import os from typing import Any, Literal from pandas import DataFrame try: from trackio.media.media import TrackioMedia from trackio.utils import MEDIA_DIR except ImportError: from media.media import TrackioMedia from utils import MEDIA_DIR class Table: """ Initializes a Table object. Tables can be used to log tabular data including images, numbers, and text. Args: columns (`list[str]`, *optional*): Names of the columns in the table. Optional if `data` is provided. Not expected if `dataframe` is provided. Currently ignored. data (`list[list[Any]]`, *optional*): 2D row-oriented array of values. Each value can be: a number, a string (treated as Markdown and truncated if too long), or a `Trackio.Image` or list of `Trackio.Image` objects. dataframe (`pandas.`DataFrame``, *optional*): DataFrame object used to create the table. When set, `data` and `columns` arguments are ignored. rows (`list[list[any]]`, *optional*): Currently ignored. optional (`bool` or `list[bool]`, *optional*, defaults to `True`): Currently ignored. allow_mixed_types (`bool`, *optional*, defaults to `False`): Currently ignored. log_mode: (`Literal["IMMUTABLE", "MUTABLE", "INCREMENTAL"]` or `None`, *optional*, defaults to `"IMMUTABLE"`): Currently ignored. """ TYPE = "trackio.table" def __init__( self, columns: list[str] | None = None, data: list[list[Any]] | None = None, dataframe: DataFrame | None = None, rows: list[list[Any]] | None = None, optional: bool | list[bool] = True, allow_mixed_types: bool = False, log_mode: Literal["IMMUTABLE", "MUTABLE", "INCREMENTAL"] | None = "IMMUTABLE", ): # TODO: implement support for columns, dtype, optional, allow_mixed_types, and log_mode. # for now (like `rows`) they are included for API compat but don't do anything. if dataframe is None: self.data = DataFrame(data) if data is not None else DataFrame() else: self.data = dataframe def _has_media_objects(self, dataframe: DataFrame) -> bool: """Check if dataframe contains any TrackioMedia objects or lists of TrackioMedia objects.""" for col in dataframe.columns: if dataframe[col].apply(lambda x: isinstance(x, TrackioMedia)).any(): return True if ( dataframe[col] .apply( lambda x: isinstance(x, list) and len(x) > 0 and isinstance(x[0], TrackioMedia) ) .any() ): return True return False def _process_data(self, project: str, run: str, step: int = 0): """Convert dataframe to dict format, processing any TrackioMedia objects if present.""" df = self.data if not self._has_media_objects(df): return df.to_dict(orient="records") processed_df = df.copy() for col in processed_df.columns: for idx in processed_df.index: value = processed_df.at[idx, col] if isinstance(value, TrackioMedia): value._save(project, run, step) processed_df.at[idx, col] = value._to_dict() if ( isinstance(value, list) and len(value) > 0 and isinstance(value[0], TrackioMedia) ): [v._save(project, run, step) for v in value] processed_df.at[idx, col] = [v._to_dict() for v in value] return processed_df.to_dict(orient="records") @staticmethod def to_display_format(table_data: list[dict]) -> list[dict]: """Convert stored table data to display format for UI rendering. Note that this does not use the self.data attribute, but instead uses the table_data parameter, which is is what the UI receives. Args: table_data: List of dictionaries representing table rows (from stored _value) Returns: Table data with images converted to markdown syntax and long text truncated. """ truncate_length = int(os.getenv("TRACKIO_TABLE_TRUNCATE_LENGTH", "250")) def convert_image_to_markdown(image_data: dict) -> str: relative_path = image_data.get("file_path", "") caption = image_data.get("caption", "") absolute_path = MEDIA_DIR / relative_path return f'{caption}' processed_data = [] for row in table_data: processed_row = {} for key, value in row.items(): if isinstance(value, dict) and value.get("_type") == "trackio.image": processed_row[key] = convert_image_to_markdown(value) elif ( isinstance(value, list) and len(value) > 0 and isinstance(value[0], dict) and value[0].get("_type") == "trackio.image" ): # This assumes that if the first item is an image, all items are images. Ok for now since we don't support mixed types in a single cell. processed_row[key] = ( '
' + "".join([convert_image_to_markdown(item) for item in value]) + "
" ) elif isinstance(value, str) and len(value) > truncate_length: truncated = value[:truncate_length] full_text = value.replace("<", "<").replace(">", ">") processed_row[key] = ( f'
' f'{truncated}…(truncated, click to expand)' f'
' f'
{full_text}
' f"
" f"
" ) else: processed_row[key] = value processed_data.append(processed_row) return processed_data def _to_dict(self, project: str, run: str, step: int = 0): """Convert table to dictionary representation. Args: project: Project name for saving media files run: Run name for saving media files step: Step number for saving media files """ data = self._process_data(project, run, step) return { "_type": self.TYPE, "_value": data, }