Spaces:
Running
Running
Update inference2.py
Browse files- inference2.py +345 -345
inference2.py
CHANGED
|
@@ -1,346 +1,346 @@
|
|
| 1 |
-
# inference.py (Updated)
|
| 2 |
-
|
| 3 |
-
from os import listdir, path
|
| 4 |
-
import numpy as np
|
| 5 |
-
import scipy, cv2, os, sys, argparse, audio
|
| 6 |
-
import json, subprocess, random, string
|
| 7 |
-
from tqdm import tqdm
|
| 8 |
-
from glob import glob
|
| 9 |
-
import torch # Ensure torch is imported
|
| 10 |
-
try:
|
| 11 |
-
import face_detection # Assuming this is installed or in a path accessible by your Flask app
|
| 12 |
-
except ImportError:
|
| 13 |
-
print("face_detection not found. Please ensure it's installed or available in your PYTHONPATH.")
|
| 14 |
-
# You might want to raise an error or handle this gracefully if face_detection is truly optional.
|
| 15 |
-
|
| 16 |
-
# Make sure you have a models/Wav2Lip.py or similar structure
|
| 17 |
-
try:
|
| 18 |
-
from models import Wav2Lip
|
| 19 |
-
except ImportError:
|
| 20 |
-
print("Wav2Lip model not found. Please ensure models/Wav2Lip.py exists and is correctly configured.")
|
| 21 |
-
# You might want to raise an error or handle this gracefully.
|
| 22 |
-
|
| 23 |
-
import platform
|
| 24 |
-
import shutil # For clearing temp directory
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# These globals are still useful for shared configuration
|
| 28 |
-
mel_step_size = 16
|
| 29 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 30 |
-
print('Inference script using {} for inference.'.format(device))
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def get_smoothened_boxes(boxes, T):
|
| 34 |
-
for i in range(len(boxes)):
|
| 35 |
-
if i + T > len(boxes):
|
| 36 |
-
window = boxes[len(boxes) - T:]
|
| 37 |
-
else:
|
| 38 |
-
window = boxes[i : i + T]
|
| 39 |
-
boxes[i] = np.mean(window, axis=0)
|
| 40 |
-
return boxes
|
| 41 |
-
|
| 42 |
-
def face_detect(images, pads, face_det_batch_size, nosmooth, img_size):
|
| 43 |
-
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
| 44 |
-
flip_input=False, device=device)
|
| 45 |
-
|
| 46 |
-
batch_size = face_det_batch_size
|
| 47 |
-
|
| 48 |
-
while 1:
|
| 49 |
-
predictions = []
|
| 50 |
-
try:
|
| 51 |
-
for i in tqdm(range(0, len(images), batch_size), desc="Face Detection"):
|
| 52 |
-
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
| 53 |
-
except RuntimeError as e:
|
| 54 |
-
if batch_size == 1:
|
| 55 |
-
raise RuntimeError(f'Image too big to run face detection on GPU. Error: {e}')
|
| 56 |
-
batch_size //= 2
|
| 57 |
-
print('Recovering from OOM error; New face detection batch size: {}'.format(batch_size))
|
| 58 |
-
continue
|
| 59 |
-
break
|
| 60 |
-
|
| 61 |
-
results = []
|
| 62 |
-
pady1, pady2, padx1, padx2 = pads
|
| 63 |
-
for rect, image in zip(predictions, images):
|
| 64 |
-
if rect is None:
|
| 65 |
-
# Save the faulty frame for debugging
|
| 66 |
-
output_dir = 'temp' # Ensure this exists or create it
|
| 67 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 68 |
-
cv2.imwrite(os.path.join(output_dir, 'faulty_frame.jpg'), image)
|
| 69 |
-
raise ValueError('Face not detected! Ensure the video/image contains a face in all the frames or try adjusting pads/box.')
|
| 70 |
-
|
| 71 |
-
y1 = max(0, rect[1] - pady1)
|
| 72 |
-
y2 = min(image.shape[0], rect[3] + pady2)
|
| 73 |
-
x1 = max(0, rect[0] - padx1)
|
| 74 |
-
x2 = min(image.shape[1], rect[2] + padx2)
|
| 75 |
-
|
| 76 |
-
results.append([x1, y1, x2, y2])
|
| 77 |
-
|
| 78 |
-
boxes = np.array(results)
|
| 79 |
-
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
|
| 80 |
-
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
| 81 |
-
|
| 82 |
-
del detector # Clean up detector
|
| 83 |
-
return results
|
| 84 |
-
|
| 85 |
-
def datagen(frames, mels, box, static, wav2lip_batch_size, img_size, pads, face_det_batch_size, nosmooth):
|
| 86 |
-
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
| 87 |
-
|
| 88 |
-
if box[0] == -1:
|
| 89 |
-
if not static:
|
| 90 |
-
face_det_results = face_detect(frames, pads, face_det_batch_size, nosmooth, img_size) # BGR2RGB for CNN face detection
|
| 91 |
-
else:
|
| 92 |
-
face_det_results = face_detect([frames[0]], pads, face_det_batch_size, nosmooth, img_size)
|
| 93 |
-
else:
|
| 94 |
-
print('Using the specified bounding box instead of face detection...')
