File size: 13,410 Bytes
cfea739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# interactive_plot_generator.py
# Generate interactive air pollution maps for India with hover information

import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import geopandas as gpd
from pathlib import Path
from datetime import datetime
from constants import INDIA_BOUNDS, COLOR_THEMES
import warnings
warnings.filterwarnings('ignore')


class InteractiveIndiaMapPlotter:
    def __init__(self, plots_dir="plots", shapefile_path="shapefiles/India_State_Boundary.shp"):
        """
        Initialize the interactive map plotter
        
        Parameters:
        plots_dir (str): Directory to save plots
        shapefile_path (str): Path to the India districts shapefile
        """
        self.plots_dir = Path(plots_dir)
        self.plots_dir.mkdir(exist_ok=True)
        
        try:
            self.india_map = gpd.read_file(shapefile_path)

            # Ensure it's in lat/lon (WGS84)
            if self.india_map.crs is not None and self.india_map.crs.to_epsg() != 4326:
                self.india_map = self.india_map.to_crs(epsg=4326)

        except Exception as e:
            raise FileNotFoundError(f"Could not read the shapefile at '{shapefile_path}'. "
                                    f"Please ensure the file exists. Error: {e}")
    
    def create_india_map(self, data_values, metadata, color_theme=None, save_plot=True, custom_title=None):
        """
        Create interactive air pollution map over India with hover information
        
        Parameters:
        data_values (np.ndarray): 2D array of pollution data
        metadata (dict): Metadata containing lats, lons, variable info, etc.
        color_theme (str): Color theme name from COLOR_THEMES
        save_plot (bool): Whether to save the plot as JPG
        custom_title (str): Custom title for the plot
        
        Returns:
        str: Path to saved plot file
        """
        try:
            # Extract metadata
            lats = metadata['lats']
            lons = metadata['lons']
            var_name = metadata['variable_name']
            display_name = metadata['display_name']
            units = metadata['units']
            pressure_level = metadata.get('pressure_level')
            time_stamp = metadata.get('timestamp_str')
            
            # Determine color theme
            if color_theme is None:
                from constants import AIR_POLLUTION_VARIABLES
                color_theme = AIR_POLLUTION_VARIABLES.get(var_name, {}).get('cmap', 'viridis')
            
            # Map matplotlib colormaps to Plotly colormaps
            colormap_mapping = {
                'viridis': 'Viridis',
                'plasma': 'Plasma',
                'inferno': 'Inferno',
                'magma': 'Magma',
                'cividis': 'Cividis',
                'YlOrRd': 'YlOrRd',
                'RdYlGn_r': 'RdYlGn_r',
                'coolwarm': 'RdBu_r',
                'Spectral_r': 'Spectral_r',
                'jet': 'Jet',
                'turbo': 'Turbo'
            }
            plotly_colorscale = colormap_mapping.get(color_theme, 'Viridis')
            
            # Create mesh grid if needed
            if lons.ndim == 1 and lats.ndim == 1:
                lon_grid, lat_grid = np.meshgrid(lons, lats)
            else:
                lon_grid, lat_grid = lons, lats
            
            # Calculate statistics
            valid_data = data_values[~np.isnan(data_values)]
            if len(valid_data) == 0:
                raise ValueError("All data values are NaN - cannot create plot")
            
            from constants import AIR_POLLUTION_VARIABLES
            vmax_percentile = AIR_POLLUTION_VARIABLES.get(var_name, {}).get('vmax_percentile', 90)
            vmin = np.nanpercentile(valid_data, 5)
            vmax = np.nanpercentile(valid_data, vmax_percentile)
            if vmax <= vmin:
                vmax = vmin + 1.0
            
            # Create hover text with detailed information
            hover_text = self._create_hover_text(lon_grid, lat_grid, data_values, display_name, units)
            
