import scipy.stats import numpy as np import gradio as gr import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') theta = np.linspace(0, 1, 100) def plot_beta(alpha, beta): plt.gca().cla() plt.plot(theta, scipy.stats.beta.pdf(theta, alpha, beta)) plt.ylim(0, 4) plt.xlabel('$\\theta$') plt.ylabel('pdf value') plt.tight_layout() return plt s1 = gr.inputs.Slider(minimum=0, maximum=5, step=0.1, default=2, label="alpha") s2 = gr.inputs.Slider(minimum=0, maximum=5, step=0.1, default=2, label="beta") iface = gr.Interface(fn=plot_beta, inputs=[s1, s2], outputs="image", live=True) iface.launch()