Spaces:
Sleeping
Sleeping
File size: 16,637 Bytes
cfea739 f89b28b cfea739 f89b28b cfea739 f89b28b cfea739 f89b28b cfea739 610152e cfea739 610152e cfea739 610152e cfea739 610152e cfea739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# cams_downloader.py
# Download CAMS atmospheric composition data
import cdsapi
import zipfile
import os
from pathlib import Path
from datetime import datetime, timedelta
import pandas as pd
class CAMSDownloader:
def __init__(self, download_dir="downloads"):
"""
Initialize CAMS downloader
Parameters:
download_dir (str): Directory to store downloaded files
"""
self.download_dir = Path(download_dir)
self.download_dir.mkdir(exist_ok=True)
# Create subdirectories
self.extracted_dir = self.download_dir / "extracted"
self.extracted_dir.mkdir(exist_ok=True)
self.client = None
self._init_client()
def _init_client(self):
"""Initialize CDS API client"""
try:
# First, try environment variables (preferred for cloud deployments)
cdsapi_url = os.getenv('CDSAPI_URL')
cdsapi_key = os.getenv('CDSAPI_KEY')
if cdsapi_url and cdsapi_key:
self.client = cdsapi.Client(key=cdsapi_key, url=cdsapi_url)
print("β
CDS API client initialized from environment variables")
return
# Fallback: Try to read .cdsapirc file from current directory first, then home directory
cdsapirc_path = Path.cwd() / ".cdsapirc"
if not cdsapirc_path.exists():
cdsapirc_path = Path.home() / ".cdsapirc"
if cdsapirc_path.exists():
# Parse credentials from .cdsapirc
with open(cdsapirc_path, 'r') as f:
lines = f.readlines()
url = None
key = None
for line in lines:
line = line.strip()
if line.startswith('url:'):
url = line.split(':', 1)[1].strip()
elif line.startswith('key:'):
key = line.split(':', 1)[1].strip()
if url and key:
self.client = cdsapi.Client(key=key, url=url)
print("β
CDS API client initialized from .cdsapirc file")
return
else:
raise ValueError("Could not parse URL or key from .cdsapirc file")
# Last resort: Try default initialization
self.client = cdsapi.Client()
print("β
CDS API client initialized with default settings")
except Exception as e:
print(f"β οΈ Warning: Could not initialize CDS API client: {str(e)}")
print("Please ensure you have:")
print("1. Created an account at https://cds.climate.copernicus.eu/")
print("2. Set CDSAPI_URL and CDSAPI_KEY environment variables (recommended for cloud deployments)")
print("3. Or created a .cdsapirc file in your home directory with your credentials")
self.client = None
def is_client_ready(self):
"""Check if CDS API client is ready"""
return self.client is not None
def download_cams_data(self, date_str, variables=None, pressure_levels=None):
"""
Download CAMS atmospheric composition data for a specific date
Parameters:
date_str (str): Date in YYYY-MM-DD format
variables (list): List of variables to download (default: common air pollution variables)
pressure_levels (list): List of pressure levels (default: standard levels)
Returns:
str: Path to downloaded ZIP file
"""
if not self.is_client_ready():
raise Exception("CDS API client not initialized. Please check your credentials.")
# Validate date
try:
target_date = pd.to_datetime(date_str)
date_str = target_date.strftime('%Y-%m-%d')
except:
raise ValueError(f"Invalid date format: {date_str}. Use YYYY-MM-DD format.")
# Check if data already exists
filename = f"{date_str}-cams.nc.zip"
filepath = self.download_dir / filename
if filepath.exists():
print(f"β
Data for {date_str} already exists: {filename}")
return str(filepath)
# Default variables (common air pollution variables)
if variables is None:
variables = [
# Meteorological surface-level variables
"10m_u_component_of_wind",
"10m_v_component_of_wind",
"2m_temperature",
"mean_sea_level_pressure",
# Pollution surface-level variables
"particulate_matter_1um",
"particulate_matter_2.5um",
"particulate_matter_10um",
"total_column_carbon_monoxide",
"total_column_nitrogen_monoxide",
"total_column_nitrogen_dioxide",
"total_column_ozone",
"total_column_sulphur_dioxide",
# Meteorological atmospheric variables
"u_component_of_wind",
"v_component_of_wind",
"temperature",
"geopotential",
"specific_humidity",
# Pollution atmospheric variables
"carbon_monoxide",
"nitrogen_dioxide",
"nitrogen_monoxide",
"ozone",
"sulphur_dioxide",
]
# Default pressure levels
if pressure_levels is None:
pressure_levels = [
"50", "100", "150", "200", "250", "300", "400",
"500", "600", "700", "850", "925", "1000",
]
print(f"π Downloading CAMS data for {date_str}...")