|
| 95 |
-
y1, y2, x1, x2 = box
|
| 96 |
-
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
|
| 97 |
-
|
| 98 |
-
for i, m in enumerate(mels):
|
| 99 |
-
idx = 0 if static else i % len(frames)
|
| 100 |
-
frame_to_save = frames[idx].copy()
|
| 101 |
-
face, coords = face_det_results[idx].copy()
|
| 102 |
-
|
| 103 |
-
face = cv2.resize(face, (img_size, img_size))
|
| 104 |
-
|
| 105 |
-
img_batch.append(face)
|
| 106 |
-
mel_batch.append(m)
|
| 107 |
-
frame_batch.append(frame_to_save)
|
| 108 |
-
coords_batch.append(coords)
|
| 109 |
-
|
| 110 |
-
if len(img_batch) >= wav2lip_batch_size:
|
| 111 |
-
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
| 112 |
-
|
| 113 |
-
img_masked = img_batch.copy()
|
| 114 |
-
img_masked[:, img_size//2:] = 0
|
| 115 |
-
|
| 116 |
-
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
| 117 |
-
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
| 118 |
-
|
| 119 |
-
yield img_batch, mel_batch, frame_batch, coords_batch
|
| 120 |
-
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
| 121 |
-
|
| 122 |
-
if len(img_batch) > 0:
|
| 123 |
-
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
| 124 |
-
|
| 125 |
-
img_masked = img_batch.copy()
|
| 126 |
-
img_masked[:, img_size//2:] = 0
|
| 127 |
-
|
| 128 |
-
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
| 129 |
-
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
| 130 |
-
|
| 131 |
-
yield img_batch, mel_batch, frame_batch, coords_batch
|
| 132 |
-
|
| 133 |
-
def _load(checkpoint_path):
|
| 134 |
-
# Use torch.jit.load for TorchScript archives
|
| 135 |
-
if device == 'cuda':
|
| 136 |
-
model = torch.jit.load(checkpoint_path)
|
| 137 |
-
else:
|
| 138 |
-
# Accepts string or torch.device, not a lambda
|
| 139 |
-
model = torch.jit.load(checkpoint_path, map_location='cpu')
|
| 140 |
-
return model
|
| 141 |
-
|
| 142 |
-
def load_model(path):
|
| 143 |
-
print("Loading scripted model from:", path)
|
| 144 |
-
model = _load(path) # returns the TorchScript Module
|
| 145 |
-
model = model.to(device) # move to CPU or GPU
|
| 146 |
-
return model.eval() # set to eval() mode
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
# New function to be called from Flask app
|
| 150 |
-
def run_inference(
|
| 151 |
-
checkpoint_path: str,
|
| 152 |
-
face_path: str,
|
| 153 |
-
audio_path: str,
|
| 154 |
-
output_filename: str,
|
| 155 |
-
static: bool = False,
|
| 156 |
-
fps: float = 25.,
|
| 157 |
-
pads: list = [0, 10, 0, 0],
|
| 158 |
-
face_det_batch_size: int = 16,
|
| 159 |
-
wav2lip_batch_size: int = 128,
|
| 160 |
-
resize_factor: int = 1,
|
| 161 |
-
crop: list = [0, -1, 0, -1],
|
| 162 |
-
box: list = [-1, -1, -1, -1],
|
| 163 |
-
rotate: bool = False,
|
| 164 |
-
nosmooth: bool = False,
|
| 165 |
-
img_size: int = 96 # Fixed for Wav2Lip
|
| 166 |
-
) -> str:
|
| 167 |
-
"""
|
| 168 |
-
Runs the Wav2Lip inference process.
|
| 169 |
-
|
| 170 |
-
Args:
|
| 171 |
-
checkpoint_path (str): Path to the Wav2Lip model checkpoint.
|
| 172 |
-
face_path (str): Path to the input video/image file with a face.
|
| 173 |
-
audio_path (str): Path to the input audio file.
|
| 174 |
-
output_filename (str): Name of the output video file (e.g., 'result.mp4').
|
| 175 |
-
static (bool): If True, use only the first video frame for inference.
