Spaces:
Running
Running
Create agent.py
Browse files
agent.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
from typing import List, Tuple, Dict, Any
|
| 3 |
+
|
| 4 |
+
# Constants used in the app
|
| 5 |
+
PREFIX = """Current Date: {timestamp}
|
| 6 |
+
Purpose: {purpose}
|
| 7 |
+
System: You are an advanced AI assistant specialized in data processing and summarization.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
COMPRESS_DATA_PROMPT = """You are processing data for summarization and analysis.
|
| 11 |
+
|
| 12 |
+
Task Context:
|
| 13 |
+
- Direction: {direction}
|
| 14 |
+
- Knowledge: {knowledge}
|
| 15 |
+
|
| 16 |
+
Data to Process:
|
| 17 |
+
{history}
|
| 18 |
+
|
| 19 |
+
Instructions:
|
| 20 |
+
1. Analyze and summarize the data while preserving key information
|
| 21 |
+
2. Maintain original meaning and important details
|
| 22 |
+
3. Output should be concise yet comprehensive
|
| 23 |
+
4. Format as plain text with clear section headers
|
| 24 |
+
5. Include all critical data points and references
|
| 25 |
+
|
| 26 |
+
Output Format:
|
| 27 |
+
[Summary]
|
| 28 |
+
- Key points
|
| 29 |
+
- Important details
|
| 30 |
+
- Relevant references
|
| 31 |
+
|
| 32 |
+
[Analysis]
|
| 33 |
+
- Insights
|
| 34 |
+
- Patterns
|
| 35 |
+
- Conclusions
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
COMPRESS_DATA_PROMPT_SMALL = """You are processing data chunks for summarization.
|
| 39 |
+
|
| 40 |
+
Task Context:
|
| 41 |
+
- Direction: {direction}
|
| 42 |
+
|
| 43 |
+
Current Data Chunk:
|
| 44 |
+
{history}
|
| 45 |
+
|
| 46 |
+
Instructions:
|
| 47 |
+
1. Extract key information from this chunk
|
| 48 |
+
2. Format as bullet points
|
| 49 |
+
3. Keep concise but preserve meaning
|
| 50 |
+
4. Focus on most relevant content
|
| 51 |
+
5. Include source references if available
|
| 52 |
+
|
| 53 |
+
Output Format:
|
| 54 |
+
- Point 1
|
| 55 |
+
- Point 2
|
| 56 |
+
- ...
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
LOG_PROMPT = """=== PROMPT ===
|
| 60 |
+
{content}
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
LOG_RESPONSE = """=== RESPONSE ===
|
| 64 |
+
{content}
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def run_gpt(
|
| 68 |
+
prompt_template: str,
|
| 69 |
+
stop_tokens: List[str],
|
| 70 |
+
max_tokens: int,
|
| 71 |
+
seed: int,
|
| 72 |
+
**prompt_kwargs: Any
|
| 73 |
+
) -> str:
|
| 74 |
+
"""Run GPT model with given parameters.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
prompt_template: Template string for the prompt
|
| 78 |
+
stop_tokens: List of stop sequences
|
| 79 |
+
max_tokens: Maximum tokens to generate
|
| 80 |
+
seed: Random seed
|
| 81 |
+
**prompt_kwargs: Additional formatting arguments
|
| 82 |
+
|
| 83 |
+
Returns:
|
| 84 |
+
Generated text response
|
| 85 |
+
"""
|
| 86 |
+
# This would normally interface with the actual model
|
| 87 |
+
# For now returning a mock implementation
|
| 88 |
+
return "Mock response for testing purposes"
|
| 89 |
+
|
| 90 |
+
def compress_data(
|
| 91 |
+
c: int,
|
| 92 |
+
instruct: str,
|
| 93 |
+
history: str
|
| 94 |
+
) -> List[str]:
|
| 95 |
+
"""Compress data into smaller chunks.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
c: Count of data points
|
| 99 |
+
instruct: Instruction for compression
|
| 100 |
+
history: Data to compress
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
List of compressed data chunks
|
| 104 |
+
"""
|
| 105 |
+
# Mock implementation
|
| 106 |
+
return ["Compressed data chunk 1", "Compressed data chunk 2"]
|
| 107 |
+
|
| 108 |
+
def compress_data_og(
|
| 109 |
+
c: int,
|
| 110 |
+
instruct: str,
|
| 111 |
+
history: str
|
| 112 |
+
) -> str:
|
| 113 |
+
"""Original version of data compression.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
c: Count of data points
|
| 117 |
+
instruct: Instruction for compression
|
| 118 |
+
history: Data to compress
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
Compressed data as single string
|
| 122 |
+
"""
|
| 123 |
+
# Mock implementation
|
| 124 |
+
return "Compressed data output"
|
| 125 |
+
|
| 126 |
+
def save_memory(
|
| 127 |
+
purpose: str,
|
| 128 |
+
history: str
|
| 129 |
+
) -> List[Dict[str, Any]]:
|
| 130 |
+
"""Save processed data to memory format.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
purpose: Purpose of the processing
|
| 134 |
+
history: Data to process
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
List of memory dictionaries
|
| 138 |
+
"""
|
| 139 |
+
# Mock implementation
|
| 140 |
+
return [{
|
| 141 |
+
"keywords": ["sample", "data"],
|
| 142 |
+
"title": "Sample Entry",
|
| 143 |
+
"description": "Sample description",
|
| 144 |
+
"content": "Sample content",
|
| 145 |
+
"url": "https://example.com"
|
| 146 |
+
}]
|