Spaces:
Paused
Paused
v1
Browse files- app.py +49 -8
- checkpoints/{st-step=100000+la-step=100000-v2.ckpt → st-step=100000+la-step=100000-v1.ckpt} +2 -2
- configs/demo.yaml +2 -2
- configs/test/textdesign_sd_2.yaml +28 -17
- sgm/modules/__init__.py +1 -1
- sgm/modules/attention.py +621 -61
- sgm/modules/diffusionmodules/__init__.py +1 -1
- sgm/modules/diffusionmodules/guiders.py +33 -4
- sgm/modules/diffusionmodules/loss.py +1 -58
- sgm/modules/diffusionmodules/openaimodel.py +1641 -195
- sgm/modules/diffusionmodules/sampling.py +222 -5
- sgm/modules/diffusionmodules/sampling_utils.py +4 -1
- sgm/modules/diffusionmodules/wrappers.py +2 -2
- sgm/modules/encoders/modules.py +50 -43
- util.py +1 -9
app.py
CHANGED
|
@@ -8,10 +8,56 @@ from omegaconf import OmegaConf
|
|
| 8 |
from contextlib import nullcontext
|
| 9 |
from pytorch_lightning import seed_everything
|
| 10 |
from os.path import join as ospj
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
from util import *
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def predict(cfgs, model, sampler, batch):
|
| 16 |
|
| 17 |
context = nullcontext if cfgs.aae_enabled else torch.no_grad
|
|
@@ -58,15 +104,8 @@ def demo_predict(input_blk, text, num_samples, steps, scale, seed, show_detail):
|
|
| 58 |
|
| 59 |
image = input_blk["image"]
|
| 60 |
mask = input_blk["mask"]
|
| 61 |
-
image = cv2.resize(image, (cfgs.W, cfgs.H))
|
| 62 |
-
mask = cv2.resize(mask, (cfgs.W, cfgs.H))
|
| 63 |
-
|
| 64 |
-
mask = (mask == 0).astype(np.int32)
|
| 65 |
|
| 66 |
-
image =
|
| 67 |
-
mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32).mean(dim=0, keepdim=True)
|
| 68 |
-
masked = image * mask
|
| 69 |
-
mask = 1 - mask
|
| 70 |
|
| 71 |
seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))
|
| 72 |
|
|
@@ -131,6 +170,7 @@ if __name__ == "__main__":
|
|
| 131 |
model = init_model(cfgs)
|
| 132 |
sampler = init_sampling(cfgs)
|
| 133 |
global_index = 0
|
|
|
|
| 134 |
|
| 135 |
block = gr.Blocks().queue()
|
| 136 |
with block:
|
|
@@ -161,6 +201,7 @@ if __name__ == "__main__":
|
|
| 161 |
with gr.Column():
|
| 162 |
|
| 163 |
input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
|
|
|
|
| 164 |
text = gr.Textbox(label="Text to render: (1~12 characters)", info="the text you want to render at the masked region")
|
| 165 |
run_button = gr.Button(variant="primary")
|
| 166 |
|
|
|
|
| 8 |
from contextlib import nullcontext
|
| 9 |
from pytorch_lightning import seed_everything
|
| 10 |
from os.path import join as ospj
|
| 11 |
+
from random import randint
|
| 12 |
+
from torchvision.utils import save_image
|
| 13 |
+
from torchvision.transforms import Resize
|
| 14 |
|
| 15 |
from util import *
|
| 16 |
|
| 17 |
|
| 18 |
+
def process(image, mask):
|
| 19 |
+
|
| 20 |
+
img_h, img_w = image.shape[:2]
|
| 21 |
+
|
| 22 |
+
mask = mask[...,:1]//255
|
| 23 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
| 24 |
+
if len(contours) != 1: raise gr.Error("One masked area only!")
|
| 25 |
+
|
| 26 |
+
m_x, m_y, m_w, m_h = cv2.boundingRect(contours[0])
|
| 27 |
+
c_x, c_y = m_x + m_w//2, m_y + m_h//2
|
| 28 |
+
|
| 29 |
+
if img_w > img_h:
|
| 30 |
+
if m_w > img_h: raise gr.Error("Illegal mask area!")