|
| 176 |
-
fps (float): Frames per second for static image input.
|
| 177 |
-
pads (list): Padding for face detection (top, bottom, left, right).
|
| 178 |
-
face_det_batch_size (int): Batch size for face detection.
|
| 179 |
-
wav2lip_batch_size (int): Batch size for Wav2Lip model(s).
|
| 180 |
-
resize_factor (int): Reduce the resolution by this factor.
|
| 181 |
-
crop (list): Crop video to a smaller region (top, bottom, left, right).
|
| 182 |
-
box (list): Constant bounding box for the face.
|
| 183 |
-
rotate (bool): Rotate video right by 90deg.
|
| 184 |
-
nosmooth (bool): Prevent smoothing face detections.
|
| 185 |
-
img_size (int): Image size for the model.
|
| 186 |
-
|
| 187 |
-
Returns:
|
| 188 |
-
str: The path to the generated output video file.
|
| 189 |
-
"""
|
| 190 |
-
print(f"Starting inference with: face='{face_path}', audio='{audio_path}', checkpoint='{checkpoint_path}', outfile='{output_filename}'")
|
| 191 |
-
|
| 192 |
-
# Create necessary directories
|
| 193 |
-
output_dir = 'results'
|
| 194 |
-
temp_dir = 'temp'
|
| 195 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 196 |
-
os.makedirs(temp_dir, exist_ok=True)
|
| 197 |
-
|
| 198 |
-
# Clear temp directory for fresh run
|
| 199 |
-
for item in os.listdir(temp_dir):
|
| 200 |
-
item_path = os.path.join(temp_dir, item)
|
| 201 |
-
if os.path.isfile(item_path):
|
| 202 |
-
os.remove(item_path)
|
| 203 |
-
elif os.path.isdir(item_path):
|
| 204 |
-
shutil.rmtree(item_path)
|
| 205 |
-
|
| 206 |
-
# Determine if input is static based on file extension
|
| 207 |
-
is_static_input = static or (os.path.isfile(face_path) and face_path.split('.')[-1].lower() in ['jpg', 'png', 'jpeg'])
|
| 208 |
-
|
| 209 |
-
full_frames = []
|
| 210 |
-
if is_static_input:
|
| 211 |
-
full_frames = [cv2.imread(face_path)]
|
| 212 |
-
if full_frames[0] is None:
|
| 213 |
-
raise ValueError(f"Could not read face image at: {face_path}")
|
| 214 |
-
else:
|
| 215 |
-
video_stream = cv2.VideoCapture(face_path)
|
| 216 |
-
if not video_stream.isOpened():
|
| 217 |
-
raise ValueError(f"Could not open video file at: {face_path}")
|
| 218 |
-
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
| 219 |
-
|
| 220 |
-
print('Reading video frames...')
|
| 221 |
-
while 1:
|
| 222 |
-
still_reading, frame = video_stream.read()
|
| 223 |
-
if not still_reading:
|
| 224 |
-
video_stream.release()
|
| 225 |
-
break
|
| 226 |
-
if resize_factor > 1:
|
| 227 |
-
frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))
|
| 228 |
-
|
| 229 |
-
if rotate:
|
| 230 |
-
frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)
|
| 231 |
-
|
| 232 |
-
y1, y2, x1, x2 = crop
|
| 233 |
-
if x2 == -1: x2 = frame.shape[1]
|
| 234 |
-
if y2 == -1: y2 = frame.shape[0]
|
| 235 |
-
|
| 236 |
-
frame = frame[y1:y2, x1:x2]
|
| 237 |
-
full_frames.append(frame)
|
| 238 |
-
|
| 239 |
-
print ("Number of frames available for inference: "+str(len(full_frames)))
|
| 240 |
-
if not full_frames:
|
| 241 |
-
raise ValueError("No frames could be read from the input face file.")
|
| 242 |
-
|
| 243 |
-
temp_audio_path = os.path.join(temp_dir, 'temp_audio.wav')
|
| 244 |
-
if not audio_path.endswith('.wav'):
|
| 245 |
-
print('Extracting raw audio...')
