Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +99 -302
knowledge_engine.py
CHANGED
|
@@ -1,315 +1,112 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
from typing import Dict, List
|
| 5 |
-
from datetime import datetime
|
| 6 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 7 |
-
|
| 8 |
-
from langchain_core.documents import Document
|
| 9 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
-
from langchain_community.vectorstores import FAISS
|
| 11 |
-
from langchain.retrievers import BM25Retriever
|
| 12 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 13 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, pipeline
|
| 17 |
from langchain.llms import HuggingFacePipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def __init__(self):
|
| 23 |
-
self.name = "CPU-LLM"
|
| 24 |
-
self.is_available = False
|
| 25 |
-
self.current_model = None
|
| 26 |
-
|
| 27 |
-
# CPU-friendly models
|
| 28 |
-
self.cpu_models = [
|
| 29 |
-
"google/flan-t5-small", # Encoder-decoder model
|
| 30 |
-
"distilbert/distilgpt2" # Decoder-only (GPT-style)
|
| 31 |
-
]
|
| 32 |
-
|
| 33 |
-
def initialize(self) -> bool:
|
| 34 |
-
"""Initialize the CPU LLM with the best available model"""
|
| 35 |
-
for model_id in self.cpu_models:
|
| 36 |
-
try:
|
| 37 |
-
print(f"[i] Trying to load {model_id}...")
|
| 38 |
-
|
| 39 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 40 |
-
|
| 41 |
-
# Detect model type based on name
|
| 42 |
-
if "flan" in model_id or "t5" in model_id:
|
| 43 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 44 |
-
task = "text2text-generation"
|
| 45 |
-
else:
|
| 46 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 47 |
-
task = "text-generation"
|
| 48 |
-
|
| 49 |
-
pipe = pipeline(
|
| 50 |
-
task,
|
| 51 |
-
model=model,
|
| 52 |
-
tokenizer=tokenizer,
|
| 53 |
-
max_new_tokens=256,
|
| 54 |
-
temperature=0.3,
|
| 55 |
-
top_p=0.95,
|
| 56 |
-
device="cpu"
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
self.llm = HuggingFacePipeline(pipeline=pipe)
|
| 60 |
-
self.current_model = model_id
|
| 61 |
-
self.is_available = True
|
| 62 |
-
|
| 63 |
-
# Test model
|
| 64 |
-
test_response = self.invoke("Hello, who are you?")
|
| 65 |
-
if test_response and len(test_response) > 0:
|
| 66 |
-
print(f"[✓] Successfully loaded {model_id}")
|
| 67 |
-
return True
|
| 68 |
-
|
| 69 |
-
except Exception as e:
|
| 70 |
-
print(f"[!] Failed to load {model_id}: {str(e)[:200]}...")
|
| 71 |
-
continue
|
| 72 |
-
|
| 73 |
-
print("[!] All CPU models failed to load")
|
| 74 |
-
return False
|
| 75 |
-
|
| 76 |
-
def invoke(self, prompt: str) -> str:
|
| 77 |
-
"""Invoke the CPU model with prompt"""
|
| 78 |
-
if not self.llm:
|
| 79 |
-
raise Exception("CPU LLM not initialized")
|
| 80 |
-
|
| 81 |
-
try:
|
| 82 |
-
# Optionally modify prompt for specific models if needed
|
| 83 |
-
formatted_prompt = prompt
|
| 84 |
-
response = self.llm.invoke(formatted_prompt)
|
| 85 |
-
return response.strip()
|
| 86 |
-
except Exception as e:
|
| 87 |
-
print(f"[!] CPU model error: {e}")
|
| 88 |
-
raise
|
| 89 |
-
|
| 90 |
-
|
| 91 |
|
| 92 |
class KnowledgeManager:
|
| 93 |
-
def __init__(self):
|
| 94 |
-
self.
|
| 95 |
-
self.
|
| 96 |
-
|
| 97 |
-
self.
|
| 98 |
-
self.
|
| 99 |
-
self.
|
| 100 |
-
self.
