Spaces:
Sleeping
Sleeping
File size: 10,652 Bytes
dcacefd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import _WeightedLoss
from torch_scatter import scatter_mean, scatter_add
def split_tensor_by_batch(x, batch, num_graphs=None):
"""
Args:
x: (N, ...)
batch: (B, )
Returns:
[(N_1, ), (N_2, ) ..., (N_B, ))]
"""
if num_graphs is None:
num_graphs = batch.max().item() + 1
x_split = []
for i in range (num_graphs):
mask = batch == i
x_split.append(x[mask])
return x_split
def concat_tensors_to_batch(x_split):
x = torch.cat(x_split, dim=0)
batch = torch.repeat_interleave(
torch.arange(len(x_split)),
repeats=torch.LongTensor([s.size(0) for s in x_split])
).to(device=x.device)
return x, batch
def split_tensor_to_segments(x, segsize):
num_segs = math.ceil(x.size(0) / segsize)
segs = []
for i in range(num_segs):
segs.append(x[i*segsize : (i+1)*segsize])
return segs
def split_tensor_by_lengths(x, lengths):
segs = []
for l in lengths:
segs.append(x[:l])
x = x[l:]
return segs
def batch_intersection_mask(batch, batch_filter):
batch_filter = batch_filter.unique()
mask = (batch.view(-1, 1) == batch_filter.view(1, -1)).any(dim=1)
return mask
class MeanReadout(nn.Module):
"""Mean readout operator over graphs with variadic sizes."""
def forward(self, input, batch, num_graphs):
"""
Perform readout over the graph(s).
Parameters:
data (torch_geometric.data.Data): batched graph
input (Tensor): node representations
Returns:
Tensor: graph representations
"""
output = scatter_mean(input, batch, dim=0, dim_size=num_graphs)
return output
class SumReadout(nn.Module):
"""Sum readout operator over graphs with variadic sizes."""
def forward(self, input, batch, num_graphs):
"""
Perform readout over the graph(s).
Parameters:
data (torch_geometric.data.Data): batched graph
input (Tensor): node representations
Returns:
Tensor: graph representations
"""
output = scatter_add(input, batch, dim=0, dim_size=num_graphs)
return output
class MultiLayerPerceptron(nn.Module):
"""
Multi-layer Perceptron.
Note there is no activation or dropout in the last layer.
Parameters:
input_dim (int): input dimension
hidden_dim (list of int): hidden dimensions
activation (str or function, optional): activation function
dropout (float, optional): dropout rate
"""
def __init__(self, input_dim, hidden_dims, activation="relu", dropout=0):
super(MultiLayerPerceptron, self).__init__()
self.dims = [input_dim] + hidden_dims
if isinstance(activation, str):
self.activation = getattr(F, activation)
else:
self.activation = None
if dropout:
self.dropout = nn.Dropout(dropout)
else:
self.dropout = None
self.layers = nn.ModuleList()
for i in range(len(self.dims) - 1):
self.layers.append(nn.Linear(self.dims[i], self.dims[i + 1]))
def forward(self, input):
""""""
x = input
for i, layer in enumerate(self.layers):
x = layer(x)
if i < len(self.layers) - 1:
if self.activation:
x = self.activation(x)
if self.dropout:
x = self.dropout(x)
return x
class SmoothCrossEntropyLoss(_WeightedLoss):
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
@staticmethod
def _smooth_one_hot(targets:torch.Tensor, n_classes:int, smoothing=0.0):
assert 0 <= smoothing < 1
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing /(n_classes-1)) \
.scatter_(1, targets.data.unsqueeze(1), 1.-smoothing)
return targets
def forward(self, inputs, targets):
targets = SmoothCrossEntropyLoss._smooth_one_hot(targets, inputs.size(-1),
self.smoothing)
lsm = F.log_softmax(inputs, -1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss
class GaussianSmearing(nn.Module):
def __init__(self, start=0.0, stop=10.0, num_gaussians=50):
super().__init__()
offset = torch.linspace(start, stop, num_gaussians)
self.coeff = -0.5 / (offset[1] - offset[0]).item()**2
self.register_buffer('offset', offset)
def forward(self, dist):
dist = dist.view(-1, 1) - self.offset.view(1, -1)
return torch.exp(self.coeff * torch.pow(dist, 2))
class ShiftedSoftplus(nn.Module):
def __init__(self):
super().__init__()
self.shift = torch.log(torch.tensor(2.0)).item()
def forward(self, x):
return F.softplus(x) - self.shift
def compose_context(h_protein, h_ligand, pos_protein, pos_ligand, batch_protein, batch_ligand):
batch_ctx = torch.cat([batch_protein, batch_ligand], dim=0)
sort_idx = batch_ctx.argsort()
mask_protein = torch.cat([
torch.ones([batch_protein.size(0)], device=batch_protein.device).bool(),
torch.zeros([batch_ligand.size(0)], device=batch_ligand.device).bool(),
], dim=0)[sort_idx]
batch_ctx = batch_ctx[sort_idx]
h_ctx = torch.cat([h_protein, h_ligand], dim=0)[sort_idx] # (N_protein+N_ligand, H)
pos_ctx = torch.cat([pos_protein, pos_ligand], dim=0)[sort_idx] # (N_protein+N_ligand, 3)
return h_ctx, pos_ctx, batch_ctx
def get_complete_graph(batch):
"""
Args:
batch: Batch index.