            # Create the figure
            fig = go.Figure()
            
            # Add pollution data as heatmap
            fig.add_trace(go.Heatmap(
                x=lons,
                y=lats,
                z=data_values,
                colorscale=plotly_colorscale,
                zmin=vmin,
                zmax=vmax,
                hovertext=hover_text,
                hoverinfo='text',
                colorbar=dict(
                    title=dict(
                        text=f"{display_name}" + (f"<br>({units})" if units else ""),
                        side="right"
                    ),
                    thickness=20,
                    len=0.6,
                    x=1.02
                )
            ))
            
            # Add India state boundaries
            for _, row in self.india_map.iterrows():
                if row.geometry.geom_type == 'Polygon':
                    self._add_polygon_trace(fig, row.geometry)
                elif row.geometry.geom_type == 'MultiPolygon':
                    for polygon in row.geometry.geoms:
                        self._add_polygon_trace(fig, polygon)
            
            # Create title
            if custom_title:
                title = custom_title
            else:
                title = f'{display_name} Concentration over India'
                if pressure_level:
                    title += f' at {pressure_level} hPa'
                title += f' on {time_stamp}'
            
            # Calculate stats for annotation
            stats_text = self._create_stats_text(valid_data, units)
            theme_name = COLOR_THEMES.get(color_theme, color_theme)
            
            # Auto-adjust bounds if needed
            xmin, ymin, xmax, ymax = self.india_map.total_bounds
            if not (INDIA_BOUNDS['lon_min'] <= xmin <= INDIA_BOUNDS['lon_max']):
                lon_range = [xmin, xmax]
                lat_range = [ymin, ymax]
            else:
                lon_range = [INDIA_BOUNDS['lon_min'], INDIA_BOUNDS['lon_max']]
                lat_range = [INDIA_BOUNDS['lat_min'], INDIA_BOUNDS['lat_max']]
            
            # Update layout
            fig.update_layout(
                title=dict(
                    text=title,
                    x=0.5,
                    xanchor='center',
                    font=dict(size=18, weight='bold')
                ),
                xaxis=dict(
                    title='Longitude',
                    range=lon_range,
                    showgrid=True,
                    gridcolor='rgba(128, 128, 128, 0.3)'
                ),
                yaxis=dict(
                    title='Latitude',
                    range=lat_range,
                    showgrid=True,
                    gridcolor='rgba(128, 128, 128, 0.3)'
                ),
                width=1400,
                height=1000,
                plot_bgcolor='white',
                annotations=[
                    # Statistics box
                    dict(
                        text=stats_text.replace('\n', '<br>'),
                        xref='paper', yref='paper',
                        x=0.02, y=0.98,
                        xanchor='left', yanchor='top',
                        showarrow=False,
                        bgcolor='rgba(255, 255, 255, 0.9)',
                        bordercolor='black',
                        borderwidth=1,
                        borderpad=10,
                        font=dict(size=11)
                    ),
                    # Theme info box
                    dict(
                        text=f'Color Theme: {theme_name}',
                        xref='paper', yref='paper',
                        x=0.98, y=0.02,
                        xanchor='right', yanchor='bottom',
                        showarrow=False,
                        bgcolor='rgba(211, 211, 211, 0.8)',
                        bordercolor='gray',
                        borderwidth=1,
                        borderpad=8,
                        font=dict(size=10)
                    )
                ]
            )
            
            plot_path = None
            if save_plot:
                plot_path = self._save_plot(fig, var_name, display_name, pressure_level, color_theme, time_stamp)
            
            return plot_path
            
        except Exception as e:
            raise Exception(f"Error creating interactive map: {str(e)}")
    
    def _add_polygon_trace(self, fig, polygon):
        """Add a polygon boundary to the figure"""
        x, y = polygon.exterior.xy
        fig.add_trace(go.Scatter(
            x=list(x),
            y=list(y),
            mode='lines',
            line=dict(color='black', width=1),
            hoverinfo='skip',
            showlegend=False
        ))
    
    def _create_hover_text(self, lon_grid, lat_grid, data_values, display_name, units):
        """Create formatted hover text for each point"""
        hover_text = np.empty(data_values.shape, dtype=object)
        units_str = f" {units}" if units else ""
        