|
| 31 |
+
if c_x < img_w - c_x:
|
| 32 |
+
c_l = max(0, c_x - img_h//2)
|
| 33 |
+
c_r = c_l + img_h
|
| 34 |
+
else:
|
| 35 |
+
c_r = min(img_w, c_x + img_h//2)
|
| 36 |
+
c_l = c_r - img_h
|
| 37 |
+
image = image[:,c_l:c_r,:]
|
| 38 |
+
mask = mask[:,c_l:c_r,:]
|
| 39 |
+
else:
|
| 40 |
+
if m_h > img_w: raise gr.Error("Illegal mask area!")
|
| 41 |
+
if c_y < img_h - c_y:
|
| 42 |
+
c_t = max(0, c_y - img_w//2)
|
| 43 |
+
c_b = c_t + img_w
|
| 44 |
+
else:
|
| 45 |
+
c_b = min(img_h, c_y + img_w//2)
|
| 46 |
+
c_t = c_b - img_w
|
| 47 |
+
image = image[c_t:c_b,:,:]
|
| 48 |
+
mask = mask[c_t:c_b,:,:]
|
| 49 |
+
|
| 50 |
+
image = torch.from_numpy(image.transpose(2,0,1)).to(dtype=torch.float32) / 127.5 - 1.0
|
| 51 |
+
mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32)
|
| 52 |
+
|
| 53 |
+
image = resize(image[None])[0]
|
| 54 |
+
mask = resize(mask[None])[0]
|
| 55 |
+
masked = image * (1 - mask)
|
| 56 |
+
|
| 57 |
+
return image, mask, masked
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
def predict(cfgs, model, sampler, batch):
|
| 62 |
|
| 63 |
context = nullcontext if cfgs.aae_enabled else torch.no_grad
|
|
|
|
| 104 |
|
| 105 |
image = input_blk["image"]
|
| 106 |
mask = input_blk["mask"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
image, mask, masked = process(image, mask)
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))
|
| 111 |
|
|
|
|
| 170 |
model = init_model(cfgs)
|
| 171 |
sampler = init_sampling(cfgs)
|
| 172 |
global_index = 0
|
| 173 |
+
resize = Resize((cfgs.H, cfgs.W))
|
| 174 |
|
| 175 |
block = gr.Blocks().queue()
|
| 176 |
with block:
|
|
|
|
| 201 |
with gr.Column():
|
| 202 |
|
| 203 |
input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
|
| 204 |
+
gr.Markdown("Notice: please draw horizontally to indicate only **one** masked area.")
|
| 205 |
text = gr.Textbox(label="Text to render: (1~12 characters)", info="the text you want to render at the masked region")
|
| 206 |
run_button = gr.Button(variant="primary")
|
| 207 |
|
checkpoints/{st-step=100000+la-step=100000-v2.ckpt → st-step=100000+la-step=100000-v1.ckpt}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:edea71eb83b6be72c33ef787a7122a810a7b9257bf97a276ef322707d5769878
|
| 3 |
+
size 6148465904
|
configs/demo.yaml
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
type: "demo"
|
| 2 |
|
| 3 |
# path
|
| 4 |
-
load_ckpt_path: "./checkpoints/st-step=100000+la-step=100000-
|
| 5 |
model_cfg_path: "./configs/test/textdesign_sd_2.yaml"
|
| 6 |
|
| 7 |
# param
|
|
@@ -15,7 +15,7 @@ channel: 4 # AE latent channel
|
|
| 15 |
factor: 8 # AE downsample factor
|
| 16 |
scale: [4.0, 0.0] # content scale, style scale
|
| 17 |
noise_iters: 10
|
| 18 |
-
force_uc_zero_embeddings: ["
|
| 19 |
aae_enabled: False
|
| 20 |
detailed: False
|
| 21 |
|
|
|
|
| 1 |
type: "demo"
|
| 2 |
|
| 3 |
# path
|
| 4 |
+
load_ckpt_path: "./checkpoints/st-step=100000+la-step=100000-v1.ckpt"
|
| 5 |
model_cfg_path: "./configs/test/textdesign_sd_2.yaml"
|
| 6 |
|
| 7 |
# param
|
|
|
|
| 15 |
factor: 8 # AE downsample factor
|
| 16 |
scale: [4.0, 0.0] # content scale, style scale
|
| 17 |
noise_iters: 10
|
| 18 |
+
force_uc_zero_embeddings: ["label"]
|
| 19 |
aae_enabled: False
|
| 20 |
detailed: False
|
| 21 |
|
configs/test/textdesign_sd_2.yaml
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
model:
|
| 2 |
target: sgm.models.diffusion.DiffusionEngine
|
| 3 |
params:
|
| 4 |
-
opt_keys:
|
| 5 |
-
- t_attn
|
| 6 |
input_key: image
|
| 7 |
scale_factor: 0.18215
|
| 8 |
disable_first_stage_autocast: True
|
|
@@ -20,45 +18,54 @@ model:
|
|
| 20 |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
| 21 |
|
| 22 |
network_config:
|
| 23 |
-
target: sgm.modules.diffusionmodules.openaimodel.