print(f"Variables: {len(variables)} selected")
print(f"Pressure levels: {len(pressure_levels)} levels")
try:
# Make the API request
print("π‘ Requesting data from CAMS API...")
self.client.retrieve(
"cams-global-atmospheric-composition-forecasts",
{
"type": "forecast",
"leadtime_hour": "0",
"variable": variables,
"pressure_level": pressure_levels,
"date": date_str,
"time": ["00:00", "12:00"], # Two time steps
"format": "netcdf_zip",
},
str(filepath),
)
# Validate the downloaded file
if filepath.exists():
file_size = filepath.stat().st_size
print(f"π Downloaded file size: {file_size / 1024 / 1024:.2f} MB")
# Basic validation - CAMS files should be reasonably large
if file_size < 10000: # Less than 10KB is suspicious
print(f"β οΈ Warning: Downloaded file is very small ({file_size} bytes)")
# Read first few bytes to check for error messages
with open(filepath, 'rb') as f:
header = f.read(200)
if b'error' in header.lower() or b'html' in header.lower():
filepath.unlink()
raise Exception("CAMS API returned an error response instead of data")
print(f"β
Successfully downloaded: {filename}")
return str(filepath)
else:
raise Exception("Download completed but file was not created")
except Exception as e:
# Clean up partial download
if filepath.exists():
print(f"ποΈ Cleaning up failed download: {filepath}")
filepath.unlink()
raise Exception(f"Error downloading CAMS data: {str(e)}")
def extract_cams_files(self, zip_path):
"""
Extract surface and atmospheric data from CAMS ZIP file
Parameters:
zip_path (str): Path to CAMS ZIP file
Returns:
dict: Paths to extracted files
"""
zip_path = Path(zip_path)
if not zip_path.exists():
raise FileNotFoundError(f"ZIP file not found: {zip_path}")
# Validate file is actually a ZIP file
try:
# Check file size first
file_size = zip_path.stat().st_size
if file_size < 1000: # Less than 1KB is probably an error response
print(f"β οΈ Downloaded file is too small ({file_size} bytes), likely an error response")
# Try to read first few bytes to see what we got
with open(zip_path, 'rb') as f:
header = f.read(100)
if b'html' in header.lower() or b'error' in header.lower():
raise Exception("Downloaded file appears to be an HTML error page, not ZIP data")
# Test if it's a valid ZIP file
if not zipfile.is_zipfile(zip_path):
print(f"β File is not a valid ZIP file: {zip_path}")
# Try to read first few lines to diagnose
with open(zip_path, 'r', errors='ignore') as f:
first_lines = f.read(200)
print(f"File contents preview: {first_lines[:100]}...")
