File size: 20,536 Bytes
cfea739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# Flask web application for CAMS air pollution visualization

import os
import json
import traceback
from pathlib import Path

from datetime import datetime, timedelta
from werkzeug.utils import secure_filename
from flask import Flask, render_template, request, redirect, url_for, flash, jsonify, send_file

# Import our custom modules
from data_processor import NetCDFProcessor, analyze_netcdf_file
from plot_generator import IndiaMapPlotter
from interactive_plot_generator import InteractiveIndiaMapPlotter
from cams_downloader import CAMSDownloader
from constants import ALLOWED_EXTENSIONS, MAX_FILE_SIZE, COLOR_THEMES

app = Flask(__name__)
app.secret_key = 'your-secret-key-change-this-in-production'  # Change this!
app.config['DEBUG'] = False  # Explicitly disable debug mode

# Add JSON filter for templates
import json
app.jinja_env.filters['tojson'] = json.dumps

# Configure upload settings
app.config['MAX_CONTENT_LENGTH'] = MAX_FILE_SIZE
app.config['UPLOAD_FOLDER'] = 'uploads'

# Initialize our services
downloader = CAMSDownloader()
plotter = IndiaMapPlotter()
interactive_plotter = InteractiveIndiaMapPlotter()

# Ensure directories exist
for directory in ['uploads', 'downloads', 'plots', 'templates', 'static']:
    Path(directory).mkdir(exist_ok=True)


def allowed_file(filename):
    """Check if file extension is allowed"""
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS


def str_to_bool(value):
    """Convert string representation to boolean"""
    if isinstance(value, bool):
        return value
    if isinstance(value, str):
        return value.lower() in ('true', '1', 'yes', 'on')
    return bool(value)


@app.route('/')
def index():
    """Main page - file upload or date selection"""
    downloaded_files = downloader.list_downloaded_files()
    # List files in uploads and downloads/extracted
    upload_files = sorted(
        [f for f in Path(app.config['UPLOAD_FOLDER']).glob('*') if f.is_file()],
        key=lambda x: x.stat().st_mtime, reverse=True
    )
    extracted_files = sorted(
        [f for f in Path('downloads/extracted').glob('*') if f.is_file()],
        key=lambda x: x.stat().st_mtime, reverse=True
    )
    # Prepare for template: list of dicts with name and type
    recent_files = [
        {'name': f.name, 'type': 'upload'} for f in upload_files
    ] + [
        {'name': f.name, 'type': 'download'} for f in extracted_files
    ]
    current_date = datetime.now().strftime('%Y-%m-%d')
    return render_template(
        'index.html',
        downloaded_files=downloaded_files,
        cds_ready=downloader.is_client_ready(),
        current_date=current_date,
        recent_files=recent_files
    )


@app.route('/upload', methods=['POST'])
def upload_file():
    """Handle file upload"""
    if 'file' not in request.files:
        flash('No file selected', 'error')
        return redirect(request.url)
    
    file = request.files['file']
    if file.filename == '':
        flash('No file selected', 'error')
        return redirect(request.url)
    
    if file and allowed_file(file.filename):
        try:
            filename = secure_filename(file.filename)
            timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
            filename = f"{timestamp}_{filename}"
            filepath = Path(app.config['UPLOAD_FOLDER']) / filename
            
            file.save(str(filepath))
            flash(f'File uploaded successfully: {filename}', 'success')
            
            return redirect(url_for('analyze_file', filename=filename))
            
        except Exception as e:
            flash(f'Error uploading file: {str(e)}', 'error')
            return redirect(url_for('index'))
    else:
        flash('Invalid file type. Please upload .nc or .zip files.', 'error')
        return redirect(url_for('index'))


@app.route('/download_date', methods=['POST'])
def download_date():
    """Handle date-based download"""
    date_str = request.form.get('date')
    
    if not date_str:
        flash('Please select a date', 'error')
        return redirect(url_for('index'))
    
    # --- Backend Validation Logic ---
    try:
        selected_date = datetime.strptime(date_str, '%Y-%m-%d')
        start_date = datetime(2015, 1, 1)
        end_date = datetime.now()
        
        if not (start_date <= selected_date <= end_date):
            flash(f'Invalid date. Please select a date between {start_date.strftime("%Y-%m-%d")} and today.', 'error')
            return redirect(url_for('index'))
            
    except ValueError:
        flash('Invalid date format. Please use YYYY-MM-DD.', 'error')
        return redirect(url_for('index'))
    