|
| 24 |
params:
|
|
|
|
| 25 |
in_channels: 9
|
| 26 |
out_channels: 4
|
| 27 |
ctrl_channels: 0
|
| 28 |
model_channels: 320
|
| 29 |
attention_resolutions: [4, 2, 1]
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
num_res_blocks: 2
|
| 33 |
channel_mult: [1, 2, 4, 4]
|
| 34 |
num_head_channels: 64
|
|
|
|
| 35 |
use_linear_in_transformer: True
|
| 36 |
transformer_depth: 1
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
| 39 |
conditioner_config:
|
| 40 |
target: sgm.modules.GeneralConditioner
|
| 41 |
params:
|
| 42 |
emb_models:
|
| 43 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
- is_trainable: False
|
| 45 |
-
emb_key: t_crossattn
|
| 46 |
-
ucg_rate: 0.1
|
| 47 |
input_key: label
|
| 48 |
target: sgm.modules.encoders.modules.LabelEncoder
|
| 49 |
params:
|
|
|
|
| 50 |
max_len: 12
|
| 51 |
emb_dim: 2048
|
| 52 |
n_heads: 8
|
| 53 |
n_trans_layers: 12
|
| 54 |
-
ckpt_path: ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
|
| 55 |
# concat cond
|
| 56 |
- is_trainable: False
|
| 57 |
input_key: mask
|
| 58 |
-
target: sgm.modules.encoders.modules.
|
| 59 |
-
params:
|
| 60 |
-
in_channels: 1
|
| 61 |
-
multiplier: 0.125
|
| 62 |
- is_trainable: False
|
| 63 |
input_key: masked
|
| 64 |
target: sgm.modules.encoders.modules.LatentEncoder
|
|
@@ -88,7 +95,6 @@ model:
|
|
| 88 |
first_stage_config:
|
| 89 |
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
| 90 |
params:
|
| 91 |
-
ckpt_path: ./checkpoints/AEs/AE_inpainting_2.safetensors
|
| 92 |
embed_dim: 4
|
| 93 |
monitor: val/rec_loss
|
| 94 |
ddconfig:
|
|
@@ -111,11 +117,16 @@ model:
|
|
| 111 |
params:
|
| 112 |
seq_len: 12
|
| 113 |
kernel_size: 3
|
| 114 |
-
gaussian_sigma:
|
| 115 |
min_attn_size: 16
|
| 116 |
-
lambda_local_loss: 0.
|
| 117 |
lambda_ocr_loss: 0.001
|
| 118 |
ocr_enabled: False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
sigma_sampler_config:
|
| 121 |
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
|
|
|
| 1 |
model:
|
| 2 |
target: sgm.models.diffusion.DiffusionEngine
|
| 3 |
params:
|
|
|
|
|
|
|
| 4 |
input_key: image
|
| 5 |
scale_factor: 0.18215
|
| 6 |
disable_first_stage_autocast: True
|
|
|
|
| 18 |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
| 19 |
|
| 20 |
network_config:
|
| 21 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetAddModel
|
| 22 |
params:
|
| 23 |
+
use_checkpoint: False
|
| 24 |
in_channels: 9
|
| 25 |
out_channels: 4
|
| 26 |
ctrl_channels: 0
|
| 27 |
model_channels: 320
|
| 28 |
attention_resolutions: [4, 2, 1]
|
| 29 |
+
attn_type: add_attn
|
| 30 |
+
attn_layers:
|
| 31 |
+
- output_blocks.6.1
|
| 32 |
num_res_blocks: 2
|
| 33 |
channel_mult: [1, 2, 4, 4]
|
| 34 |
num_head_channels: 64
|
| 35 |
+
use_spatial_transformer: True
|
| 36 |
use_linear_in_transformer: True
|
| 37 |
transformer_depth: 1
|
| 38 |
+
context_dim: 0
|
| 39 |
+
add_context_dim: 2048
|
| 40 |
+
legacy: False
|
| 41 |
|
| 42 |
conditioner_config:
|
| 43 |
target: sgm.modules.GeneralConditioner
|
| 44 |
params:
|
| 45 |
emb_models:
|
| 46 |
+
# crossattn cond
|
| 47 |
+
# - is_trainable: False
|
| 48 |
+
# input_key: txt
|
| 49 |
+
# target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
| 50 |
+
# params:
|
| 51 |
+