|
| 101 |
-
|
| 102 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
def
|
| 105 |
-
|
| 106 |
-
self.knowledge_dir = os.path.join(self.temp_dir, "knowledge")
|
| 107 |
-
os.makedirs(self.knowledge_dir, exist_ok=True)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
"""Initialize CPU-friendly embeddings"""
|
| 111 |
try:
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
)
|
|
|
|
| 117 |
except Exception as e:
|
| 118 |
-
print(f"
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
# Build retrievers
|
| 133 |
-
self.build_retrievers()
|
| 134 |
-
|
| 135 |
-
def _load_default_knowledge(self):
|
| 136 |
-
"""Load default knowledge base"""
|
| 137 |
-
default_content = """Sirraya xBrain - CPU-based AI Platform
|
| 138 |
-
|
| 139 |
-
Features:
|
| 140 |
-
- Uses efficient CPU-based language models like Phi-2
|
| 141 |
-
- Implements RAG (Retrieval-Augmented Generation)
|
| 142 |
-
- Combines vector search and keyword retrieval
|
| 143 |
-
- Optimized for CPU-only environments
|
| 144 |
-
|
| 145 |
-
Technical Details:
|
| 146 |
-
- Embeddings: all-MiniLM-L6-v2
|
| 147 |
-
- Vector Store: FAISS
|
| 148 |
-
- Keyword Retrieval: BM25
|
| 149 |
-
- LLM: Microsoft Phi-2 or similar CPU-friendly models"""
|
| 150 |
-
|
| 151 |
-
self.knowledge_texts = [{
|
| 152 |
-
"filename": "default_knowledge.txt",
|
| 153 |
-
"content": default_content
|
| 154 |
-
}]
|
| 155 |
-
|
| 156 |
-
# Save to file
|
| 157 |
-
with open(os.path.join(self.knowledge_dir, "default_knowledge.txt"), "w") as f:
|
| 158 |
-
f.write(default_content)
|
| 159 |
-
|
| 160 |
-
def build_retrievers(self):
|
| 161 |
-
"""Build the retrieval components"""
|
| 162 |
-
if not self.embeddings:
|
| 163 |
-
print("[!] No embeddings available")
|
| 164 |
-
return
|
| 165 |
-
|
| 166 |
-
try:
|
| 167 |
-
# Create documents
|
| 168 |
-
documents = [
|
| 169 |
-
Document(
|
| 170 |
-
page_content=text["content"],
|
| 171 |
-
metadata={"source": text["filename"]}
|
| 172 |
-
)
|
| 173 |
-
for text in self.knowledge_texts
|
| 174 |
-
]
|
| 175 |
-
|
| 176 |
-
# Split documents
|
| 177 |
-
splitter = RecursiveCharacterTextSplitter(
|
| 178 |
-
chunk_size=512,
|
| 179 |
-
chunk_overlap=128,
|
| 180 |
-
separators=["\n\n", "\n", ". ", "! ", "? ", "; ", " ", ""]
|
| 181 |
)
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
#
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
return []
|
| 204 |
-
|
| 205 |
-
def vector_search():
|
| 206 |
-
try:
|
| 207 |
-
return self.vector_db.similarity_search(query, k=2)
|
| 208 |
-
except:
|
| 209 |
-
return []
|
| 210 |
-
|
| 211 |
-
def bm25_search():
|
| 212 |
-
try:
|
| 213 |
-
return self.bm25_retriever.invoke(query)
|
| 214 |
-
except:
|
| 215 |
-
return []
|
| 216 |
-
|
| 217 |
-
with ThreadPoolExecutor(max_workers=2) as executor:
|
| 218 |
-
vector_future = executor.submit(vector_search)
|
| 219 |
-
bm25_future = executor.submit(bm25_search)
|
| 220 |
-
vector_results = vector_future.result()
|
| 221 |
-
bm25_results = bm25_future.result()
|
| 222 |
-
|
| 223 |
-
# Combine and deduplicate
|
| 224 |
-
combined = vector_results + bm25_results
|
| 225 |
-
unique_docs = []
|
| 226 |
-
seen = set()
|
| 227 |
-
|
| 228 |
-
for doc in combined:
|
| 229 |
-
content_hash = hash(doc.page_content)
|
| 230 |
-
if content_hash not in seen:
|
| 231 |
-
seen.add(content_hash)
|
| 232 |
-
unique_docs.append(doc)
|
| 233 |
-
|
| 234 |
-
return unique_docs[:3] # Return top 3 unique docs
|
| 235 |
-
|
| 236 |
-
def query(self, query: str) -> Dict[str, any]:
|
| 237 |
-
"""Process a query with RAG"""
|
| 238 |
-
start_time = datetime.now()
|
| 239 |
-
|
| 240 |
-
# Retrieve relevant documents
|
| 241 |
-
docs = self.retrieve_documents(query)
|
| 242 |
-
|
| 243 |
-
if not docs:
|
| 244 |
-
return {
|
| 245 |
-
"answer": "No relevant information found.",
|
| 246 |
-
"sources": [],
|
| 247 |
-
"model": "none",
|
| 248 |
-
"time_ms": 0
|
| 249 |
-
}
|
| 250 |
-
|
| 251 |
-
# Prepare context
|
| 252 |
-
context = "\n\n".join([doc.page_content for doc in docs])
|
| 253 |
-
|
| 254 |
-
# Generate answer if LLM is available
|
| 255 |
-
if self.llm_provider.is_available:
|
| 256 |
-
try:
|
| 257 |
-
prompt = f"""Use the following context to answer the question:
|
| 258 |
-
|
| 259 |
-
Context:
|
| 260 |
-
{context}
|
| 261 |
-
|
| 262 |
-
Question: {query}
|
| 263 |
-
|
| 264 |
-
Answer:"""
|
| 265 |
-
|
| 266 |
-
answer = self.llm_provider.invoke(prompt)
|
| 267 |
-
|
| 268 |
-
return {
|
| 269 |
-
"answer": answer,
|
| 270 |
-
"sources": [doc.metadata.get("source", "") for doc in docs],
|
| 271 |
-
"model": self.llm_provider.current_model,
|
| 272 |
-
"time_ms": (datetime.now() - start_time).total_seconds() * 1000
|
| 273 |
-
}
|
| 274 |
-
except Exception as e:
|
| 275 |
-
print(f"[!] LLM error: {e}")
|
| 276 |
-
# Fall through to retrieval mode
|
| 277 |
-
|
| 278 |
-
# Fallback: return best matching document
|
| 279 |
-
best_doc = docs[0].page_content[:500] + "..." if len(docs[0].page_content) > 500 else docs[0].page_content
|
| 280 |
-
return {
|
| 281 |
-
"answer": f"Relevant information:\n\n{best_doc}",
|
| 282 |
-
"sources": [doc.metadata.get("source", "") for doc in docs],
|
| 283 |
-
"model": "retrieval-only",
|
| 284 |
-
"time_ms": (datetime.now() - start_time).total_seconds() * 1000
|
| 285 |
-
}
|
| 286 |
-
|
| 287 |
-
def add_document(self, filename: str, content: str) -> bool:
|
| 288 |
-
"""Add a document to the knowledge base"""
|
| 289 |
-
try:
|
| 290 |
-
self.knowledge_texts.append({
|
| 291 |
-
"filename": filename,
|
| 292 |
-
"content": content
|
| 293 |
-
})
|
| 294 |
-
|
| 295 |
-
# Save to file
|
| 296 |
-
with open(os.path.join(self.knowledge_dir, filename), "w") as f:
|
| 297 |
-
f.write(content)
|
| 298 |
-
|
| 299 |
-
# Rebuild retrievers
|
| 300 |
-
self.build_retrievers()
|
| 301 |
-
return True
|
| 302 |
-
|
| 303 |
-
except Exception as e:
|
| 304 |
-
print(f"[!] Error adding document: {e}")
|
| 305 |
-
return False
|
| 306 |
-
|
| 307 |
-
def cleanup(self):
|
| 308 |
-
"""Clean up temporary files"""
|
| 309 |
-
try:
|
| 310 |
-
shutil.rmtree(self.temp_dir)
|
| 311 |
-
except:
|
| 312 |
-
pass
|
| 313 |
-
|
| 314 |
-
def __del__(self):
|
| 315 |
-
self.cleanup()
|
|
|
|
| 1 |
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import List, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
|
|
|
|
| 9 |
from langchain.llms import HuggingFacePipeline
|
| 10 |
+
from langchain.chains import RetrievalQA
|
| 11 |
+
from langchain.vectorstores.faiss import FAISS
|
| 12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 13 |
+
from langchain.document_loaders import TextLoader
|
| 14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 15 |
|
| 16 |
+
import torch
|
| 17 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
class KnowledgeManager:
|
| 20 |
+
def __init__(self, knowledge_dir="knowledge_base"):
|
| 21 |
+
self.knowledge_dir = Path(knowledge_dir)
|
| 22 |
+
self.knowledge_dir.mkdir(exist_ok=True, parents=True)
|
| 23 |
+
|
| 24 |
+
