File size: 17,543 Bytes
567b16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79c8e6d
567b16c
 
79c8e6d
 
567b16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import pandas as pd
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
import os
import fitz  # PyMuPDF
import torch
import spacy
import re
from bs4 import BeautifulSoup
import emoji
import subprocess
import json
import sys
import pathlib
import uuid

# --- Text Cleaning Functions ---

def old_refined_text_cleaning(text: str) -> str:
    """The OLD cleaning function used for the annotation phase. Removes #, +, / etc."""
    if not isinstance(text, str):
        return ""
    text = BeautifulSoup(text, "html.parser").get_text()
    url_pattern = r'(?:(?:https?|ftp)://)?(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)(?:\.(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)*(?:\.(?:[a-z\u00a1-\uffff]{2,})))(?::\d{2,5})?(?:/\S*)?'
    text = re.sub(url_pattern, '', text)
    text = re.sub(r'\S+@\S+\s?', '', text)
    text = emoji.demojize(text)
    text = re.sub(r':[a-zA-Z_]+:', '', text)
    text = text.replace('\\', ' ')
    text = re.sub(r'[#*•]', ' ', text)
    text = re.sub(r'\{.*?\}', ' ', text)
    text = re.sub(r'[^a-zA-Z0-9\s.,!?-]', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\s([,.!?-])', r'\1', text)
    text = text.strip()
    text = text.lower()
    return text

def new_refined_text_cleaning(text: str) -> str:
    """The NEW, improved cleaning function. Keeps technical symbols."""
    if not isinstance(text, str):
        return ""
    text = BeautifulSoup(text, "html.parser").get_text()
    url_pattern = r'(?:(?:https?|ftp)://)?(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)(?:\.(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)*(?:\.(?:[a-z\u00a1-\uffff]{2,})))(?::\d{2,5})?(?:/\S*)?'
    text = re.sub(url_pattern, '', text)
    text = re.sub(r'\S+@\S+\s?', '', text)
    text = emoji.demojize(text)
    text = re.sub(r':[a-zA-Z_]+:', '', text)
    text = text.replace('\\', ' ')
    text = re.sub(r'[*•]', ' ', text) # Keep '#' from old regex r'[#*•]' to preserve C#
    text = re.sub(r'\{.*?\}', ' ', text)
    # Keep '#', '+', '/', '()', and '_' to preserve technical terms.
    text = re.sub(r'[^a-zA-Z0-9_#+()/\s.,!?-]', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\s([,.!?-])', r'\1', text)
    text = text.strip()
    text = text.lower()
    return text


# --- Pydantic Models for API Response Structure ---

class SkillCount(BaseModel):
    skill: str
    count: int

class ToolCount(BaseModel):
    tool: str
    count: int

class RoleSkill(BaseModel):
    cmo_role_match: str
    skill: str
    count: int

class RoleTool(BaseModel):
    cmo_role_match: str
    tool: str
    count: int

class ExperienceDistribution(BaseModel):
    year: int
    count: int

class SkillCooccurrence(BaseModel):
    skill_A: str
    skill_B: str
    count: int

class ToolCooccurrence(BaseModel):
    tool_A: str
    tool_B: str
    count: int

class JobRoleDistribution(BaseModel):
    cmo_role_match: str
    count: int

class RoleInsightsResponse(BaseModel):
    top_skills: List[RoleSkill]
    total_skills: int
    top_tools: List[RoleTool]
    total_tools: int
    average_experience: Optional[float] = None
    experience_distribution: List[ExperienceDistribution]
    total_experience_distribution: int
    skill_co_occurrence: List[SkillCooccurrence]
    total_skill_co_occurrence: int
    tool_co_occurrence: List[ToolCooccurrence]
    total_tool_co_occurrence: int

class MarketInsightsResponse(BaseModel):
    top_overall_skills: List[SkillCount]
    total_overall_skills: int
    top_overall_tools: List[ToolCount]
    total_overall_tools: int
    experience_distribution: List[ExperienceDistribution]
    total_experience_distribution: int
    skill_co_occurrence: List[SkillCooccurrence]
    total_skill_co_occurrence: int
    tool_co_occurrence: List[ToolCooccurrence]
    total_tool_co_occurrence: int
    average_experience: Optional[float] = None