        for i in range(data_values.shape[0]):
            for j in range(data_values.shape[1]):
                lat = lat_grid[i, j] if lat_grid.ndim == 2 else lat_grid[i]
                lon = lon_grid[i, j] if lon_grid.ndim == 2 else lon_grid[j]
                value = data_values[i, j]
                
                if np.isnan(value):
                    value_str = "N/A"
                elif abs(value) >= 1000:
                    value_str = f"{value:.0f}{units_str}"
                elif abs(value) >= 10:
                    value_str = f"{value:.1f}{units_str}"
                else:
                    value_str = f"{value:.2f}{units_str}"
                
                hover_text[i, j] = (
                    f"<b>{display_name}</b>: {value_str}<br>"
                    f"<b>Latitude</b>: {lat:.3f}°<br>"
                    f"<b>Longitude</b>: {lon:.3f}°"
                )
        
        return hover_text
    
    def _create_stats_text(self, data, units):
        """Create statistics text for annotation"""
        units_str = f" {units}" if units else ""
        stats = {
            'Min': np.nanmin(data),
            'Max': np.nanmax(data),
            'Mean': np.nanmean(data),
            'Median': np.nanmedian(data),
            'Std': np.nanstd(data)
        }
        
        def format_number(val):
            if abs(val) >= 1000:
                return f"{val:.0f}"
            elif abs(val) >= 10:
                return f"{val:.1f}"
            else:
                return f"{val:.2f}"
        
        stats_lines = [f"{name}: {format_number(val)}{units_str}" for name, val in stats.items()]
        return "\n".join(stats_lines)
    
    def _save_plot(self, fig, var_name, display_name, pressure_level, color_theme, time_stamp):
        """Save the plot as JPG"""
        safe_display_name = display_name.replace('/', '_').replace(' ', '_').replace('₂', '2').replace('₃', '3').replace('.', '_')
        safe_time_stamp = time_stamp.replace('-', '').replace(':', '').replace(' ', '_')
        
        filename_parts = [f"{safe_display_name}_India_interactive"]
        if pressure_level:
            filename_parts.append(f"{int(pressure_level)}hPa")
        filename_parts.extend([color_theme, safe_time_stamp])
        filename = "_".join(filename_parts) + ".jpg"
        
        plot_path = self.plots_dir / filename
        
        # Save as static JPG with high quality
        fig.write_image(str(plot_path), format='jpg', width=1400, height=1000, scale=2)
        print(f"Interactive plot saved as JPG: {plot_path}")
        
        return str(plot_path)
    
    def list_available_themes(self):
        """List available color themes"""
        return COLOR_THEMES


def test_interactive_plot_generator():
    """Test function for the interactive plot generator"""
    print("Testing interactive plot generator...")
    
    # Create test data
    lats = np.linspace(6, 38, 50)
    lons = np.linspace(68, 98, 60)
    lon_grid, lat_grid = np.meshgrid(lons, lats)
    data = np.sin(lat_grid * 0.1) * np.cos(lon_grid * 0.1) * 100 + 50
    data += np.random.normal(0, 10, data.shape)
    
    metadata = {
        'variable_name': 'pm25',
        'display_name': 'PM2.5',
        'units': 'µg/m³',
        'lats': lats,
        'lons': lons,
        'pressure_level': None,
        'timestamp_str': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
    }
    
    shapefile_path = "shapefiles/India_State_Boundary.shp"
    if not Path(shapefile_path).exists():
        print(f"❌ Test failed: Shapefile not found at '{shapefile_path}'.")
        print("Please make sure you have unzipped 'India_State_Boundary.zip' into a 'shapefiles' folder.")
        return False
    
    plotter = InteractiveIndiaMapPlotter(shapefile_path=shapefile_path)
    
    try:
        plot_path = plotter.create_india_map(data, metadata, color_theme='YlOrRd')
        print(f"✅ Test interactive plot created successfully: {plot_path}")
        return True
    except Exception as e:
        print(f"❌ Test failed: {str(e)}")
        import traceback
        traceback.print_exc()
        return False


if __name__ == "__main__":
    test_interactive_plot_generator()