|
| 246 |
-
command = f'ffmpeg -y -i "{audio_path}" -strict -2 "{temp_audio_path}"'
|
| 247 |
-
try:
|
| 248 |
-
subprocess.run(command, shell=True, check=True, capture_output=True)
|
| 249 |
-
audio_path = temp_audio_path
|
| 250 |
-
except subprocess.CalledProcessError as e:
|
| 251 |
-
print(f"FFmpeg error: {e.stderr.decode()}")
|
| 252 |
-
raise RuntimeError(f"Failed to extract audio from {audio_path}. Error: {e.stderr.decode()}")
|
| 253 |
-
else:
|
| 254 |
-
# Copy the wav file to temp if it's already wav to maintain consistency in naming
|
| 255 |
-
shutil.copy(audio_path, temp_audio_path)
|
| 256 |
-
audio_path = temp_audio_path
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
wav = audio.load_wav(audio_path, 16000)
|
| 260 |
-
mel = audio.melspectrogram(wav)
|
| 261 |
-
print("Mel spectrogram shape:", mel.shape)
|
| 262 |
-
|
| 263 |
-
if np.isnan(mel.reshape(-1)).sum() > 0:
|
| 264 |
-
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
| 265 |
-
|
| 266 |
-
mel_chunks = []
|
| 267 |
-
mel_idx_multiplier = 80./fps
|
| 268 |
-
i = 0
|
| 269 |
-
while 1:
|
| 270 |
-
start_idx = int(i * mel_idx_multiplier)
|
| 271 |
-
if start_idx + mel_step_size > len(mel[0]):
|
| 272 |
-
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
| 273 |
-
break
|
| 274 |
-
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
|
| 275 |
-
i += 1
|
| 276 |
-
|
| 277 |
-
print("Length of mel chunks: {}".format(len(mel_chunks)))
|
| 278 |
-
|
| 279 |
-
# Ensure full_frames matches mel_chunks length, or loop if static
|
| 280 |
-
if not is_static_input:
|
| 281 |
-
full_frames = full_frames[:len(mel_chunks)]
|
| 282 |
-
else:
|
| 283 |
-
# If static, replicate the first frame for the duration of the audio
|
| 284 |
-
full_frames = [full_frames[0]] * len(mel_chunks)
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
gen = datagen(full_frames.copy(), mel_chunks, box, is_static_input, wav2lip_batch_size, img_size, pads, face_det_batch_size, nosmooth)
|
| 288 |
-
|
| 289 |
-
output_avi_path = os.path.join(temp_dir, 'result.avi')
|
| 290 |
-
|
| 291 |
-
model_loaded = False
|
| 292 |
-
model = None
|
| 293 |
-
frame_h, frame_w = 0, 0
|
| 294 |
-
out = None
|
| 295 |
-
|
| 296 |
-
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, desc="Wav2Lip Inference",
|
| 297 |
-
total=int(np.ceil(float(len(mel_chunks))/wav2lip_batch_size)))):
|
| 298 |
-
if not model_loaded:
|
| 299 |
-
model = load_model(checkpoint_path)
|
| 300 |
-
model_loaded = True
|
| 301 |
-
print ("Model loaded successfully")
|
| 302 |
-
|
| 303 |
-
frame_h, frame_w = full_frames[0].shape[:-1]
|
| 304 |
-
out = cv2.VideoWriter(output_avi_path,
|
| 305 |
-
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
|
| 306 |
-
if out is None: # In case no frames were generated for some reason
|
| 307 |
-
raise RuntimeError("Video writer could not be initialized.")
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
| 311 |
-
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
| 312 |
-
|
| 313 |
-
with torch.no_grad():
|
| 314 |
-
pred = model(mel_batch, img_batch)
|
| 315 |
-
|
| 316 |
-
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
| 317 |
-
|
| 318 |
-
for p, f, c in zip(pred, frames, coords):
|
| 319 |
-
y1, y2, x1, x2 = c
|
| 320 |
-
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
| 321 |
-
|
| 322 |
-
f[y1:y2, x1:x2] = p
|
| 323 |
-
out.write(f)
|
| 324 |
-
|
| 325 |
-
if out:
|
| 326 |
-
out.release()
|
| 327 |
-
else:
|
| 328 |
-
print("Warning: Video writer was not initialized or no frames were processed.")
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
final_output_path = os.path.join(output_dir, output_filename)
|
| 332 |
-
command = f'ffmpeg -y -i "{audio_path}" -i "{output_avi_path}" -strict -2 -q:v 1 "{final_output_path}"'
|
| 333 |
-
|
| 334 |
-
try:
|
| 335 |
-
subprocess.run(command, shell=True, check=True, capture_output=True)
|
| 336 |
-
print(f"Output saved to: {final_output_path}")
|
| 337 |
-
except subprocess.CalledProcessError as e:
|
| 338 |
-
print(f"FFmpeg final merge error: {e.stderr.decode()}")
|
| 339 |
-
raise RuntimeError(f"Failed to merge audio and video. Error: {e.stderr.decode()}")
|
| 340 |
-
|
| 341 |
-
# Clean up temporary files (optional, but good practice)
|
| 342 |
-
# shutil.rmtree(temp_dir) # Be careful with this if you want to inspect temp files
|
| 343 |
-
|
| 344 |
-
return final_output_path
|
| 345 |
-
|
| 346 |
# No `if __name__ == '__main__':` block here, as it's meant to be imported
|
|
|
|
| 1 |
+
# inference.py (Updated)
|
| 2 |
+
import audio
|
| 3 |
+
from os import listdir, path
|
| 4 |
+
import numpy as np
|
| 5 |
+
import scipy, cv2, os, sys, argparse, audio
|
| 6 |
+
import json, subprocess, random, string
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from glob import glob
|
| 9 |
+
import torch # Ensure torch is imported
|
| 10 |
+
try:
|
| 11 |
+
import face_detection # Assuming this is installed or in a path accessible by your Flask app
|
| 12 |
+
except ImportError:
|
| 13 |
+
print("face_detection not found. Please ensure it's installed or available in your PYTHONPATH.")