class SimilarJob(BaseModel):
    job_title: str
    similarity_score: float
    cmo_role_match: str
    url: Optional[str] = None

class SkillDetail(BaseModel):
    name: str
    count: int

class GapAnalysis(BaseModel):
    user_skills: List[SkillDetail]
    user_tools: List[SkillDetail]
    missing_skills: List[SkillDetail]
    matching_skills: List[SkillDetail]
    missing_tools: List[SkillDetail]
    matching_tools: List[SkillDetail]
    total_user_skills: int
    total_user_tools: int
    total_missing_skills: int
    total_matching_skills: int
    total_missing_tools: int
    total_matching_tools: int

class AnalysisResult(BaseModel):
    similar_jobs: List[SimilarJob]
    total_similar_jobs: int
    gap_analysis: GapAnalysis
    recommendations: Dict[str, Any]
    session_id: str

# --- App instantiation ---
app = FastAPI(
    title="Skill Gap Analyzer API",
    description="API for market insights and resume analysis.",
    version="1.3.0", # Version bump
)

# --- CORS Middleware ---
origins = [
    "http://localhost:5173",
    "http://127.0.0.1:5173",
    "http://localhost:5174",
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# --- In-memory storage for models and data ---
DB = {}

@app.on_event("startup")
async def startup_event():
    DB['similarity_cache'] = {}
    """Load models and data into memory on application startup."""
    print("INFO:     Loading models and data...")
    
    backend_dir = os.path.dirname(os.path.abspath(__file__))
    model_path = os.path.join(backend_dir, "ner_model")

    # --- Load Pre-computed Insights ---
    insights_path = os.path.join(backend_dir, 'market_insights.json')
    with open(insights_path, 'r') as f:
        DB['insights'] = json.load(f)
    print("INFO:     Market insights loaded successfully.")

    # --- Load other necessary data ---
    # This is still needed for the similarity worker and gap analysis source
    DB['market_data'] = pd.read_csv(os.path.join(backend_dir, 'final_prototype_postings.csv'))

    # --- Load Models ---
    print(f"INFO:     Loading NER model from {model_path}...")
    DB['ner_model'] = spacy.load(model_path)
    print("INFO:     NER model loaded successfully.")

    print("INFO:     Models and data loaded successfully.")


@app.get("/", tags=["General"])
async def read_root():
    return {"message": "Welcome to the Skill Gap Analyzer API v1.3"}

@app.get("/roles", response_model=List[str], tags=["Market Insights"])
async def get_roles():
    roles = sorted(DB['insights']['by_role'].keys())
    return ["Overall Market"] + roles

@app.get("/job_roles_distribution", response_model=List[JobRoleDistribution], tags=["Market Insights"])
async def get_job_roles_distribution():
    return DB['insights']['job_role_distribution']


@app.get("/market_insights", response_model=MarketInsightsResponse, tags=["Market Insights"])
async def get_market_insights(page: int = 1, limit: int = 20):
    start = (page - 1) * limit
    end = page * limit
    
    overall_data = DB['insights']['overall_market']
    
    top_skills = overall_data.get('top_skills', [])
    top_tools = overall_data.get('top_tools', [])
    exp_dist = overall_data.get('experience_distribution', [])
    skill_co = overall_data.get('skill_co_occurrence', [])
    tool_co = overall_data.get('tool_co_occurrence', [])
    avg_exp = overall_data.get('average_experience')

    return {
        "top_overall_skills": top_skills[start:end],
        "total_overall_skills": len(top_skills),
        "top_overall_tools": top_tools[start:end],
        "total_overall_tools": len(top_tools),
        "experience_distribution": exp_dist[start:end],
        "total_experience_distribution": len(exp_dist),
        "skill_co_occurrence": skill_co[start:end],
        "total_skill_co_occurrence": len(skill_co),
        "tool_co_occurrence": tool_co[start:end],
        "total_tool_co_occurrence": len(tool_co),
        "average_experience": avg_exp,
    }

