|
| 271 |
+
src_descriptions=[""],
|
| 272 |
+
progress=False,
|
| 273 |
+
return_tokens=False
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
output = output.detach().cpu().float()[0]
|
| 277 |
+
audio_base64 = self._audio_to_base64(output)
|
| 278 |
+
|
| 279 |
+
results[request.request_id] = {
|
| 280 |
+
"audio": audio_base64,
|
| 281 |
+
"format": "wav"
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
except Exception as e:
|
| 285 |
+
logging.error(f"Error processing edit request {request.request_id}: {e}")
|
| 286 |
+
# Will be handled by batch processor
|
| 287 |
+
|
| 288 |
+
return results
|
| 289 |
+
|
| 290 |
+
def _audio_to_base64(self, audio_tensor: torch.Tensor) -> str:
|
| 291 |
+
"""Convert audio tensor to base64 string"""
|
| 292 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
| 293 |
+
audio_write(
|
| 294 |
+
file.name, audio_tensor, self.model.sample_rate,
|
| 295 |
+
strategy="loudness", loudness_headroom_db=16,
|
| 296 |
+
loudness_compressor=True, add_suffix=False
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
with open(file.name, 'rb') as f:
|
| 300 |
+
audio_bytes = f.read()
|
| 301 |
+
|
| 302 |
+
# Clean up temp file
|
| 303 |
+
Path(file.name).unlink()
|
| 304 |
+
|
| 305 |
+
return base64.b64encode(audio_bytes).decode('utf-8')
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# Global batch processor
|
| 309 |
+
batch_processor = OptimizedBatchProcessor()
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def predict_concurrent(model: str, text: str, solver: str = "euler",
|
| 313 |
+
steps: int = 50, target_flowstep: float = 0.0,
|
| 314 |
+
regularize: bool = False, regularization_strength: float = 0.0,
|
| 315 |
+
duration: float = 10.0, melody: tp.Optional[str] = None) -> dict:
|
| 316 |
+
"""
|
| 317 |
+
Non-blocking predict function optimized for concurrent requests
|
| 318 |
+
"""
|
| 319 |
+
|
| 320 |
+
# Adjust steps for melody editing
|
| 321 |
+
if melody is not None:
|
| 322 |
+
steps = steps // 2 if solver == "midpoint" else steps // 5
|
| 323 |
+
|
| 324 |
+
# Submit request to batch processor
|
| 325 |
+
future = batch_processor.submit_request(
|
| 326 |
+
text=text,
|
| 327 |
+
melody=melody,
|
| 328 |
+
solver=solver,
|
| 329 |
+
steps=steps,
|
| 330 |
+
target_flowstep=target_flowstep,
|
| 331 |
+
regularize=regularize,
|
| 332 |
+
regularization_strength=regularization_strength,
|
| 333 |
+
duration=duration,
|
| 334 |
+
model=model
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Wait for result with timeout
|
| 338 |
+
try:
|
| 339 |
+
result = future.result(timeout=120) # 2 minute timeout
|
| 340 |
+
return result
|
| 341 |
+
except TimeoutError:
|
| 342 |
+
raise gr.Error("Request timeout - server is overloaded")
|
| 343 |
+
except Exception as e:
|
| 344 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
def create_optimized_interface():
|
| 348 |
+
"""Create Gradio interface optimized for concurrent usage"""
|
| 349 |
+
|
| 350 |
+
with gr.Blocks(title="MelodyFlow - Concurrent API") as interface:
|
| 351 |
+
gr.Markdown("""
|
| 352 |
+
# MelodyFlow - Optimized for Concurrent Requests
|
| 353 |
+
|
| 354 |
+
This version is optimized for handling multiple concurrent requests efficiently.
|
| 355 |
+
Requests are automatically batched for optimal GPU utilization.
|
| 356 |
+
""")
|
| 357 |
+
|
| 358 |
+
with gr.Row():
|
| 359 |
+
with gr.Column():
|
| 360 |
+
text = gr.Text(label="Text Description", placeholder="Describe the music you want to generate...")