    # --- End of Validation Logic ---
    
    if not downloader.is_client_ready():
        flash('CDS API not configured. Please check your .cdsapirc file.', 'error')
        return redirect(url_for('index'))
    
    try:
        # Download CAMS data
        zip_path = downloader.download_cams_data(date_str)
        
        # Extract the files
        extracted_files = downloader.extract_cams_files(zip_path)
        
        flash(f'CAMS data downloaded successfully for {date_str}', 'success')
        
        # Analyze the extracted files
        if 'surface' in extracted_files:
            filename = Path(extracted_files['surface']).name
            return redirect(url_for('analyze_file', filename=filename, is_download='true'))
        elif 'atmospheric' in extracted_files:
            filename = Path(extracted_files['atmospheric']).name
            return redirect(url_for('analyze_file', filename=filename, is_download='true'))
        else:
            # Use the first available file
            first_file = list(extracted_files.values())[0]
            filename = Path(first_file).name
            return redirect(url_for('analyze_file', filename=filename, is_download='true'))
            
    except Exception as e:
        flash(f'Error downloading CAMS data: {str(e)}', 'error')
        return redirect(url_for('index'))


@app.route('/analyze/<filename>')
def analyze_file(filename):
    """Analyze uploaded file and show variable selection"""
    is_download_param = request.args.get('is_download', 'false')
    is_download = str_to_bool(is_download_param)
    
    try:
        # Determine file path
        if is_download:
            file_path = Path('downloads/extracted') / filename
        else:
            file_path = Path(app.config['UPLOAD_FOLDER']) / filename
        
        if not file_path.exists():
            flash('File not found', 'error')
            return redirect(url_for('index'))
        
        # Analyze the file
        analysis = analyze_netcdf_file(str(file_path))
        
        if not analysis['success']:
            flash(f'Error analyzing file: {analysis["error"]}', 'error')
            return redirect(url_for('index'))
        
        if analysis['total_variables'] == 0:
            flash('No air pollution variables found in the file', 'warning')
            return redirect(url_for('index'))
        
        # Process variables for template
        variables = []
        for var_name, var_info in analysis['detected_variables'].items():
            variables.append({
                'name': var_name,
                'display_name': var_info['name'],
                'type': var_info['type'],
                'units': var_info['units'],
                'shape': var_info['shape']
            })
        
        return render_template('variables.html',
                             filename=filename,
                             variables=variables,
                             color_themes=COLOR_THEMES,
                             is_download=is_download)
        
    except Exception as e:
        flash(f'Error analyzing file: {str(e)}', 'error')
        return redirect(url_for('index'))


@app.route('/get_pressure_levels/<filename>/<variable>')
def get_pressure_levels(filename, variable):
    """AJAX endpoint to get pressure levels for atmospheric variables"""
    try:
        is_download_param = request.args.get('is_download', 'false')
        is_download = str_to_bool(is_download_param)
        
        print(f"is_download: {is_download} (type: {type(is_download)})")

        # Determine file path
        if is_download:
            file_path = Path('downloads/extracted') / filename
            print("Using downloaded file path")
        else:
            file_path = Path(app.config['UPLOAD_FOLDER']) / filename
            print("Using upload file path")
        
        print(f"File path: {file_path}")

        processor = NetCDFProcessor(str(file_path))
        processor.load_dataset()
        processor.detect_variables()
        
        pressure_levels = processor.get_available_pressure_levels(variable)
        processor.close()
        
        return jsonify({
            'success': True,
            'pressure_levels': pressure_levels
        })
        
    except Exception as e:
        return jsonify({
            'success': False,
            'error': str(e)
        })


@app.route('/get_available_times/<filename>/<variable>')
def get_available_times(filename, variable):
    """AJAX endpoint to get available timestamps for a variable"""
    try:
        is_download_param = request.args.get('is_download', 'false')
        is_download = str_to_bool(is_download_param)
        
        # Determine file path
        if is_download:
            file_path = Path('downloads/extracted') / filename
        else:
            file_path = Path(app.config['UPLOAD_FOLDER']) / filename
        
        processor = NetCDFProcessor(str(file_path))
        processor.load_dataset()
        processor.detect_variables()
        
        available_times = processor.get_available_times(variable)
        processor.close()
        
