import pandas as pd from fastapi import FastAPI, UploadFile, File, Form, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from typing import List, Dict, Any, Optional import os import fitz # PyMuPDF import torch import spacy import re from bs4 import BeautifulSoup import emoji import subprocess import json import sys import pathlib import uuid # --- Text Cleaning Functions --- def old_refined_text_cleaning(text: str) -> str: """The OLD cleaning function used for the annotation phase. Removes #, +, / etc.""" if not isinstance(text, str): return "" text = BeautifulSoup(text, "html.parser").get_text() url_pattern = r'(?:(?:https?|ftp)://)?(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)(?:\.(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)*(?:\.(?:[a-z\u00a1-\uffff]{2,})))(?::\d{2,5})?(?:/\S*)?' text = re.sub(url_pattern, '', text) text = re.sub(r'\S+@\S+\s?', '', text) text = emoji.demojize(text) text = re.sub(r':[a-zA-Z_]+:', '', text) text = text.replace('\\', ' ') text = re.sub(r'[#*•]', ' ', text) text = re.sub(r'\{.*?\}', ' ', text) text = re.sub(r'[^a-zA-Z0-9\s.,!?-]', ' ', text) text = re.sub(r'\s+', ' ', text) text = re.sub(r'\s([,.!?-])', r'\1', text) text = text.strip() text = text.lower() return text def new_refined_text_cleaning(text: str) -> str: """The NEW, improved cleaning function. Keeps technical symbols.""" if not isinstance(text, str): return "" text = BeautifulSoup(text, "html.parser").get_text() url_pattern = r'(?:(?:https?|ftp)://)?(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)(?:\.(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)*(?:\.(?:[a-z\u00a1-\uffff]{2,})))(?::\d{2,5})?(?:/\S*)?' text = re.sub(url_pattern, '', text) text = re.sub(r'\S+@\S+\s?', '', text) text = emoji.demojize(text) text = re.sub(r':[a-zA-Z_]+:', '', text) text = text.replace('\\', ' ') text = re.sub(r'[*•]', ' ', text) # Keep '#' from old regex r'[#*•]' to preserve C# text = re.sub(r'\{.*?\}', ' ', text) # Keep '#', '+', '/', '()', and '_' to preserve technical terms. text = re.sub(r'[^a-zA-Z0-9_#+()/\s.,!?-]', ' ', text) text = re.sub(r'\s+', ' ', text) text = re.sub(r'\s([,.!?-])', r'\1', text) text = text.strip() text = text.lower() return text # --- Pydantic Models for API Response Structure --- class SkillCount(BaseModel): skill: str count: int class ToolCount(BaseModel): tool: str count: int class RoleSkill(BaseModel): cmo_role_match: str skill: str count: int class RoleTool(BaseModel): cmo_role_match: str tool: str count: int class ExperienceDistribution(BaseModel): year: int count: int class SkillCooccurrence(BaseModel): skill_A: str skill_B: str count: int class ToolCooccurrence(BaseModel): tool_A: str tool_B: str count: int class JobRoleDistribution(BaseModel): cmo_role_match: str count: int class RoleInsightsResponse(BaseModel): top_skills: List[RoleSkill] total_skills: int top_tools: List[RoleTool] total_tools: int average_experience: Optional[float] = None experience_distribution: List[ExperienceDistribution] total_experience_distribution: int skill_co_occurrence: List[SkillCooccurrence] total_skill_co_occurrence: int tool_co_occurrence: List[ToolCooccurrence] total_tool_co_occurrence: int class MarketInsightsResponse(BaseModel): top_overall_skills: List[SkillCount] total_overall_skills: int top_overall_tools: List[ToolCount] total_overall_tools: int experience_distribution: List[ExperienceDistribution] total_experience_distribution: int skill_co_occurrence: List[SkillCooccurrence] total_skill_co_occurrence: int tool_co_occurrence: List[ToolCooccurrence] total_tool_co_occurrence: int average_experience: Optional[float] = None class SimilarJob(BaseModel): job_title: str similarity_score: float cmo_role_match: str url: Optional[str] = None class