# arch: ViT-H-14
|
| 52 |
+
# version: ./checkpoints/encoders/OpenCLIP/ViT-H-14/open_clip_pytorch_model.bin
|
| 53 |
+
# layer: penultimate
|
| 54 |
+
# add crossattn cond
|
| 55 |
- is_trainable: False
|
|
|
|
|
|
|
| 56 |
input_key: label
|
| 57 |
target: sgm.modules.encoders.modules.LabelEncoder
|
| 58 |
params:
|
| 59 |
+
is_add_embedder: True
|
| 60 |
max_len: 12
|
| 61 |
emb_dim: 2048
|
| 62 |
n_heads: 8
|
| 63 |
n_trans_layers: 12
|
| 64 |
+
ckpt_path: ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt # ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
|
| 65 |
# concat cond
|
| 66 |
- is_trainable: False
|
| 67 |
input_key: mask
|
| 68 |
+
target: sgm.modules.encoders.modules.IdentityEncoder
|
|
|
|
|
|
|
|
|
|
| 69 |
- is_trainable: False
|
| 70 |
input_key: masked
|
| 71 |
target: sgm.modules.encoders.modules.LatentEncoder
|
|
|
|
| 95 |
first_stage_config:
|
| 96 |
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
| 97 |
params:
|
|
|
|
| 98 |
embed_dim: 4
|
| 99 |
monitor: val/rec_loss
|
| 100 |
ddconfig:
|
|
|
|
| 117 |
params:
|
| 118 |
seq_len: 12
|
| 119 |
kernel_size: 3
|
| 120 |
+
gaussian_sigma: 0.5
|
| 121 |
min_attn_size: 16
|
| 122 |
+
lambda_local_loss: 0.02
|
| 123 |
lambda_ocr_loss: 0.001
|
| 124 |
ocr_enabled: False
|
| 125 |
+
|
| 126 |
+
predictor_config:
|
| 127 |
+
target: sgm.modules.predictors.model.ParseqPredictor
|
| 128 |
+
params:
|
| 129 |
+
ckpt_path: "./checkpoints/predictors/parseq-bb5792a6.pt"
|
| 130 |
|
| 131 |
sigma_sampler_config:
|
| 132 |
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
sgm/modules/__init__.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from .encoders.modules import GeneralConditioner
|
| 2 |
|
| 3 |
UNCONDITIONAL_CONFIG = {
|
| 4 |
"target": "sgm.modules.GeneralConditioner",
|
|
|
|
| 1 |
+
from .encoders.modules import GeneralConditioner, DualConditioner
|
| 2 |
|
| 3 |
UNCONDITIONAL_CONFIG = {
|
| 4 |
"target": "sgm.modules.GeneralConditioner",
|
sgm/modules/attention.py
CHANGED
|
@@ -5,15 +5,53 @@ from typing import Any, Optional
|
|
| 5 |
import torch
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from einops import rearrange, repeat
|
|
|
|
| 8 |
from torch import nn, einsum
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
try:
|
| 11 |
import xformers
|
| 12 |
import xformers.ops
|
|
|
|
| 13 |
XFORMERS_IS_AVAILABLE = True
|
| 14 |
except:
|
| 15 |
XFORMERS_IS_AVAILABLE = False
|
| 16 |
-
print("
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def exists(val):
|
|
@@ -108,6 +146,51 @@ class LinearAttention(nn.Module):
|
|
| 108 |
return self.to_out(out)
|
| 109 |
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
class CrossAttention(nn.Module):
|
| 112 |
def __init__(
|
| 113 |
self,
|
|
@@ -115,7 +198,8 @@ class CrossAttention(nn.Module):
|
|
| 115 |
context_dim=None,
|
| 116 |
heads=8,
|
| 117 |
dim_head=64,
|
| 118 |
-
dropout=0.0
|
|
|
|
| 119 |
):
|
| 120 |
super().__init__()
|
| 121 |
inner_dim = dim_head * heads
|
|
@@ -128,38 +212,60 @@ class CrossAttention(nn.Module):
|
|
| 128 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 129 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 130 |
|
| 131 |
-
self.to_out = zero_module(
|
| 132 |
-
nn.