self.documents = []
|
| 25 |
+
self.texts = []
|
| 26 |
+
self.vectorstore = None
|
| 27 |
+
self.retriever = None
|
| 28 |
+
self.qa_chain = None
|
| 29 |
+
self.llm = None
|
| 30 |
+
|
| 31 |
+
self.device = "cpu" # For HF Spaces, CPU only
|
| 32 |
+
|
| 33 |
+
# Initialize embeddings
|
| 34 |
+
self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 35 |
+
|
| 36 |
+
# Load and prepare knowledge
|
| 37 |
+
self.load_documents()
|
| 38 |
+
self.create_vectorstore()
|
| 39 |
+
self.init_llm()
|
| 40 |
+
self.init_qa_chain()
|
| 41 |
+
|
| 42 |
+
def load_documents(self):
|
| 43 |
+
# Load text files and split into chunks
|
| 44 |
+
files = list(self.knowledge_dir.glob("*.txt"))
|
| 45 |
+
self.documents = []
|
| 46 |
+
for file in files:
|
| 47 |
+
loader = TextLoader(str(file), encoding="utf-8")
|
| 48 |
+
docs = loader.load()
|
| 49 |
+
self.documents.extend(docs)
|
| 50 |
+
|
| 51 |
+
# Split into smaller chunks (to improve retrieval granularity)
|
| 52 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 53 |
+
self.texts = text_splitter.split_documents(self.documents)
|
| 54 |
+
|
| 55 |
+
def create_vectorstore(self):
|
| 56 |
+
if not self.texts:
|
| 57 |
+
self.vectorstore = None
|
| 58 |
+
return
|
| 59 |
+
self.vectorstore = FAISS.from_documents(self.texts, self.embeddings)
|
| 60 |
+
self.retriever = self.vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 61 |
|
| 62 |
+
def init_llm(self):
|
| 63 |
+
# Initialize HuggingFace pipeline + LangChain wrapper LLM
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Try flan-t5-small first
|
|
|
|
| 66 |
try:
|
| 67 |
+
pipe = pipeline(
|
| 68 |
+
"text2text-generation",
|
| 69 |
+
model="google/flan-t5-small",
|
| 70 |
+
device=-1, # CPU only
|
| 71 |
+
max_length=256,
|
| 72 |
+
do_sample=False,
|
| 73 |
)
|
| 74 |
+
self.llm = HuggingFacePipeline(pipeline=pipe)
|
| 75 |
except Exception as e:
|
| 76 |
+
print(f"Failed to load flan-t5-small: {e}")
|
| 77 |
+
self.llm = None
|
| 78 |
+
|
| 79 |
+
# Fallback: if no LLM, set to None and warn
|
| 80 |
+
if self.llm is None:
|
| 81 |
+
print("No LLM available, will fallback to retrieval-only.")
|
| 82 |
+
|
| 83 |
+
def init_qa_chain(self):
|
| 84 |
+
if self.llm and self.retriever:
|
| 85 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
| 86 |
+
llm=self.llm,
|
| 87 |
+
retriever=self.retriever,
|
| 88 |
+
return_source_documents=True,
|
| 89 |
+
chain_type="stuff", # Stuff all docs in prompt, or "map_reduce"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
+
else:
|
| 92 |
+
self.qa_chain = None
|
| 93 |
+
|
| 94 |
+
def get_knowledge_summary(self) -> str:
|
| 95 |
+
count = len(self.texts) if self.texts else 0
|
| 96 |
+
return f"{count} document chunks loaded."
|
| 97 |
+
|
| 98 |
+
def query(self, question: str):
|
| 99 |
+
if self.qa_chain:
|
| 100 |
+
# Use LLM + retrieval
|
| 101 |
+
result = self.qa_chain({"query": question})
|
| 102 |
+
answer = result.get("result", "No answer found.")
|
| 103 |
+
sources = result.get("source_documents", [])
|
| 104 |
+
source_texts = [doc.page_content for doc in sources]
|
| 105 |
+
return answer, source_texts
|
| 106 |
+
elif self.retriever:
|
| 107 |
+
# Retrieval only fallback
|
| 108 |
+
docs = self.retriever.get_relevant_documents(question)
|
| 109 |
+
answers = [doc.page_content for doc in docs]
|
| 110 |
+
return "\n\n".join(answers), []
|
| 111 |
+
else:
|
| 112 |
+
return "Knowledge base not initialized.", []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|