@app.get("/market_insights/{role:path}", response_model=RoleInsightsResponse, tags=["Market Insights"])
async def get_role_insights(role: str, page: int = 1, limit: int = 10):
    start = (page - 1) * limit
    end = page * limit

    role_data = DB['insights']['by_role'].get(role)
    if not role_data:
        raise HTTPException(status_code=404, detail="Role not found")

    top_skills = role_data.get('top_skills', [])
    top_tools = role_data.get('top_tools', [])
    exp_dist = role_data.get('experience_distribution', [])
    skill_co = role_data.get('skill_co_occurrence', [])
    tool_co = role_data.get('tool_co_occurrence', [])
    avg_exp = role_data.get('average_experience')

    return {
        "top_skills": top_skills[start:end],
        "total_skills": len(top_skills),
        "top_tools": top_tools[start:end],
        "total_tools": len(top_tools),
        "average_experience": avg_exp,
        "experience_distribution": exp_dist[start:end],
        "total_experience_distribution": len(exp_dist),
        "skill_co_occurrence": skill_co[start:end],
        "total_skill_co_occurrence": len(skill_co),
        "tool_co_occurrence": tool_co[start:end],
        "total_tool_co_occurrence": len(tool_co),
    }

@app.post("/analyze_resume", response_model=AnalysisResult, tags=["Resume Analysis"])
async def analyze_resume(
    resume_file: UploadFile = File(...),
    target_role: Optional[str] = Form(None),
    limit: Optional[int] = Form(10) # This limit is now for the initial page load
):
    # --- PDF Processing ---
    if not resume_file or not resume_file.filename.lower().endswith('.pdf'):
        raise HTTPException(status_code=400, detail="Invalid file type. Please upload a PDF.")

    pdf_bytes = await resume_file.read()

    MAX_FILE_SIZE = 1 * 1024 * 1024  # 1MB
    if len(pdf_bytes) > MAX_FILE_SIZE:
        raise HTTPException(
            status_code=413,
            detail="File is too large. Please upload a PDF under 1MB."
        )

    resume_text = ""
    try:
        with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
            for page in doc:
                resume_text += page.get_text()
    except Exception as e:
        raise HTTPException(status_code=422, detail=f"Failed to process PDF file: {e}")

    if not resume_text or resume_text.isspace():
        raise HTTPException(
            status_code=422,
            detail="Could not extract any text from the provided PDF. The document may be empty, image-based, or corrupted."
        )

    # --- Text Cleaning ---
    ner_cleaned_text = old_refined_text_cleaning(resume_text)
    similarity_cleaned_text = new_refined_text_cleaning(resume_text)

    # --- NER Processing ---
    doc = DB['ner_model'](ner_cleaned_text)
    user_skills = [ent.text for ent in doc.ents if ent.label_ == "SKILL"]
    user_tools = [ent.text for ent in doc.ents if ent.label_ == "TOOL"]

    # --- Similarity Search (DISABLED for NER-only benchmarking) ---
    all_similar_jobs = []
    total_similar_jobs = 0
    # The similarity worker subprocess call is bypassed for this benchmark.
    # The original code for similarity search was here.

    # --- Cache the full results ---
    session_id = str(uuid.uuid4())

    # Simple cache eviction: Keep cache size under a limit (e.g., 50)
    if len(DB['similarity_cache']) > 50:
        try:
            oldest_key = next(iter(DB['similarity_cache']))
            del DB['similarity_cache'][oldest_key]
        except (StopIteration, KeyError):
            # Handle edge cases where cache might be empty or key is gone
            pass

    DB['similarity_cache'][session_id] = all_similar_jobs

    # --- Gap Analysis (remains the same) ---
    if target_role and target_role != "Overall Market":
        role_data = DB['insights']['by_role'].get(target_role, {})
        market_skills_list = role_data.get('top_skills', []) 
        market_tools_list = role_data.get('top_tools', [])
    else:
        overall_data = DB['insights']['overall_market']
        market_skills_list = overall_data.get('top_skills', [])
        market_tools_list = overall_data.get('top_tools', [])