|
| 14 |
+
# You might want to raise an error or handle this gracefully if face_detection is truly optional.
|
| 15 |
+
|
| 16 |
+
# Make sure you have a models/Wav2Lip.py or similar structure
|
| 17 |
+
try:
|
| 18 |
+
from models import Wav2Lip
|
| 19 |
+
except ImportError:
|
| 20 |
+
print("Wav2Lip model not found. Please ensure models/Wav2Lip.py exists and is correctly configured.")
|
| 21 |
+
# You might want to raise an error or handle this gracefully.
|
| 22 |
+
|
| 23 |
+
import platform
|
| 24 |
+
import shutil # For clearing temp directory
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# These globals are still useful for shared configuration
|
| 28 |
+
mel_step_size = 16
|
| 29 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 30 |
+
print('Inference script using {} for inference.'.format(device))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_smoothened_boxes(boxes, T):
|
| 34 |
+
for i in range(len(boxes)):
|
| 35 |
+
if i + T > len(boxes):
|
| 36 |
+
window = boxes[len(boxes) - T:]
|
| 37 |
+
else:
|
| 38 |
+
window = boxes[i : i + T]
|
| 39 |
+
boxes[i] = np.mean(window, axis=0)
|
| 40 |
+
return boxes
|
| 41 |
+
|
| 42 |
+
def face_detect(images, pads, face_det_batch_size, nosmooth, img_size):
|
| 43 |
+
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
| 44 |
+
flip_input=False, device=device)
|
| 45 |
+
|
| 46 |
+
batch_size = face_det_batch_size
|
| 47 |
+
|
| 48 |
+
while 1:
|
| 49 |
+
predictions = []
|
| 50 |
+
try:
|
| 51 |
+
for i in tqdm(range(0, len(images), batch_size), desc="Face Detection"):
|
| 52 |
+
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
| 53 |
+
except RuntimeError as e:
|
| 54 |
+
if batch_size == 1:
|
| 55 |
+
raise RuntimeError(f'Image too big to run face detection on GPU. Error: {e}')
|
| 56 |
+
batch_size //= 2
|
| 57 |
+
print('Recovering from OOM error; New face detection batch size: {}'.format(batch_size))
|
| 58 |
+
continue
|
| 59 |
+
break
|
| 60 |
+
|
| 61 |
+
results = []
|
| 62 |
+
pady1, pady2, padx1, padx2 = pads
|
| 63 |
+
for rect, image in zip(predictions, images):
|
| 64 |
+
if rect is None:
|
| 65 |
+
# Save the faulty frame for debugging
|
| 66 |
+
output_dir = 'temp' # Ensure this exists or create it
|
| 67 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 68 |
+
cv2.imwrite(os.path.join(output_dir, 'faulty_frame.jpg'), image)
|
| 69 |
+
raise ValueError('Face not detected! Ensure the video/image contains a face in all the frames or try adjusting pads/box.')
|
| 70 |
+
|
| 71 |
+
y1 = max(0, rect[1] - pady1)
|
| 72 |
+
y2 = min(image.shape[0], rect[3] + pady2)
|
| 73 |
+
x1 = max(0, rect[0] - padx1)
|
| 74 |
+
x2 = min(image.shape[1], rect[2] + padx2)
|
| 75 |
+
|
| 76 |
+
results.append([x1, y1, x2, y2])
|
| 77 |
+
|
| 78 |
+
boxes = np.array(results)
|
| 79 |
+
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
|
| 80 |
+
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
| 81 |
+
|
| 82 |
+
del detector # Clean up detector
|
| 83 |
+
return results
|
| 84 |
+
|
| 85 |
+
def datagen(frames, mels, box, static, wav2lip_batch_size, img_size, pads, face_det_batch_size, nosmooth):
|
| 86 |
+
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
| 87 |
+
|
| 88 |
+
if box[0] == -1:
|
| 89 |
+
if not static:
|
| 90 |
+
face_det_results = face_detect(frames, pads, face_det_batch_size, nosmooth, img_size) # BGR2RGB for CNN face detection
|
| 91 |
+
else:
|
| 92 |
+
face_det_results = face_detect([frames[0]], pads, face_det_batch_size, nosmooth, img_size)
|
| 93 |
+
else:
|
| 94 |
+
print('Using the specified bounding box instead of face detection...')
