Spaces:
Sleeping
Sleeping
File size: 17,543 Bytes
567b16c 79c8e6d 567b16c 79c8e6d 567b16c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import pandas as pd
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
import os
import fitz # PyMuPDF
import torch
import spacy
import re
from bs4 import BeautifulSoup
import emoji
import subprocess
import json
import sys
import pathlib
import uuid
# --- Text Cleaning Functions ---
def old_refined_text_cleaning(text: str) -> str:
"""The OLD cleaning function used for the annotation phase. Removes #, +, / etc."""
if not isinstance(text, str):
return ""
text = BeautifulSoup(text, "html.parser").get_text()
url_pattern = r'(?:(?:https?|ftp)://)?(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)(?:\.(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)*(?:\.(?:[a-z\u00a1-\uffff]{2,})))(?::\d{2,5})?(?:/\S*)?'
text = re.sub(url_pattern, '', text)
text = re.sub(r'\S+@\S+\s?', '', text)
text = emoji.demojize(text)
text = re.sub(r':[a-zA-Z_]+:', '', text)
text = text.replace('\\', ' ')
text = re.sub(r'[#*•]', ' ', text)
text = re.sub(r'\{.*?\}', ' ', text)
text = re.sub(r'[^a-zA-Z0-9\s.,!?-]', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\s([,.!?-])', r'\1', text)
text = text.strip()
text = text.lower()
return text
def new_refined_text_cleaning(text: str) -> str:
"""The NEW, improved cleaning function. Keeps technical symbols."""
if not isinstance(text, str):
return ""
text = BeautifulSoup(text, "html.parser").get_text()
url_pattern = r'(?:(?:https?|ftp)://)?(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)(?:\.(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)*(?:\.(?:[a-z\u00a1-\uffff]{2,})))(?::\d{2,5})?(?:/\S*)?'
text = re.sub(url_pattern, '', text)
text = re.sub(r'\S+@\S+\s?', '', text)
text = emoji.demojize(text)
text = re.sub(r':[a-zA-Z_]+:', '', text)
text = text.replace('\\', ' ')
text = re.sub(r'[*•]', ' ', text) # Keep '#' from old regex r'[#*•]' to preserve C#
text = re.sub(r'\{.*?\}', ' ', text)
# Keep '#', '+', '/', '()', and '_' to preserve technical terms.
text = re.sub(r'[^a-zA-Z0-9_#+()/\s.,!?-]', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\s([,.!?-])', r'\1', text)
text = text.strip()
text = text.lower()
return text
# --- Pydantic Models for API Response Structure ---
class SkillCount(BaseModel):
skill: str
count: int
class ToolCount(BaseModel):
tool: str
count: int
class RoleSkill(BaseModel):
cmo_role_match: str
skill: str
count: int
class RoleTool(BaseModel):
cmo_role_match: str
tool: str
count: int
class ExperienceDistribution(BaseModel):
year: int
count: int
class SkillCooccurrence(BaseModel):
skill_A: str
skill_B: str
count: int
class ToolCooccurrence(BaseModel):
tool_A: str
tool_B: str
count: int
class JobRoleDistribution(BaseModel):
cmo_role_match: str
count: int
class RoleInsightsResponse(BaseModel):
top_skills: List[RoleSkill]
total_skills: int
top_tools: List[RoleTool]
total_tools: int
average_experience: Optional[float] = None
experience_distribution: List[ExperienceDistribution]
total_experience_distribution: int
skill_co_occurrence: List[SkillCooccurrence]
total_skill_co_occurrence: int
tool_co_occurrence: List[ToolCooccurrence]
total_tool_co_occurrence: int
class MarketInsightsResponse(BaseModel):
top_overall_skills: List[SkillCount]
total_overall_skills: int
top_overall_tools: List[ToolCount]
total_overall_tools: int
experience_distribution: List[ExperienceDistribution]
total_experience_distribution: int
skill_co_occurrence: List[SkillCooccurrence]
total_skill_co_occurrence: int
tool_co_occurrence: List[ToolCooccurrence]
total_tool_co_occurrence: int
average_experience: Optional[float] = None
class SimilarJob(BaseModel):
job_title: str
similarity_score: float
cmo_role_match: str
