Pocket-Gen / models /esmadapter.py
Zaixi's picture
1
dcacefd
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from copy import deepcopy
import math
import torch
import esm
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import OmegaConf
from esm.modules import (
TransformerLayer,
LearnedPositionalEmbedding,
SinusoidalPositionalEmbedding,
RobertaLMHead,
ESM1bLayerNorm,
ContactPredictionHead,
ESM1LayerNorm,
FeedForwardNetwork,
NormalizedResidualBlock,
gelu,
)
from esm.multihead_attention import MultiheadAttention
class ProteinBertModelWithStructuralAdatper(nn.Module):
@classmethod
def add_args(cls, parser):
parser.add_argument(
"--num_layers", default=36, type=int, metavar="N", help="number of layers"
)
parser.add_argument(
"--embed_dim", default=1280, type=int, metavar="N", help="embedding dimension"
)
parser.add_argument(
"--logit_bias", action="store_true", help="whether to apply bias to logits"
)
parser.add_argument(
"--ffn_embed_dim",
default=5120,
type=int,
metavar="N",
help="embedding dimension for FFN",
)
parser.add_argument(
"--attention_heads",
default=20,
type=int,
metavar="N",
help="number of attention heads",
)
@classmethod
def from_pretrained(cls, args, override_args=None, name='esm1b_t33_650M_UR50S'):
pretrained_model, alphabet = esm.pretrained.load_model_and_alphabet_hub(name)
args = OmegaConf.merge(vars(deepcopy(pretrained_model.args)), args)
args.adapter_layer_indices = [6, 20 ,32]
model = cls(args, deepcopy(alphabet))
model.load_state_dict(pretrained_model.state_dict(), strict=False)
del pretrained_model
# freeze pretrained parameters
for pname, param in model.named_parameters():
if 'adapter' not in pname:
param.requires_grad = False
return model
def __init__(self, args, alphabet):
super().__init__()
self.args = args
self.alphabet_size = len(alphabet)
self.padding_idx = alphabet.padding_idx
self.mask_idx = alphabet.mask_idx
self.cls_idx = alphabet.cls_idx
self.eos_idx = alphabet.eos_idx
self.prepend_bos = alphabet.prepend_bos
self.append_eos = alphabet.append_eos
self.emb_layer_norm_before = getattr(self.args, "emb_layer_norm_before", False)
if self.args.arch == "roberta_large":
self.model_version = "ESM-1b"
self._init_submodules_esm1b()
else:
self.model_version = "ESM-1"
self._init_submodules_esm1()
def _init_submodules_common(self):
self.embed_tokens = nn.Embedding(
self.alphabet_size, self.args.embed_dim, padding_idx=self.padding_idx
)
self.layers = nn.ModuleList(
[
self._init_layer(layer_idx)
for layer_idx in range(self.args.layers)
]
)
self.contact_head = ContactPredictionHead(
self.args.layers * self.args.attention_heads,
self.prepend_bos,
self.append_eos,
eos_idx=self.eos_idx,
)
def _init_layer(self, layer_idx):
if layer_idx in self.args.adapter_layer_indices:
layer = TransforerLayerWithStructralAdapter(
self.args.embed_dim,
self.args.ffn_embed_dim,
self.args.attention_heads,
encoder_embed_dim=self.args.encoder.d_model,
add_bias_kv=(self.model_version != "ESM-1b"),
use_esm1b_layer_norm=(self.model_version == "ESM-1b"),
)
else:
layer = TransformerLayer(
self.args.embed_dim,
self.args.ffn_embed_dim,
self.args.attention_heads,
add_bias_kv=(self.model_version != "ESM-1b"),
use_esm1b_layer_norm=(self.model_version == "ESM-1b"),
)
return layer
def _init_submodules_esm1b(self):
self._init_submodules_common()
self.embed_scale = 1
self.embed_positions = LearnedPositionalEmbedding(
self.args.max_positions, self.args.embed_dim, self.padding_idx
)