|
| 95 |
+
y1, y2, x1, x2 = box
|
| 96 |
+
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
|
| 97 |
+
|
| 98 |
+
for i, m in enumerate(mels):
|
| 99 |
+
idx = 0 if static else i % len(frames)
|
| 100 |
+
frame_to_save = frames[idx].copy()
|
| 101 |
+
face, coords = face_det_results[idx].copy()
|
| 102 |
+
|
| 103 |
+
face = cv2.resize(face, (img_size, img_size))
|
| 104 |
+
|
| 105 |
+
img_batch.append(face)
|
| 106 |
+
mel_batch.append(m)
|
| 107 |
+
frame_batch.append(frame_to_save)
|
| 108 |
+
coords_batch.append(coords)
|
| 109 |
+
|
| 110 |
+
if len(img_batch) >= wav2lip_batch_size:
|
| 111 |
+
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
| 112 |
+
|
| 113 |
+
img_masked = img_batch.copy()
|
| 114 |
+
img_masked[:, img_size//2:] = 0
|
| 115 |
+
|
| 116 |
+
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
| 117 |
+
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
| 118 |
+
|
| 119 |
+
yield img_batch, mel_batch, frame_batch, coords_batch
|
| 120 |
+
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
| 121 |
+
|
| 122 |
+
if len(img_batch) > 0:
|
| 123 |
+
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
| 124 |
+
|
| 125 |
+
img_masked = img_batch.copy()
|
| 126 |
+
img_masked[:, img_size//2:] = 0
|
| 127 |
+
|
| 128 |
+
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
| 129 |
+
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
| 130 |
+
|
| 131 |
+
yield img_batch, mel_batch, frame_batch, coords_batch
|
| 132 |
+
|
| 133 |
+
def _load(checkpoint_path):
|
| 134 |
+
# Use torch.jit.load for TorchScript archives
|
| 135 |
+
if device == 'cuda':
|
| 136 |
+
model = torch.jit.load(checkpoint_path)
|
| 137 |
+
else:
|
| 138 |
+
# Accepts string or torch.device, not a lambda
|
| 139 |
+
model = torch.jit.load(checkpoint_path, map_location='cpu')
|
| 140 |
+
return model
|
| 141 |
+
|
| 142 |
+
def load_model(path):
|
| 143 |
+
print("Loading scripted model from:", path)
|
| 144 |
+
model = _load(path) # returns the TorchScript Module
|
| 145 |
+
model = model.to(device) # move to CPU or GPU
|
| 146 |
+
return model.eval() # set to eval() mode
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# New function to be called from Flask app
|
| 150 |
+
def run_inference(
|
| 151 |
+
checkpoint_path: str,
|
| 152 |
+
face_path: str,
|
| 153 |
+
audio_path: str,
|
| 154 |
+
output_filename: str,
|
| 155 |
+
static: bool = False,
|
| 156 |
+
fps: float = 25.,
|
| 157 |
+
pads: list = [0, 10, 0, 0],
|
| 158 |
+
face_det_batch_size: int = 16,
|
| 159 |
+
wav2lip_batch_size: int = 128,
|
| 160 |
+
resize_factor: int = 1,
|
| 161 |
+
crop: list = [0, -1, 0, -1],
|
| 162 |
+
box: list = [-1, -1, -1, -1],
|
| 163 |
+
rotate: bool = False,
|
| 164 |
+
nosmooth: bool = False,
|
| 165 |
+
img_size: int = 96 # Fixed for Wav2Lip
|
| 166 |
+
) -> str:
|
| 167 |
+
"""
|
| 168 |
+
Runs the Wav2Lip inference process.
|
| 169 |
+
|
| 170 |
+
Args:
|
| 171 |
+
checkpoint_path (str): Path to the Wav2Lip model checkpoint.
|
| 172 |
+
face_path (str): Path to the input video/image file with a face.
|
| 173 |
+
audio_path (str): Path to the input audio file.
|
| 174 |
+
output_filename (str): Name of the output video file (e.g., 'result.mp4').
|
| 175 |
+
static (bool): If True, use only the first video frame for inference.
|
| 176 |
+
fps (float): Frames per second for static image input.