url: Optional[str] = None
class SkillDetail(BaseModel):
name: str
count: int
class GapAnalysis(BaseModel):
user_skills: List[SkillDetail]
user_tools: List[SkillDetail]
missing_skills: List[SkillDetail]
matching_skills: List[SkillDetail]
missing_tools: List[SkillDetail]
matching_tools: List[SkillDetail]
total_user_skills: int
total_user_tools: int
total_missing_skills: int
total_matching_skills: int
total_missing_tools: int
total_matching_tools: int
class AnalysisResult(BaseModel):
similar_jobs: List[SimilarJob]
total_similar_jobs: int
gap_analysis: GapAnalysis
recommendations: Dict[str, Any]
session_id: str
# --- App instantiation ---
app = FastAPI(
title="Skill Gap Analyzer API",
description="API for market insights and resume analysis.",
version="1.3.0", # Version bump
)
# --- CORS Middleware ---
origins = [
"http://localhost:5173",
"http://127.0.0.1:5173",
"http://localhost:5174",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# --- In-memory storage for models and data ---
DB = {}
@app.on_event("startup")
async def startup_event():
DB['similarity_cache'] = {}
"""Load models and data into memory on application startup."""
print("INFO: Loading models and data...")
backend_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(backend_dir, "ner_model")
# --- Load Pre-computed Insights ---
insights_path = os.path.join(backend_dir, 'market_insights.json')
with open(insights_path, 'r') as f:
DB['insights'] = json.load(f)
print("INFO: Market insights loaded successfully.")
# --- Load other necessary data ---
# This is still needed for the similarity worker and gap analysis source
DB['market_data'] = pd.read_csv(os.path.join(backend_dir, 'final_prototype_postings.csv'))
# --- Load Models ---
print(f"INFO: Loading NER model from {model_path}...")
DB['ner_model'] = spacy.load(model_path)
print("INFO: NER model loaded successfully.")
print("INFO: Models and data loaded successfully.")
@app.get("/", tags=["General"])
async def read_root():
return {"message": "Welcome to the Skill Gap Analyzer API v1.3"}
@app.get("/roles", response_model=List[str], tags=["Market Insights"])
async def get_roles():
roles = sorted(DB['insights']['by_role'].keys())
return ["Overall Market"] + roles
@app.get("/job_roles_distribution", response_model=List[JobRoleDistribution], tags=["Market Insights"])
async def get_job_roles_distribution():
return DB['insights']['job_role_distribution']
@app.get("/market_insights", response_model=MarketInsightsResponse, tags=["Market Insights"])
async def get_market_insights(page: int = 1, limit: int = 20):
start = (page - 1) * limit
end = page * limit
overall_data = DB['insights']['overall_market']
top_skills = overall_data.get('top_skills', [])
top_tools = overall_data.get('top_tools', [])
exp_dist = overall_data.get('experience_distribution', [])
skill_co = overall_data.get('skill_co_occurrence', [])
tool_co = overall_data.get('tool_co_occurrence', [])
avg_exp = overall_data.get('average_experience')
return {
"top_overall_skills": top_skills[start:end],
"total_overall_skills": len(top_skills),
"top_overall_tools": top_tools[start:end],
"total_overall_tools": len(top_tools),
"experience_distribution": exp_dist[start:end],
"total_experience_distribution": len(exp_dist),
"skill_co_occurrence": skill_co[start:end],
"total_skill_co_occurrence": len(skill_co),
"tool_co_occurrence": tool_co[start:end],
"total_tool_co_occurrence": len(tool_co),
"average_experience": avg_exp,
}
@app.get("/market_insights/{role:path}", response_model=RoleInsightsResponse, tags=["Market Insights"])
async def get_role_insights(role: str, page: int = 1, limit: int = 10):
start = (page - 1) * limit
end = page * limit
role_data = DB['insights']['by_role'].get(role)
if not role_data:
raise HTTPException(status_code=404, detail="Role not found")
top_skills = role_data.get('top_skills', [])
top_tools = role_data.get('top_tools', [])
exp_dist = role_data.get('experience_distribution', [])
skill_co = role_data.get('skill_co_occurrence', [])
tool_co = role_data.get('tool_co_occurrence', [])
avg_exp = role_data.get('average_experience')
return {
"top_skills": top_skills[start:end],
"total_skills": len(top_skills),
"top_tools": top_tools[start:end],
"total_tools": len(top_tools),
"average_experience": avg_exp,
"experience_distribution": exp_dist[start:end],
"total_experience_distribution": len(exp_dist),
"skill_co_occurrence": skill_co[start:end],
"total_skill_co_occurrence": len(skill_co),
"tool_co_occurrence": tool_co[start:end],
"total_tool_co_occurrence": len(tool_co),
}
@app.post("/analyze_resume", response_model=AnalysisResult, tags=["Resume Analysis"])
async def analyze_resume(
resume_file: UploadFile = File(...),
target_role: Optional[str] = Form(None),
limit: Optional[int] = Form(10) # This limit is now for the initial page load
):
# --- PDF Processing ---
if not resume_file or not resume_file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="Invalid file type. Please upload a PDF.")
pdf_bytes = await resume_file.read()
MAX_FILE_SIZE = 1 * 1024 * 1024 # 1MB
if len(pdf_bytes) > MAX_FILE_SIZE:
raise HTTPException(
status_code=413,
detail="File is too large. Please upload a PDF under 1MB."
)
resume_text = ""
try:
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
for page in doc:
resume_text += page.get_text()
except Exception as e:
raise HTTPException(status_code=422, detail=f"Failed to process PDF file: {e}")
if not resume_text or resume_text.isspace():
raise HTTPException(
status_code=422,
detail="Could not extract any text from the provided PDF. The document may be empty, image-based, or corrupted."
)
# --- Text Cleaning ---
ner_cleaned_text = old_refined_text_cleaning(resume_text)
similarity_cleaned_text = new_refined_text_cleaning(resume_text)
# --- NER Processing ---
doc = DB['ner_model'](ner_cleaned_text)
user_skills = [ent.text for ent in doc.ents if ent.label_ == "SKILL"]
user_tools = [ent.text for ent in doc.ents if ent.label_ == "TOOL"]
# --- Similarity Search (DISABLED for NER-only benchmarking) ---
all_similar_jobs = []
total_similar_jobs = 0
# The similarity worker subprocess call is bypassed for this benchmark.
# The original code for similarity search was here.
# --- Cache the full results ---
session_id = str(uuid.uuid4())
# Simple cache eviction: Keep cache size under a limit (e.g., 50)
if len(DB['similarity_cache']) > 50:
try:
oldest_key = next(iter(DB['similarity_cache']))
del DB['similarity_cache'][oldest_key]
except (StopIteration, KeyError):
# Handle edge cases where cache might be empty or key is gone
pass
DB['similarity_cache'][session_id] = all_similar_jobs
# --- Gap Analysis (remains the same) ---
if target_role and target_role != "Overall Market":
role_data = DB['insights']['by_role'].get(target_role, {})
market_skills_list = role_data.get('top_skills', [])
market_tools_list = role_data.get('top_tools', [])
else:
overall_data = DB['insights']['overall_market']
market_skills_list = overall_data.get('top_skills', [])
market_tools_list = overall_data.get('top_tools', [])
market_skill_freq = {s['skill'].lower(): s['count'] for s in market_skills_list}
market_tool_freq = {t['tool'].lower(): t['count'] for t in market_tools_list}
user_skills_lower = {s.lower() for s in user_skills}
user_tools_lower = {t.lower() for t in user_tools}
missing_skills = [{"name": s['skill'], "count": s['count']} for s in market_skills_list if s['skill'].lower() not in user_skills_lower]
matching_skills = [{"name": s['skill'], "count": s['count']} for s in market_skills_list if s['skill'].lower() in user_skills_lower]