SkillDetail(BaseModel): name: str count: int class GapAnalysis(BaseModel): user_skills: List[SkillDetail] user_tools: List[SkillDetail] missing_skills: List[SkillDetail] matching_skills: List[SkillDetail] missing_tools: List[SkillDetail] matching_tools: List[SkillDetail] total_user_skills: int total_user_tools: int total_missing_skills: int total_matching_skills: int total_missing_tools: int total_matching_tools: int class AnalysisResult(BaseModel): similar_jobs: List[SimilarJob] total_similar_jobs: int gap_analysis: GapAnalysis recommendations: Dict[str, Any] session_id: str # --- App instantiation --- app = FastAPI( title="Skill Gap Analyzer API", description="API for market insights and resume analysis.", version="1.3.0", # Version bump ) # --- CORS Middleware --- origins = [ "http://localhost:5173", "http://127.0.0.1:5173", "http://localhost:5174", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # --- In-memory storage for models and data --- DB = {} @app.on_event("startup") async def startup_event(): DB['similarity_cache'] = {} """Load models and data into memory on application startup.""" print("INFO: Loading models and data...") backend_dir = os.path.dirname(os.path.abspath(__file__)) model_path = os.path.join(backend_dir, "ner_model") # --- Load Pre-computed Insights --- insights_path = os.path.join(backend_dir, 'market_insights.json') with open(insights_path, 'r') as f: DB['insights'] = json.load(f) print("INFO: Market insights loaded successfully.") # --- Load other necessary data --- # This is still needed for the similarity worker and gap analysis source DB['market_data'] = pd.read_csv(os.path.join(backend_dir, 'final_prototype_postings.csv')) # --- Load Models --- print(f"INFO: Loading NER model from {model_path}...") DB['ner_model'] = spacy.load(model_path) print("INFO: NER model loaded successfully.") print("INFO: Models and data loaded successfully.") @app.get("/", tags=["General"]) async def read_root(): return {"message": "Welcome to the Skill Gap Analyzer API v1.3"} @app.get("/roles", response_model=List[str], tags=["Market Insights"]) async def get_roles(): roles = sorted(DB['insights']['by_role'].keys()) return ["Overall Market"] + roles @app.get("/job_roles_distribution", response_model=List[JobRoleDistribution], tags=["Market Insights"]) async def get_job_roles_distribution(): return DB['insights']['job_role_distribution'] @app.get("/market_insights", response_model=MarketInsightsResponse, tags=["Market Insights"]) async def get_market_insights(page: int = 1, limit: int = 20): start = (page - 1) * limit end = page * limit overall_data = DB['insights']['overall_market'] top_skills = overall_data.get('top_skills', []) top_tools = overall_data.get('top_tools', []) exp_dist = overall_data.get('experience_distribution', []) skill_co = overall_data.get('skill_co_occurrence', []) tool_co = overall_data.get('tool_co_occurrence', []) avg_exp = overall_data.get('average_experience') return { "top_overall_skills": top_skills[start:end], "total_overall_skills": len(top_skills), "top_overall_tools": top_tools[start:end], "total_overall_tools": len(top_tools), "experience_distribution": exp_dist[start:end], "total_experience_distribution": len(exp_dist), "skill_co_occurrence": skill_co[start:end], "total_skill_co_occurrence": len(skill_co), "tool_co_occurrence": tool_co[start:end], "total_tool_co_occurrence": len(tool_co), "average_experience": avg_exp, } @app.get("/market_insights/{role:path}", response_model=RoleInsightsResponse, tags=["Market Insights"]) async def get_role_insights(role: str, page: int = 1, limit: int = 10): start = (page - 1) * limit end = page * limit role_data = DB['insights']['by_role'].get(role) if not role_data: raise HTTPException(status_code=404, detail="Role