    market_skill_freq = {s['skill'].lower(): s['count'] for s in market_skills_list}
    market_tool_freq = {t['tool'].lower(): t['count'] for t in market_tools_list}
    user_skills_lower = {s.lower() for s in user_skills}
    user_tools_lower = {t.lower() for t in user_tools}
    missing_skills = [{"name": s['skill'], "count": s['count']} for s in market_skills_list if s['skill'].lower() not in user_skills_lower]
    matching_skills = [{"name": s['skill'], "count": s['count']} for s in market_skills_list if s['skill'].lower() in user_skills_lower]
    missing_tools = [{"name": t['tool'], "count": t['count']} for t in market_tools_list if t['tool'].lower() not in user_tools_lower]
    matching_tools = [{"name": t['tool'], "count": t['count']} for t in market_tools_list if t['tool'].lower() in user_tools_lower]
    user_skills_with_freq = [{"name": s, "count": market_skill_freq.get(s.lower(), 0)} for s in user_skills]
    user_tools_with_freq = [{"name": t, "count": market_tool_freq.get(t.lower(), 0)} for t in user_tools]
    gap_analysis = {
        "user_skills": user_skills_with_freq,
        "user_tools": user_tools_with_freq,
        "missing_skills": missing_skills,
        "matching_skills": matching_skills,
        "missing_tools": missing_tools,
        "matching_tools": matching_tools,
        "total_user_skills": len(user_skills),
        "total_user_tools": len(user_tools),
        "total_missing_skills": len(missing_skills),
        "total_matching_skills": len(matching_skills),
        "total_missing_tools": len(missing_tools),
        "total_matching_tools": len(matching_tools),
    }

    # --- Recommendation Generation (remains the same) ---
    all_user_entities = user_skills_lower.union(user_tools_lower)
    recommendations = {
        "message": "Based on your resume, focusing on these skills and tools could improve your market alignment. We also recommend looking at co-occurring skills for your existing strengths.",
        "skills_to_learn": missing_skills[:5],
        "tools_to_learn": missing_tools[:5],
        "based_on_your_strengths": {}
    }
    skill_co_data = []
    tool_co_data = []
    if target_role and target_role != "Overall Market":
        role_data = DB['insights']['by_role'].get(target_role, {})
        skill_co_data = role_data.get('skill_co_occurrence', [])
        tool_co_data = role_data.get('tool_co_occurrence', [])
    else:
        overall_data = DB['insights']['overall_market']
        skill_co_data = overall_data.get('skill_co_occurrence', [])
        tool_co_data = overall_data.get('tool_co_occurrence', [])
    df_list = []
    if skill_co_data:
        skills_df = pd.DataFrame(skill_co_data)
        if 'skill_A' in skills_df.columns and 'skill_B' in skills_df.columns:
            skills_df = skills_df.rename(columns={'skill_A': 'entity_A', 'skill_B': 'entity_B'})
            df_list.append(skills_df)
    if tool_co_data:
        tools_df = pd.DataFrame(tool_co_data)
        if 'tool_A' in tools_df.columns and 'tool_B' in tools_df.columns:
            tools_df = tools_df.rename(columns={'tool_A': 'entity_A', 'tool_B': 'entity_B'})
            df_list.append(tools_df)
    if df_list:
        co_occurrence_df = pd.concat(df_list, ignore_index=True)
        if 'entity_A' in co_occurrence_df.columns and 'entity_B' in co_occurrence_df.columns:
            for entity in all_user_entities:
                related_A = co_occurrence_df[co_occurrence_df['entity_B'].str.lower() == entity]['entity_A'].tolist()
                related_B = co_occurrence_df[co_occurrence_df['entity_A'].str.lower() == entity]['entity_B'].tolist()
                related_entities = related_A + related_B
                recommended = [s for s in related_entities if s.lower() not in all_user_entities]
                if recommended:
                    unique_recommended = list(dict.fromkeys(recommended))
                    recommendations["based_on_your_strengths"][entity] = unique_recommended[:3]

    # --- Final Response ---
    return {
        "similar_jobs": all_similar_jobs[:limit], # Return only the first page
        "total_similar_jobs": total_similar_jobs,
        "gap_analysis": gap_analysis,
        "recommendations": recommendations,
        "session_id": session_id,
    }

@app.get("/similar_jobs/{session_id}", response_model=List[SimilarJob], tags=["Resume Analysis"])
async def get_more_similar_jobs(session_id: str, page: int = 1, limit: int = 10):
    """
    Gets a paginated list of similar jobs from the cache.
    """
    if session_id not in DB['similarity_cache']:
        raise HTTPException(status_code=404, detail="Session not found or expired.")

    full_job_list = DB['similarity_cache'][session_id]
    
    start_index = (page - 1) * limit
    end_index = page * limit
    
    return full_job_list[start_index:end_index]