self.emb_layer_norm_before = (
ESM1bLayerNorm(self.args.embed_dim) if self.emb_layer_norm_before else None
)
self.emb_layer_norm_after = ESM1bLayerNorm(self.args.embed_dim)
self.lm_head = RobertaLMHead(
embed_dim=self.args.embed_dim,
output_dim=self.alphabet_size,
weight=self.embed_tokens.weight,
)
def _init_submodules_esm1(self):
self._init_submodules_common()
self.embed_scale = math.sqrt(self.args.embed_dim)
self.embed_positions = SinusoidalPositionalEmbedding(self.args.embed_dim, self.padding_idx)
self.embed_out = nn.Parameter(torch.zeros((self.alphabet_size, self.args.embed_dim)))
self.embed_out_bias = None
if self.args.final_bias:
self.embed_out_bias = nn.Parameter(torch.zeros(self.alphabet_size))
def forward_layers(self, x, encoder_out, padding_mask, repr_layers=[], hidden_representations=[],
need_head_weights=False, attn_weights=[]):
for layer_idx, layer in enumerate(self.layers):
if layer_idx in self.args.adapter_layer_indices:
x, attn = layer(
x, encoder_out, self_attn_padding_mask=padding_mask, need_head_weights=need_head_weights
)
else:
x, attn = layer(
x, self_attn_padding_mask=padding_mask, need_head_weights=need_head_weights
)
if (layer_idx + 1) in repr_layers:
hidden_representations[layer_idx + 1] = x.transpose(0, 1)
if need_head_weights:
# (H, B, T, T) => (B, H, T, T)
attn_weights.append(attn.transpose(1, 0))
return x, hidden_representations, attn_weights
def forward(self, tokens, encoder_out, repr_layers=[], need_head_weights=False, return_contacts=False):
if return_contacts:
need_head_weights = True
assert tokens.ndim == 2
padding_mask = tokens.eq(self.padding_idx) # B, T
x = self.embed_scale * self.embed_tokens(tokens)
if getattr(self.args, "token_dropout", False):
x.masked_fill_((tokens == self.mask_idx).unsqueeze(-1), 0.0)
# x: B x T x C
mask_ratio_train = 0.15 * 0.8
src_lengths = (~padding_mask).sum(-1)
mask_ratio_observed = (tokens == self.mask_idx).sum(-1).float() / src_lengths
x = x * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
x = x + self.embed_positions(tokens)
if self.model_version == "ESM-1b":
if self.emb_layer_norm_before:
x = self.emb_layer_norm_before(x)
if padding_mask is not None:
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
repr_layers = set(repr_layers)
hidden_representations = {}
if 0 in repr_layers:
hidden_representations[0] = x
if need_head_weights:
attn_weights = []
# (B, T, E) => (T, B, E)
x = x.transpose(0, 1)
if not padding_mask.any():
padding_mask = None
# for layer_idx, layer in enumerate(self.layers):
# x, attn = layer(
# x, self_attn_padding_mask=padding_mask, need_head_weights=need_head_weights
# )
# if (layer_idx + 1) in repr_layers:
# hidden_representations[layer_idx + 1] = x.transpose(0, 1)
# if need_head_weights:
# # (H, B, T, T) => (B, H, T, T)
# attn_weights.append(attn.transpose(1, 0))
x, hidden_representations, attn_weights = self.forward_layers(
x, encoder_out, padding_mask,
repr_layers=repr_layers,
hidden_representations=hidden_representations,
need_head_weights=need_head_weights,
attn_weights=attn_weights if need_head_weights else None
)
if self.model_version == "ESM-1b":
x = self.emb_layer_norm_after(x)
x = x.transpose(0, 1) # (T, B, E) => (B, T, E)
# last hidden representation should have layer norm applied
if len(self.layers) in repr_layers:
hidden_representations[len(self.layers)] = x
x = self.lm_head(x)
else:
x = F.linear(x, self.embed_out, bias=self.embed_out_bias)
x = x.transpose(0, 1) # (T, B, E) => (B, T, E)