missing_tools = [{"name": t['tool'], "count": t['count']} for t in market_tools_list if t['tool'].lower() not in user_tools_lower]
matching_tools = [{"name": t['tool'], "count": t['count']} for t in market_tools_list if t['tool'].lower() in user_tools_lower]
user_skills_with_freq = [{"name": s, "count": market_skill_freq.get(s.lower(), 0)} for s in user_skills]
user_tools_with_freq = [{"name": t, "count": market_tool_freq.get(t.lower(), 0)} for t in user_tools]
gap_analysis = {
"user_skills": user_skills_with_freq,
"user_tools": user_tools_with_freq,
"missing_skills": missing_skills,
"matching_skills": matching_skills,
"missing_tools": missing_tools,
"matching_tools": matching_tools,
"total_user_skills": len(user_skills),
"total_user_tools": len(user_tools),
"total_missing_skills": len(missing_skills),
"total_matching_skills": len(matching_skills),
"total_missing_tools": len(missing_tools),
"total_matching_tools": len(matching_tools),
}
# --- Recommendation Generation (remains the same) ---
all_user_entities = user_skills_lower.union(user_tools_lower)
recommendations = {
"message": "Based on your resume, focusing on these skills and tools could improve your market alignment. We also recommend looking at co-occurring skills for your existing strengths.",
"skills_to_learn": missing_skills[:5],
"tools_to_learn": missing_tools[:5],
"based_on_your_strengths": {}
}
skill_co_data = []
tool_co_data = []
if target_role and target_role != "Overall Market":
role_data = DB['insights']['by_role'].get(target_role, {})
skill_co_data = role_data.get('skill_co_occurrence', [])
tool_co_data = role_data.get('tool_co_occurrence', [])
else:
overall_data = DB['insights']['overall_market']
skill_co_data = overall_data.get('skill_co_occurrence', [])
tool_co_data = overall_data.get('tool_co_occurrence', [])
df_list = []
if skill_co_data:
skills_df = pd.DataFrame(skill_co_data)
if 'skill_A' in skills_df.columns and 'skill_B' in skills_df.columns:
skills_df = skills_df.rename(columns={'skill_A': 'entity_A', 'skill_B': 'entity_B'})
df_list.append(skills_df)
if tool_co_data:
tools_df = pd.DataFrame(tool_co_data)
if 'tool_A' in tools_df.columns and 'tool_B' in tools_df.columns:
tools_df = tools_df.rename(columns={'tool_A': 'entity_A', 'tool_B': 'entity_B'})
df_list.append(tools_df)
if df_list:
co_occurrence_df = pd.concat(df_list, ignore_index=True)
if 'entity_A' in co_occurrence_df.columns and 'entity_B' in co_occurrence_df.columns:
for entity in all_user_entities:
related_A = co_occurrence_df[co_occurrence_df['entity_B'].str.lower() == entity]['entity_A'].tolist()
related_B = co_occurrence_df[co_occurrence_df['entity_A'].str.lower() == entity]['entity_B'].tolist()
related_entities = related_A + related_B
recommended = [s for s in related_entities if s.lower() not in all_user_entities]
if recommended:
unique_recommended = list(dict.fromkeys(recommended))
recommendations["based_on_your_strengths"][entity] = unique_recommended[:3]
# --- Final Response ---
return {
"similar_jobs": all_similar_jobs[:limit], # Return only the first page
"total_similar_jobs": total_similar_jobs,
"gap_analysis": gap_analysis,
"recommendations": recommendations,
"session_id": session_id,
}
@app.get("/similar_jobs/{session_id}", response_model=List[SimilarJob], tags=["Resume Analysis"])
async def get_more_similar_jobs(session_id: str, page: int = 1, limit: int = 10):
"""
Gets a paginated list of similar jobs from the cache.
"""
if session_id not in DB['similarity_cache']:
raise HTTPException(status_code=404, detail="Session not found or expired.")
full_job_list = DB['similarity_cache'][session_id]
start_index = (page - 1) * limit
end_index = page * limit
return full_job_list[start_index:end_index] |