        # Format times for display
        formatted_times = []
        for i, time_val in enumerate(available_times):
            formatted_times.append({
                'index': i,
                'value': str(time_val),
                'display': time_val.strftime('%Y-%m-%d %H:%M') if hasattr(time_val, 'strftime') else str(time_val)
            })
        
        return jsonify({
            'success': True,
            'times': formatted_times
        })
        
    except Exception as e:
        return jsonify({
            'success': False,
            'error': str(e)
        })

@app.route('/visualize', methods=['POST'])
def visualize():
    """Generate and display the pollution map"""
    try:
        filename = request.form.get('filename')
        variable = request.form.get('variable')
        color_theme = request.form.get('color_theme', 'viridis')
        pressure_level = request.form.get('pressure_level')
        is_download_param = request.form.get('is_download', 'false')
        is_download = str_to_bool(is_download_param)
        
        if not filename or not variable:
            flash('Missing required parameters', 'error')
            return redirect(url_for('index'))
        
        # Determine file path
        if is_download:
            file_path = Path('downloads/extracted') / filename
        else:
            file_path = Path(app.config['UPLOAD_FOLDER']) / filename
        
        if not file_path.exists():
            flash('File not found', 'error')
            return redirect(url_for('index'))
        
        # Process the data
        processor = NetCDFProcessor(str(file_path))
        processor.load_dataset()
        processor.detect_variables()
        
        # Convert pressure level to float if provided
        pressure_level_val = None
        if pressure_level and pressure_level != 'None':
            try:
                pressure_level_val = float(pressure_level)
            except ValueError:
                pressure_level_val = None

        time_index_val = request.form.get('time_index')
        # Extract data
        data_values, metadata = processor.extract_data(
            variable, 
            time_index = int(time_index_val) if time_index_val and time_index_val != 'None' else 0,
            pressure_level=pressure_level_val
        )
        
        # Generate plot
        plot_path = plotter.create_india_map(
            data_values, 
            metadata, 
            color_theme=color_theme,
            save_plot=True
        )
        
        processor.close()
        
        if plot_path:
            plot_filename = Path(plot_path).name
            
            # Prepare metadata for display
            plot_info = {
                'variable': metadata.get('display_name', 'Unknown Variable'),
                'units': metadata.get('units', ''),
                'shape': str(metadata.get('shape', 'Unknown')),
                'pressure_level': metadata.get('pressure_level'),
                'color_theme': COLOR_THEMES.get(color_theme, color_theme),
                'generated_time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                'data_range': {
                    'min': float(f"{data_values.min():.3f}") if hasattr(data_values, 'min') and not data_values.min() is None else 0,
                    'max': float(f"{data_values.max():.3f}") if hasattr(data_values, 'max') and not data_values.max() is None else 0,
                    'mean': float(f"{data_values.mean():.3f}") if hasattr(data_values, 'mean') and not data_values.mean() is None else 0
                }
            }
            
            print(f"Plot info prepared: {plot_info}")
            
            return render_template('plot.html',
                                    plot_filename=plot_filename,
                                    plot_info=plot_info)
        else:
            flash('Error generating plot', 'error')
            return redirect(url_for('index'))
            
    except Exception as e:
        flash(f'Error creating visualization: {str(e)}', 'error')
        print(f"Full error: {traceback.format_exc()}")
        return redirect(url_for('index'))
    
@app.route('/visualize_interactive', methods=['POST'])
def visualize_interactive():
    """Generate and display the interactive pollution map"""
    try:
        filename = request.form.get('filename')
        variable = request.form.get('variable')
        color_theme = request.form.get('color_theme', 'viridis')
        pressure_level = request.form.get('pressure_level')
        is_download_param = request.form.get('is_download', 'false')
        is_download = str_to_bool(is_download_param)
        
        if not filename or not variable:
            flash('Missing required parameters', 'error')
            return redirect(url_for('index'))
        
        # Determine file path
        if is_download:
            file_path = Path('downloads/extracted') / filename
        else:
            file_path = Path(app.config['UPLOAD_FOLDER']) / filename
        
        if not file_path.exists():
            flash('File not found', 'error')
            return redirect(url_for('index'))
        
        # Process the data
        processor = NetCDFProcessor(str(file_path))
        processor.load_dataset()
        processor.detect_variables()
        
        # Convert pressure level to float if provided
        pressure_level_val = None
        if pressure_level and pressure_level != 'None':
            try:
                pressure_level_val = float(pressure_level)
            except ValueError:
                pressure_level_val = None

        time_index_val = request.form.get('time_index')
        # Extract data
        data_values, metadata = processor.extract_data(
            variable, 
            time_index = int(time_index_val) if time_index_val and time_index_val != 'None' else 0,
            pressure_level=pressure_level_val
        )
        