result = {"logits": x, "representations": hidden_representations}
if need_head_weights:
# attentions: B x L x H x T x T
attentions = torch.stack(attn_weights, 1)
if self.model_version == "ESM-1":
# ESM-1 models have an additional null-token for attention, which we remove
attentions = attentions[..., :-1]
if padding_mask is not None:
attention_mask = 1 - padding_mask.type_as(attentions)
attention_mask = attention_mask.unsqueeze(1) * attention_mask.unsqueeze(2)
attentions = attentions * attention_mask[:, None, None, :, :]
result["attentions"] = attentions
if return_contacts:
contacts = self.contact_head(tokens, attentions)
result["contacts"] = contacts
return result
def predict_contacts(self, tokens):
return self(tokens, return_contacts=True)["contacts"]
@property
def num_layers(self):
return self.args.layers
class TransforerLayerWithStructralAdapter(nn.Module):
def __init__(
self,
embed_dim,
ffn_embed_dim,
attention_heads,
encoder_embed_dim,
add_bias_kv=True,
use_esm1b_layer_norm=False,
use_rotary_embeddings: bool = False,
):
super().__init__()
self.embed_dim = embed_dim
self.ffn_embed_dim = ffn_embed_dim
self.attention_heads = attention_heads
self.use_rotary_embeddings = use_rotary_embeddings
self.encoder_embed_dim = encoder_embed_dim
self._init_submodules(add_bias_kv, use_esm1b_layer_norm)
def _init_submodules(self, add_bias_kv, use_esm1b_layer_norm):
BertLayerNorm = ESM1bLayerNorm if use_esm1b_layer_norm else ESM1LayerNorm
self.self_attn = MultiheadAttention(
self.embed_dim,
self.attention_heads,
add_bias_kv=add_bias_kv,
add_zero_attn=False,
use_rotary_embeddings=self.use_rotary_embeddings,
)
self.self_attn_layer_norm = BertLayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim)
self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim)
self.final_layer_norm = BertLayerNorm(self.embed_dim)
# structural adapter
self.structural_adapter_attn = NormalizedResidualBlock(
layer=MultiheadAttention(
self.embed_dim,
self.attention_heads,
kdim=self.encoder_embed_dim,
vdim=self.encoder_embed_dim,
add_bias_kv=add_bias_kv,
add_zero_attn=False,
use_rotary_embeddings=True,
),
embedding_dim=self.embed_dim,
dropout=0.1
)
self.structural_adapter_ffn = NormalizedResidualBlock(
layer=FeedForwardNetwork(
self.embed_dim,
self.embed_dim // 2, # NOTE: bottleneck FFN is important
# self.ffn_embed_dim,
activation_dropout=0.1
),
embedding_dim=self.embed_dim,
dropout=0.1
)
def forward(
self, x, encoder_out, self_attn_mask=None, self_attn_padding_mask=None, need_head_weights=False
):
residual = x
x = self.self_attn_layer_norm(x)
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=True,
need_head_weights=need_head_weights,
attn_mask=self_attn_mask,
)
x = residual + x
# x = self.forward_adapter(x, encoder_out, attn_mask=self_attn_mask, attn_padding_mask=self_attn_padding_mask)
residual = x
x = self.final_layer_norm(x)
x = gelu(self.fc1(x))
x = self.fc2(x)
x = residual + x
x = x + self.forward_adapter(x, encoder_out, attn_mask=self_attn_mask, attn_padding_mask=self_attn_padding_mask)
return x, attn
def forward_adapter(self, x, encoder_out, attn_mask, attn_padding_mask):
encoder_feats = encoder_out['feats']
encoder_feats = encoder_feats.transpose(0, 1)
x = self.structural_adapter_attn(
x,
key=encoder_feats,
value=encoder_feats,
key_padding_mask=attn_padding_mask,
attn_mask=attn_mask,
need_weights=False
)[0]
x = self.structural_adapter_ffn(x)
# x = x.transpose(0, 1)
return x