Returns:
edge_index: (2, N_1 + N_2 + ... + N_{B-1}), where N_i is the number of nodes of the i-th graph.
neighbors: (B, ), number of edges per graph.
"""
natoms = scatter_add(torch.ones_like(batch), index=batch, dim=0)
natoms_sqr = (natoms ** 2).long()
num_atom_pairs = torch.sum(natoms_sqr)
natoms_expand = torch.repeat_interleave(natoms, natoms_sqr)
index_offset = torch.cumsum(natoms, dim=0) - natoms
index_offset_expand = torch.repeat_interleave(index_offset, natoms_sqr)
index_sqr_offset = torch.cumsum(natoms_sqr, dim=0) - natoms_sqr
index_sqr_offset = torch.repeat_interleave(index_sqr_offset, natoms_sqr)
atom_count_sqr = torch.arange(num_atom_pairs, device=num_atom_pairs.device) - index_sqr_offset
index1 = (atom_count_sqr // natoms_expand).long() + index_offset_expand
index2 = (atom_count_sqr % natoms_expand).long() + index_offset_expand
edge_index = torch.cat([index1.view(1, -1), index2.view(1, -1)])
mask = torch.logical_not(index1 == index2)
edge_index = edge_index[:, mask]
num_edges = natoms_sqr - natoms # Number of edges per graph
return edge_index, num_edges
def compose_context_stable(h_protein, h_ligand, pos_protein, pos_ligand, batch_protein, batch_ligand):
num_graphs = batch_protein.max().item() + 1
batch_ctx = []
h_ctx = []
pos_ctx = []
mask_protein = []
for i in range(num_graphs):
mask_p, mask_l = (batch_protein == i), (batch_ligand == i)
batch_p, batch_l = batch_protein[mask_p], batch_ligand[mask_l]
batch_ctx += [batch_p, batch_l]
h_ctx += [h_protein[mask_p], h_ligand[mask_l]]
pos_ctx += [pos_protein[mask_p], pos_ligand[mask_l]]
mask_protein += [
torch.ones([batch_p.size(0)], device=batch_p.device, dtype=torch.bool),
torch.zeros([batch_l.size(0)], device=batch_l.device, dtype=torch.bool),
]
batch_ctx = torch.cat(batch_ctx, dim=0)
h_ctx = torch.cat(h_ctx, dim=0)
pos_ctx = torch.cat(pos_ctx, dim=0)
mask_protein = torch.cat(mask_protein, dim=0)
return h_ctx, pos_ctx, batch_ctx, mask_protein
def compose_external_attention(batch_protein, batch_ligand, edit_protein_mask):
num_graphs = batch_protein.max().item() + 1
row, col = [], []
protein_index, ligand_index = torch.arange(len(batch_protein)).to(batch_protein.device), torch.arange(len(batch_ligand)).to(batch_protein.device)
for i in range(num_graphs):
mask_p, mask_l = (batch_protein == i), (batch_ligand == i)
p_idx, q_idx = torch.cartesian_prod(protein_index[mask_p][edit_protein_mask[mask_p]], ligand_index[mask_l]).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
row.append(p_idx)
col.append(q_idx)
row = torch.cat(row, dim=0).to(batch_protein.device)
col = torch.cat(col, dim=0).to(batch_protein.device)
return [row, col]
def pos2X(pos, mask_protein, atom2residue):
num_graphs = atom2residue.max().item() + 1
X = torch.zeros(num_graphs, 14, 3, device = mask_protein.device)
pos_protein = pos[mask_protein]
for i in range(num_graphs):
mask_p = (atom2residue == i)
batch_pos = pos_protein[mask_p]
X[i][:len(batch_pos)] = batch_pos
return X
def X2pos(X):
pos = []
for i in range(len(X)):
mask = torch.norm(X[i], dim=-1)>1e-6
pos.append(X[i][mask])
pos = torch.cat(pos, dim=0)
return pos
if __name__ == '__main__':
h_protein = torch.randn([60, 64])
h_ligand = -torch.randn([33, 64])
pos_protein = torch.clamp(torch.randn([60, 3]), 0, float('inf'))
pos_ligand = torch.clamp(torch.randn([33, 3]), float('-inf'), 0)
batch_protein = torch.LongTensor([0]*10 + [1]*20 + [2]*30)
batch_ligand = torch.LongTensor([0]*11 + [1]*11 + [2]*11)
h_ctx, pos_ctx, batch_ctx, mask_protein = compose_context_stable(h_protein, h_ligand, pos_protein, pos_ligand, batch_protein, batch_ligand)
assert (batch_ctx[mask_protein] == batch_protein).all()
assert (batch_ctx[torch.logical_not(mask_protein)] == batch_ligand).all()
assert torch.allclose(h_ctx[torch.logical_not(mask_protein)], h_ligand)
assert torch.allclose(h_ctx[mask_protein], h_protein)
assert torch.allclose(pos_ctx[torch.logical_not(mask_protein)], pos_ligand)
assert torch.allclose(pos_ctx[mask_protein], pos_protein)
|