Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +10 -15
knowledge_engine.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
from langchain.vectorstores import FAISS
|
| 3 |
-
from langchain.embeddings import
|
| 4 |
from langchain.chains import RetrievalQA
|
| 5 |
from langchain.llms import HuggingFacePipeline
|
| 6 |
from transformers import pipeline
|
|
@@ -19,42 +19,37 @@ class KnowledgeManager:
|
|
| 19 |
self._load_knowledge_base()
|
| 20 |
|
| 21 |
def _initialize_llm(self):
|
| 22 |
-
#
|
| 23 |
local_pipe = pipeline("text2text-generation", model="google/flan-t5-small", max_length=256)
|
| 24 |
self.llm = HuggingFacePipeline(pipeline=local_pipe)
|
| 25 |
|
| 26 |
def _initialize_embeddings(self):
|
| 27 |
-
#
|
| 28 |
-
self.embeddings =
|
| 29 |
|
| 30 |
def _load_knowledge_base(self):
|
| 31 |
-
#
|
| 32 |
txt_files = [f for f in os.listdir(self.root_dir) if f.endswith(".txt")]
|
| 33 |
|
| 34 |
if not txt_files:
|
| 35 |
raise FileNotFoundError("No .txt files found in root directory.")
|
| 36 |
|
| 37 |
-
# Read all txt files content
|
| 38 |
all_texts = []
|
| 39 |
for filename in txt_files:
|
| 40 |
path = os.path.join(self.root_dir, filename)
|
| 41 |
with open(path, "r", encoding="utf-8") as f:
|
| 42 |
-
|
| 43 |
-
all_texts.append(content)
|
| 44 |
|
| 45 |
full_text = "\n\n".join(all_texts)
|
| 46 |
|
| 47 |
-
# Split
|
| 48 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 49 |
-
|
| 50 |
|
| 51 |
-
# Create
|
| 52 |
-
docs = text_splitter.create_documents(chunks)
|
| 53 |
-
|
| 54 |
-
# Create FAISS vector store from documents and embeddings
|
| 55 |
self.docsearch = FAISS.from_documents(docs, self.embeddings)
|
| 56 |
|
| 57 |
-
#
|
| 58 |
self.qa_chain = RetrievalQA.from_chain_type(
|
| 59 |
llm=self.llm,
|
| 60 |
chain_type="stuff",
|
|
|
|
| 1 |
import os
|
| 2 |
from langchain.vectorstores import FAISS
|
| 3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
from langchain.chains import RetrievalQA
|
| 5 |
from langchain.llms import HuggingFacePipeline
|
| 6 |
from transformers import pipeline
|
|
|
|
| 19 |
self._load_knowledge_base()
|
| 20 |
|
| 21 |
def _initialize_llm(self):
|
| 22 |
+
# Load local text2text model using HuggingFace pipeline (FLAN-T5 small)
|
| 23 |
local_pipe = pipeline("text2text-generation", model="google/flan-t5-small", max_length=256)
|
| 24 |
self.llm = HuggingFacePipeline(pipeline=local_pipe)
|
| 25 |
|
| 26 |
def _initialize_embeddings(self):
|
| 27 |
+
# Use general-purpose sentence transformer
|
| 28 |
+
self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 29 |
|
| 30 |
def _load_knowledge_base(self):
|
| 31 |
+
# Automatically find all .txt files in the root directory
|
| 32 |
txt_files = [f for f in os.listdir(self.root_dir) if f.endswith(".txt")]
|
| 33 |
|
| 34 |
if not txt_files:
|
| 35 |
raise FileNotFoundError("No .txt files found in root directory.")
|
| 36 |
|
|
|
|
| 37 |
all_texts = []
|
| 38 |
for filename in txt_files:
|
| 39 |
path = os.path.join(self.root_dir, filename)
|
| 40 |
with open(path, "r", encoding="utf-8") as f:
|
| 41 |
+
all_texts.append(f.read())
|
|
|
|
| 42 |
|
| 43 |
full_text = "\n\n".join(all_texts)
|
| 44 |
|
| 45 |
+
# Split text into chunks for embedding
|
| 46 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 47 |
+
docs = text_splitter.create_documents([full_text])
|
| 48 |
|
| 49 |
+
# Create FAISS vector store
|
|
|
|
|
|
|
|
|
|
| 50 |
self.docsearch = FAISS.from_documents(docs, self.embeddings)
|
| 51 |
|
| 52 |
+
# Build the QA chain
|
| 53 |
self.qa_chain = RetrievalQA.from_chain_type(
|
| 54 |
llm=self.llm,
|
| 55 |
chain_type="stuff",
|