|
| 361 |
+
melody = gr.Audio(label="Reference Audio (optional)", type="filepath")
|
| 362 |
+
|
| 363 |
+
with gr.Row():
|
| 364 |
+
solver = gr.Radio(["euler", "midpoint"], label="Solver", value="euler")
|
| 365 |
+
steps = gr.Slider(1, 128, value=50, label="Steps")
|
| 366 |
+
|
| 367 |
+
with gr.Row():
|
| 368 |
+
duration = gr.Slider(1, 30, value=10, label="Duration (s)")
|
| 369 |
+
model = gr.Dropdown(
|
| 370 |
+
[f"{MODEL_PREFIX}melodyflow-t24-30secs"],
|
| 371 |
+
value=f"{MODEL_PREFIX}melodyflow-t24-30secs",
|
| 372 |
+
label="Model"
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 376 |
+
|
| 377 |
+
with gr.Column():
|
| 378 |
+
output = gr.JSON(label="Generated Audio")
|
| 379 |
+
|
| 380 |
+
generate_btn.click(
|
| 381 |
+
fn=predict_concurrent,
|
| 382 |
+
inputs=[model, text, solver, steps, gr.State(0.0),
|
| 383 |
+
gr.State(False), gr.State(0.0), duration, melody],
|
| 384 |
+
outputs=output,
|
| 385 |
+
concurrency_limit=20 # Set concurrency limit on the event listener
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
gr.Examples(
|
| 389 |
+
fn=predict_concurrent,
|
| 390 |
+
examples=[
|
| 391 |
+
[f"{MODEL_PREFIX}melodyflow-t24-30secs",
|
| 392 |
+
"80s electronic track with melodic synthesizers",
|
| 393 |
+
"euler", 50, 0.0, False, 0.0, 10.0, None],
|
| 394 |
+
[f"{MODEL_PREFIX}melodyflow-t24-30secs",
|
| 395 |
+
"Cheerful country song with acoustic guitars",
|
| 396 |
+
"euler", 50, 0.0, False, 0.0, 15.0, None]
|
| 397 |
+
],
|
| 398 |
+
inputs=[model, text, solver, steps, gr.State(0.0),
|
| 399 |
+
gr.State(False), gr.State(0.0), duration, melody],
|
| 400 |
+
outputs=output
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
return interface
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
if __name__ == "__main__":
|
| 407 |
+
import argparse
|
| 408 |
+
|
| 409 |
+
parser = argparse.ArgumentParser()
|
| 410 |
+
parser.add_argument("--host", default="0.0.0.0", help="Host to bind to")
|
| 411 |
+
parser.add_argument("--port", type=int, default=7860, help="Port to bind to")
|
| 412 |
+
parser.add_argument("--share", action="store_true", help="Create public link")
|
| 413 |
+
args = parser.parse_args()
|
| 414 |
+
|
| 415 |
+
# Setup logging
|
| 416 |
+
logging.basicConfig(
|
| 417 |
+
level=logging.INFO,
|
| 418 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
# Start batch processor
|
| 422 |
+
batch_processor.start()
|
| 423 |
+
|
| 424 |
+
# Create and launch interface
|
| 425 |
+
interface = create_optimized_interface()
|
| 426 |
+
|
| 427 |
+
try:
|
| 428 |
+
interface.queue(
|
| 429 |
+
max_size=200, # Large queue
|
| 430 |
+
api_open=True
|
| 431 |
+
).launch(
|
| 432 |
+
server_name=args.host,
|
| 433 |
+
server_port=args.port,
|
| 434 |
+
share=args.share,
|
| 435 |
+
show_api=True,
|
| 436 |
+
max_threads=40 # Configure worker threads in launch()
|
| 437 |
+
)
|
| 438 |
+
finally:
|
| 439 |
+
batch_processor.stop()
|