raise Exception(f"Downloaded file is not a valid ZIP archive. File size: {file_size} bytes")
except Exception as e:
if "ZIP" in str(e) or "zip" in str(e):
raise e
else:
raise Exception(f"Error validating ZIP file: {str(e)}")
# Extract date from filename
date_str = zip_path.stem.replace("-cams.nc", "")
surface_path = self.extracted_dir / f"{date_str}-cams-surface.nc"
atmospheric_path = self.extracted_dir / f"{date_str}-cams-atmospheric.nc"
extracted_files = {}
try:
with zipfile.ZipFile(zip_path, "r") as zf:
zip_contents = zf.namelist()
# Extract surface data
surface_file = None
for file in zip_contents:
if 'sfc' in file.lower() or file.endswith('_sfc.nc'):
surface_file = file
break
if surface_file and not surface_path.exists():
with open(surface_path, "wb") as f:
f.write(zf.read(surface_file))
print(f"β
Extracted surface data: {surface_path.name}")
extracted_files['surface'] = str(surface_path)
elif surface_path.exists():
extracted_files['surface'] = str(surface_path)
# Extract atmospheric data
atmospheric_file = None
for file in zip_contents:
if 'plev' in file.lower() or file.endswith('_plev.nc'):
atmospheric_file = file
break
if atmospheric_file and not atmospheric_path.exists():
with open(atmospheric_path, "wb") as f:
f.write(zf.read(atmospheric_file))
print(f"β
Extracted atmospheric data: {atmospheric_path.name}")
extracted_files['atmospheric'] = str(atmospheric_path)
elif atmospheric_path.exists():
extracted_files['atmospheric'] = str(atmospheric_path)
# If no specific files found, extract all .nc files
if not extracted_files:
nc_files = [f for f in zip_contents if f.endswith('.nc')]
for nc_file in nc_files:
output_path = self.extracted_dir / nc_file
if not output_path.exists():
with open(output_path, "wb") as f:
f.write(zf.read(nc_file))
extracted_files[nc_file] = str(output_path)
except Exception as e:
raise Exception(f"Error extracting ZIP file: {str(e)}")
if not extracted_files:
raise Exception("No NetCDF files found in ZIP archive")
return extracted_files
def get_available_dates(self, start_date=None, end_date=None):
"""
Get list of dates for which CAMS data is typically available
Note: This doesn't check actual availability, just generates reasonable date range
Parameters:
start_date (str): Start date (default: 30 days ago)
end_date (str): End date (default: yesterday)
Returns:
list: List of date strings in YYYY-MM-DD format
"""
if start_date is None:
start_date = (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d')
if end_date is None:
end_date = (datetime.now() - timedelta(days=1)).strftime('%Y-%m-%d')
# Generate date range
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
return [date.strftime('%Y-%m-%d') for date in date_range]
def list_downloaded_files(self):
"""List all downloaded CAMS files"""
downloaded_files = []
for zip_file in self.download_dir.glob("*-cams.nc.zip"):
date_str = zip_file.stem.replace("-cams.nc", "")
file_info = {
'date': date_str,
'zip_path': str(zip_file),
'size_mb': zip_file.stat().st_size / (1024 * 1024),
'downloaded': zip_file.stat().st_mtime
}
downloaded_files.append(file_info)
# Sort by date (newest first)
downloaded_files.sort(key=lambda x: x['date'], reverse=True)
return downloaded_files
def cleanup_old_files(self, days_old=30):
"""
Clean up downloaded files older than specified days
Parameters:
days_old (int): Delete files older than this many days
"""
try:
cutoff_date = datetime.now() - timedelta(days=days_old)
deleted_count = 0
for zip_file in self.download_dir.glob("*-cams.nc.zip"):
if datetime.fromtimestamp(zip_file.stat().st_mtime) < cutoff_date:
zip_file.unlink()
deleted_count += 1
# Also clean extracted files
for nc_file in self.extracted_dir.glob("*.nc"):
if datetime.fromtimestamp(nc_file.stat().st_mtime) < cutoff_date:
nc_file.unlink()
deleted_count += 1
print(f"π§Ή Cleaned up {deleted_count} old files")
return deleted_count
except Exception as e:
print(f"Error during cleanup: {str(e)}")
return 0
def test_cams_downloader():
"""Test function for CAMS downloader"""
print("Testing CAMS downloader...")
downloader = CAMSDownloader()
if not downloader.is_client_ready():
print("β CDS API client not ready. Please check your credentials.")
return False
# Test with recent date
test_date = (datetime.now() - timedelta(days=600)).strftime('%Y-%m-%d')
print(f"Testing download for date: {test_date}")
print("β οΈ This may take several minutes for the first download...")
try:
# Download data (will skip if already exists)
zip_path = downloader.download_cams_data(test_date)
print(f"β
Download successful: {zip_path}")
# Test extraction
extracted_files = downloader.extract_cams_files(zip_path)
print(f"β
Extraction successful: {len(extracted_files)} files")
# List downloaded files
downloaded = downloader.list_downloaded_files()
print(f"β
Found {len(downloaded)} downloaded files")
return True
except Exception as e:
print(f"β Test failed: {str(e)}")
return False
if __name__ == "__main__":
test_cams_downloader() |