        # Generate interactive plot (saved as JPG)
        plot_path = interactive_plotter.create_india_map(
            data_values, 
            metadata, 
            color_theme=color_theme,
            save_plot=True
        )
        
        processor.close()
        
        if plot_path:
            plot_filename = Path(plot_path).name
            
            # Prepare metadata for display
            plot_info = {
                'variable': metadata.get('display_name', 'Unknown Variable'),
                'units': metadata.get('units', ''),
                'shape': str(metadata.get('shape', 'Unknown')),
                'pressure_level': metadata.get('pressure_level'),
                'color_theme': COLOR_THEMES.get(color_theme, color_theme),
                'generated_time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                'data_range': {
                    'min': float(f"{data_values.min():.3f}") if hasattr(data_values, 'min') and not data_values.min() is None else 0,
                    'max': float(f"{data_values.max():.3f}") if hasattr(data_values, 'max') and not data_values.max() is None else 0,
                    'mean': float(f"{data_values.mean():.3f}") if hasattr(data_values, 'mean') and not data_values.mean() is None else 0
                },
                'is_interactive': True
            }
            
            return render_template('plot.html',
                                    plot_filename=plot_filename,
                                    plot_info=plot_info)
        else:
            flash('Error generating interactive plot', 'error')
            return redirect(url_for('index'))
            
    except Exception as e:
        flash(f'Error creating interactive visualization: {str(e)}', 'error')
        print(f"Full error: {traceback.format_exc()}")
        return redirect(url_for('index'))
    
@app.route('/plot/<filename>')
def serve_plot(filename):
    """Serve plot images"""
    try:
        plot_path = Path('plots') / filename
        if plot_path.exists():
            # Determine mimetype based on file extension
            if filename.lower().endswith('.jpg') or filename.lower().endswith('.jpeg'):
                mimetype = 'image/jpeg'
            else:
                mimetype = 'image/png'
            return send_file(str(plot_path), mimetype=mimetype)
        else:
            flash('Plot not found', 'error')
            return redirect(url_for('index'))
    except Exception as e:
        flash(f'Error serving plot: {str(e)}', 'error')
        return redirect(url_for('index'))


@app.route('/cleanup')
def cleanup():
    """Clean up old files"""
    try:
        # Clean up old plots (older than 24 hours)
        cutoff_time = datetime.now() - timedelta(hours=24)
        cleaned_count = 0
        
        for plot_file in Path('plots').glob('*.png'):
            if plot_file.stat().st_mtime < cutoff_time.timestamp():
                plot_file.unlink()
                cleaned_count += 1
        
        for plot_file in Path('plots').glob('*.jpg'):
            if plot_file.stat().st_mtime < cutoff_time.timestamp():
                plot_file.unlink()
                cleaned_count += 1
        
        flash(f'Cleaned up {cleaned_count} old plot files', 'success')
        return redirect(url_for('index'))
        
    except Exception as e:
        print(f"Error during cleanup: {str(e)}")
        flash('Error during cleanup', 'error')
        return redirect(url_for('index'))


@app.route('/health')
def health_check():
    """Health check endpoint for monitoring"""
    return jsonify({
        'status': 'healthy',
        'timestamp': datetime.now().isoformat(),
        'cds_ready': downloader.is_client_ready()
    })


@app.errorhandler(413)
def too_large(e):
    """Handle file too large error"""
    flash('File too large. Maximum size is 500MB.', 'error')
    return redirect(url_for('index'))


@app.errorhandler(404)
def not_found(e):
    """Handle 404 errors"""
    flash('Page not found', 'error')
    return redirect(url_for('index'))


@app.errorhandler(500)
def server_error(e):
    """Handle server errors"""
    flash('An internal error occurred', 'error')
    return redirect(url_for('index'))


if __name__ == '__main__':
    import os
    
    # Get port from environment variable (Hugging Face uses 7860)
    port = int(os.environ.get('PORT', 7860))
    debug_mode = os.environ.get('FLASK_ENV', 'production') != 'production'
    
    print("πŸš€ Starting CAMS Air Pollution Visualization App")
    print(f"πŸ“Š Available at: http://localhost:{port}")
    print("πŸ”§ CDS API Ready:", downloader.is_client_ready())
    
    # Run the Flask app
    app.run(debug=debug_mode, host='0.0.0.0', port=port)