not found") top_skills = role_data.get('top_skills', []) top_tools = role_data.get('top_tools', []) exp_dist = role_data.get('experience_distribution', []) skill_co = role_data.get('skill_co_occurrence', []) tool_co = role_data.get('tool_co_occurrence', []) avg_exp = role_data.get('average_experience') return { "top_skills": top_skills[start:end], "total_skills": len(top_skills), "top_tools": top_tools[start:end], "total_tools": len(top_tools), "average_experience": avg_exp, "experience_distribution": exp_dist[start:end], "total_experience_distribution": len(exp_dist), "skill_co_occurrence": skill_co[start:end], "total_skill_co_occurrence": len(skill_co), "tool_co_occurrence": tool_co[start:end], "total_tool_co_occurrence": len(tool_co), } @app.post("/analyze_resume", response_model=AnalysisResult, tags=["Resume Analysis"]) async def analyze_resume( resume_file: UploadFile = File(...), target_role: Optional[str] = Form(None), limit: Optional[int] = Form(10) # This limit is now for the initial page load ): # --- PDF Processing --- if not resume_file or not resume_file.filename.lower().endswith('.pdf'): raise HTTPException(status_code=400, detail="Invalid file type. Please upload a PDF.") pdf_bytes = await resume_file.read() MAX_FILE_SIZE = 1 * 1024 * 1024 # 1MB if len(pdf_bytes) > MAX_FILE_SIZE: raise HTTPException( status_code=413, detail="File is too large. Please upload a PDF under 1MB." ) resume_text = "" try: with fitz.open(stream=pdf_bytes, filetype="pdf") as doc: for page in doc: resume_text += page.get_text() except Exception as e: raise HTTPException(status_code=422, detail=f"Failed to process PDF file: {e}") if not resume_text or resume_text.isspace(): raise HTTPException( status_code=422, detail="Could not extract any text from the provided PDF. The document may be empty, image-based, or corrupted." ) # --- Text Cleaning --- ner_cleaned_text = old_refined_text_cleaning(resume_text) similarity_cleaned_text = new_refined_text_cleaning(resume_text) # --- NER Processing --- doc = DB['ner_model'](ner_cleaned_text) user_skills = [ent.text for ent in doc.ents if ent.label_ == "SKILL"] user_tools = [ent.text for ent in doc.ents if ent.label_ == "TOOL"] # --- Similarity Search (DISABLED for NER-only benchmarking) --- all_similar_jobs = [] total_similar_jobs = 0 # The similarity worker subprocess call is bypassed for this benchmark. # The original code for similarity search was here. # --- Cache the full results --- session_id = str(uuid.uuid4()) # Simple cache eviction: Keep cache size under a limit (e.g., 50) if len(DB['similarity_cache']) > 50: try: oldest_key = next(iter(DB['similarity_cache'])) del DB['similarity_cache'][oldest_key] except (StopIteration, KeyError): # Handle edge cases where cache might be empty or key is gone pass DB['similarity_cache'][session_id] = all_similar_jobs # --- Gap Analysis (remains the same) --- if target_role and target_role != "Overall Market": role_data = DB['insights']['by_role'].get(target_role, {}) market_skills_list = role_data.get('top_skills', []) market_tools_list = role_data.get('top_tools', []) else: overall_data = DB['insights']['overall_market'] market_skills_list = overall_data.get('top_skills', []) market_tools_list = overall_data.get('top_tools', []) market_skill_freq = {s['skill'].lower(): s['count'] for s in market_skills_list} market_tool_freq = {t['tool'].lower(): t['count'] for t in market_tools_list} user_skills_lower = {s.lower() for s in user_skills} user_tools_lower = {t.lower() for t in user_tools} missing_skills = [{"name": s['skill'], "count": s['count']} for s in market_skills_list if s['skill'].lower() not in user_skills_lower] matching_skills = [{"name": s['skill'], "count": s['count']} for s in market_skills_list