|
| 177 |
+
pads (list): Padding for face detection (top, bottom, left, right).
|
| 178 |
+
face_det_batch_size (int): Batch size for face detection.
|
| 179 |
+
wav2lip_batch_size (int): Batch size for Wav2Lip model(s).
|
| 180 |
+
resize_factor (int): Reduce the resolution by this factor.
|
| 181 |
+
crop (list): Crop video to a smaller region (top, bottom, left, right).
|
| 182 |
+
box (list): Constant bounding box for the face.
|
| 183 |
+
rotate (bool): Rotate video right by 90deg.
|
| 184 |
+
nosmooth (bool): Prevent smoothing face detections.
|
| 185 |
+
img_size (int): Image size for the model.
|
| 186 |
+
|
| 187 |
+
Returns:
|
| 188 |
+
str: The path to the generated output video file.
|
| 189 |
+
"""
|
| 190 |
+
print(f"Starting inference with: face='{face_path}', audio='{audio_path}', checkpoint='{checkpoint_path}', outfile='{output_filename}'")
|
| 191 |
+
|
| 192 |
+
# Create necessary directories
|
| 193 |
+
output_dir = 'results'
|
| 194 |
+
temp_dir = 'temp'
|
| 195 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 196 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 197 |
+
|
| 198 |
+
# Clear temp directory for fresh run
|
| 199 |
+
for item in os.listdir(temp_dir):
|
| 200 |
+
item_path = os.path.join(temp_dir, item)
|
| 201 |
+
if os.path.isfile(item_path):
|
| 202 |
+
os.remove(item_path)
|
| 203 |
+
elif os.path.isdir(item_path):
|
| 204 |
+
shutil.rmtree(item_path)
|
| 205 |
+
|
| 206 |
+
# Determine if input is static based on file extension
|
| 207 |
+
is_static_input = static or (os.path.isfile(face_path) and face_path.split('.')[-1].lower() in ['jpg', 'png', 'jpeg'])
|
| 208 |
+
|
| 209 |
+
full_frames = []
|
| 210 |
+
if is_static_input:
|
| 211 |
+
full_frames = [cv2.imread(face_path)]
|
| 212 |
+
if full_frames[0] is None:
|
| 213 |
+
raise ValueError(f"Could not read face image at: {face_path}")
|
| 214 |
+
else:
|
| 215 |
+
video_stream = cv2.VideoCapture(face_path)
|
| 216 |
+
if not video_stream.isOpened():
|
| 217 |
+
raise ValueError(f"Could not open video file at: {face_path}")
|
| 218 |
+
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
| 219 |
+
|
| 220 |
+
print('Reading video frames...')
|
| 221 |
+
while 1:
|
| 222 |
+
still_reading, frame = video_stream.read()
|
| 223 |
+
if not still_reading:
|
| 224 |
+
video_stream.release()
|
| 225 |
+
break
|
| 226 |
+
if resize_factor > 1:
|
| 227 |
+
frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))
|
| 228 |
+
|
| 229 |
+
if rotate:
|
| 230 |
+
frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)
|
| 231 |
+
|
| 232 |
+
y1, y2, x1, x2 = crop
|
| 233 |
+
if x2 == -1: x2 = frame.shape[1]
|
| 234 |
+
if y2 == -1: y2 = frame.shape[0]
|
| 235 |
+
|
| 236 |
+
frame = frame[y1:y2, x1:x2]
|
| 237 |
+
full_frames.append(frame)
|
| 238 |
+
|
| 239 |
+
print ("Number of frames available for inference: "+str(len(full_frames)))
|
| 240 |
+
if not full_frames:
|
| 241 |
+
raise ValueError("No frames could be read from the input face file.")
|
| 242 |
+
|
| 243 |
+
temp_audio_path = os.path.join(temp_dir, 'temp_audio.wav')
|
| 244 |
+
if not audio_path.endswith('.wav'):
|
| 245 |
+
print('Extracting raw audio...')