if s['skill'].lower() in user_skills_lower] missing_tools = [{"name": t['tool'], "count": t['count']} for t in market_tools_list if t['tool'].lower() not in user_tools_lower] matching_tools = [{"name": t['tool'], "count": t['count']} for t in market_tools_list if t['tool'].lower() in user_tools_lower] user_skills_with_freq = [{"name": s, "count": market_skill_freq.get(s.lower(), 0)} for s in user_skills] user_tools_with_freq = [{"name": t, "count": market_tool_freq.get(t.lower(), 0)} for t in user_tools] gap_analysis = { "user_skills": user_skills_with_freq, "user_tools": user_tools_with_freq, "missing_skills": missing_skills, "matching_skills": matching_skills, "missing_tools": missing_tools, "matching_tools": matching_tools, "total_user_skills": len(user_skills), "total_user_tools": len(user_tools), "total_missing_skills": len(missing_skills), "total_matching_skills": len(matching_skills), "total_missing_tools": len(missing_tools), "total_matching_tools": len(matching_tools), } # --- Recommendation Generation (remains the same) --- all_user_entities = user_skills_lower.union(user_tools_lower) recommendations = { "message": "Based on your resume, focusing on these skills and tools could improve your market alignment. We also recommend looking at co-occurring skills for your existing strengths.", "skills_to_learn": missing_skills[:5], "tools_to_learn": missing_tools[:5], "based_on_your_strengths": {} } skill_co_data = [] tool_co_data = [] if target_role and target_role != "Overall Market": role_data = DB['insights']['by_role'].get(target_role, {}) skill_co_data = role_data.get('skill_co_occurrence', []) tool_co_data = role_data.get('tool_co_occurrence', []) else: overall_data = DB['insights']['overall_market'] skill_co_data = overall_data.get('skill_co_occurrence', []) tool_co_data = overall_data.get('tool_co_occurrence', []) df_list = [] if skill_co_data: skills_df = pd.DataFrame(skill_co_data) if 'skill_A' in skills_df.columns and 'skill_B' in skills_df.columns: skills_df = skills_df.rename(columns={'skill_A': 'entity_A', 'skill_B': 'entity_B'}) df_list.append(skills_df) if tool_co_data: tools_df = pd.DataFrame(tool_co_data) if 'tool_A' in tools_df.columns and 'tool_B' in tools_df.columns: tools_df = tools_df.rename(columns={'tool_A': 'entity_A', 'tool_B': 'entity_B'}) df_list.append(tools_df) if df_list: co_occurrence_df = pd.concat(df_list, ignore_index=True) if 'entity_A' in co_occurrence_df.columns and 'entity_B' in co_occurrence_df.columns: for entity in all_user_entities: related_A = co_occurrence_df[co_occurrence_df['entity_B'].str.lower() == entity]['entity_A'].tolist() related_B = co_occurrence_df[co_occurrence_df['entity_A'].str.lower() == entity]['entity_B'].tolist() related_entities = related_A + related_B recommended = [s for s in related_entities if s.lower() not in all_user_entities] if recommended: unique_recommended = list(dict.fromkeys(recommended)) recommendations["based_on_your_strengths"][entity] = unique_recommended[:3] # --- Final Response --- return { "similar_jobs": all_similar_jobs[:limit], # Return only the first page "total_similar_jobs": total_similar_jobs, "gap_analysis": gap_analysis, "recommendations": recommendations, "session_id": session_id, } @app.get("/similar_jobs/{session_id}", response_model=List[SimilarJob], tags=["Resume Analysis"]) async def get_more_similar_jobs(session_id: str, page: int = 1, limit: int = 10): """ Gets a paginated list of similar jobs from the cache. """ if session_id not in DB['similarity_cache']: raise HTTPException(status_code=404, detail="Session not found or expired.") full_job_list = DB['similarity_cache'][session_id] start_index = (page - 1) * limit end_index = page * limit return full_job_list[start_index:end_index]