|
| 246 |
+
command = f'ffmpeg -y -i "{audio_path}" -strict -2 "{temp_audio_path}"'
|
| 247 |
+
try:
|
| 248 |
+
subprocess.run(command, shell=True, check=True, capture_output=True)
|
| 249 |
+
audio_path = temp_audio_path
|
| 250 |
+
except subprocess.CalledProcessError as e:
|
| 251 |
+
print(f"FFmpeg error: {e.stderr.decode()}")
|
| 252 |
+
raise RuntimeError(f"Failed to extract audio from {audio_path}. Error: {e.stderr.decode()}")
|
| 253 |
+
else:
|
| 254 |
+
# Copy the wav file to temp if it's already wav to maintain consistency in naming
|
| 255 |
+
shutil.copy(audio_path, temp_audio_path)
|
| 256 |
+
audio_path = temp_audio_path
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
wav = audio.load_wav(audio_path, 16000)
|
| 260 |
+
mel = audio.melspectrogram(wav)
|
| 261 |
+
print("Mel spectrogram shape:", mel.shape)
|
| 262 |
+
|
| 263 |
+
if np.isnan(mel.reshape(-1)).sum() > 0:
|
| 264 |
+
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
| 265 |
+
|
| 266 |
+
mel_chunks = []
|
| 267 |
+
mel_idx_multiplier = 80./fps
|
| 268 |
+
i = 0
|
| 269 |
+
while 1:
|
| 270 |
+
start_idx = int(i * mel_idx_multiplier)
|
| 271 |
+
if start_idx + mel_step_size > len(mel[0]):
|
| 272 |
+
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
| 273 |
+
break
|
| 274 |
+
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
|
| 275 |
+
i += 1
|
| 276 |
+
|
| 277 |
+
print("Length of mel chunks: {}".format(len(mel_chunks)))
|
| 278 |
+
|
| 279 |
+
# Ensure full_frames matches mel_chunks length, or loop if static
|
| 280 |
+
if not is_static_input:
|
| 281 |
+
full_frames = full_frames[:len(mel_chunks)]
|
| 282 |
+
else:
|
| 283 |
+
# If static, replicate the first frame for the duration of the audio
|
| 284 |
+
full_frames = [full_frames[0]] * len(mel_chunks)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
gen = datagen(full_frames.copy(), mel_chunks, box, is_static_input, wav2lip_batch_size, img_size, pads, face_det_batch_size, nosmooth)
|
| 288 |
+
|
| 289 |
+
output_avi_path = os.path.join(temp_dir, 'result.avi')
|
| 290 |
+
|
| 291 |
+
model_loaded = False
|
| 292 |
+
model = None
|
| 293 |
+
frame_h, frame_w = 0, 0
|
| 294 |
+
out = None
|
| 295 |
+
|
| 296 |
+
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, desc="Wav2Lip Inference",
|
| 297 |
+
total=int(np.ceil(float(len(mel_chunks))/wav2lip_batch_size)))):
|
| 298 |
+
if not model_loaded:
|
| 299 |
+
model = load_model(checkpoint_path)
|
| 300 |
+
model_loaded = True
|
| 301 |
+
print ("Model loaded successfully")
|
| 302 |
+
|
| 303 |
+
frame_h, frame_w = full_frames[0].shape[:-1]
|
| 304 |
+
out = cv2.VideoWriter(output_avi_path,
|
| 305 |
+
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
|
| 306 |
+
if out is None: # In case no frames were generated for some reason
|
| 307 |
+
raise RuntimeError("Video writer could not be initialized.")
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
| 311 |
+
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
| 312 |
+
|
| 313 |
+
with torch.no_grad():
|
| 314 |
+
pred = model(mel_batch, img_batch)
|
| 315 |
+
|
| 316 |
+
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
| 317 |
+
|
| 318 |
+
for p, f, c in zip(pred, frames, coords):
|
| 319 |
+
y1, y2, x1, x2 = c
|
| 320 |
+
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
| 321 |
+
|
| 322 |
+
f[y1:y2, x1:x2] = p
|
| 323 |
+
out.write(f)
|
| 324 |
+
|
| 325 |
+
if out:
|
| 326 |
+
out.release()
|
| 327 |
+
else:
|
| 328 |
+
print("Warning: Video writer was not initialized or no frames were processed.")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
final_output_path = os.path.join(output_dir, output_filename)
|
| 332 |
+
command = f'ffmpeg -y -i "{audio_path}" -i "{output_avi_path}" -strict -2 -q:v 1 "{final_output_path}"'
|
| 333 |
+
|
| 334 |
+
try:
|
| 335 |
+
subprocess.run(command, shell=True, check=True, capture_output=True)
|
| 336 |
+
print(f"Output saved to: {final_output_path}")
|
| 337 |
+
except subprocess.CalledProcessError as e:
|
| 338 |
+
print(f"FFmpeg final merge error: {e.stderr.decode()}")
|
| 339 |
+
raise RuntimeError(f"Failed to merge audio and video. Error: {e.stderr.decode()}")
|
| 340 |
+
|
| 341 |
+
# Clean up temporary files (optional, but good practice)
|
| 342 |
+
# shutil.rmtree(temp_dir) # Be careful with this if you want to inspect temp files
|
| 343 |
+
|
| 344 |
+
return final_output_path
|
| 345 |
+
|
| 346 |
# No `if __name__ == '__main__':` block here, as it's meant to be imported
|