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
)
|
| 136 |
-
)
|
| 137 |
|
| 138 |
self.attn_map_cache = None
|
| 139 |
|
| 140 |
def forward(
|
| 141 |
self,
|
| 142 |
x,
|
| 143 |
-
context=None
|
|
|
|
|
|
|
|
|
|
| 144 |
):
|
| 145 |
h = self.heads
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
q = self.to_q(x)
|
| 148 |
context = default(context, x)
|
| 149 |
k = self.to_k(context)
|
| 150 |
v = self.to_v(context)
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
| 153 |
|
| 154 |
## old
|
|
|
|
| 155 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 156 |
del q, k
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
# attention, what we cannot get enough of
|
| 159 |
-
|
| 160 |
-
sim = sim.softmax(dim=-1) # softmax on token dim
|
| 161 |
-
else:
|
| 162 |
-
sim = sim.sigmoid() # sigmoid on pixel dim
|
| 163 |
|
| 164 |
# save attn_map
|
| 165 |
if self.attn_map_cache is not None:
|
|
@@ -170,7 +276,20 @@ class CrossAttention(nn.Module):
|
|
| 170 |
|
| 171 |
out = einsum('b i j, b j d -> b i d', sim, v)
|
| 172 |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
return self.to_out(out)
|
| 175 |
|
| 176 |
|
|
@@ -263,6 +382,10 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|
| 263 |
|
| 264 |
|
| 265 |
class BasicTransformerBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
def __init__(
|
| 268 |
self,
|
|
@@ -270,78 +393,169 @@ class BasicTransformerBlock(nn.Module):
|
|
| 270 |
n_heads,
|
| 271 |
d_head,
|
| 272 |
dropout=0.0,
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
gated_ff=True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
):
|
| 277 |
super().__init__()
|
| 278 |
-
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
self.attn1 = MemoryEfficientCrossAttention(
|
| 281 |
query_dim=dim,
|
| 282 |
heads=n_heads,
|
| 283 |
dim_head=d_head,
|
| 284 |
dropout=dropout,
|
| 285 |
-
context_dim=None
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
if
|
| 290 |
-
self.
|
| 291 |
query_dim=dim,
|
| 292 |
-
context_dim=
|
| 293 |
heads=n_heads,
|
| 294 |
dim_head=d_head,
|
| 295 |
-
dropout=dropout
|
| 296 |
-
|
| 297 |
-
self
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
if v_context_dim is not None and v_context_dim > 0:
|
| 301 |
-
self.v_attn = CrossAttention(
|
| 302 |
query_dim=dim,
|
| 303 |
-
context_dim=
|
| 304 |
heads=n_heads,
|
| 305 |
dim_head=d_head,
|
| 306 |
-
dropout=dropout
|
| 307 |
-
|
| 308 |
-
self
|
| 309 |
-
|
| 310 |
self.norm1 = nn.LayerNorm(dim)
|
|
|
|
| 311 |
self.norm3 = nn.LayerNorm(dim)
|
| 312 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
x = (
|
| 316 |
self.attn1(
|
| 317 |
self.norm1(x),
|
| 318 |
-
context=None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
)
|
| 320 |
+ x
|
| 321 |
)
|
| 322 |
-
if hasattr(self, "
|
| 323 |
x = (
|
| 324 |
-
self.
|
| 325 |
-
self.
|
| 326 |
-
context=t_context
|
| 327 |
)
|
| 328 |
+ x
|
| 329 |
)
|
| 330 |
-
if hasattr(self, "
|
| 331 |
x = (
|
| 332 |
-
self.
|
| 333 |
-
self.
|
| 334 |
-
context=v_context
|
| 335 |
)
|
| 336 |
+ x
|
| 337 |
)
|
| 338 |
-
|
| 339 |
x = self.ff(self.norm3(x)) + x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
return x
|
| 342 |
|
| 343 |
|
| 344 |
-
class
|
| 345 |
"""
|
| 346 |
Transformer block for image-like data.
|
| 347 |
First, project the input (aka embedding)
|
|
@@ -358,12 +572,36 @@ class SpatialTransformer(nn.Module):
|
|
| 358 |
d_head,
|
| 359 |
depth=1,
|
| 360 |
dropout=0.0,
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
):
|
| 365 |
super().__init__()
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
self.in_channels = in_channels
|
| 368 |
inner_dim = n_heads * d_head
|
| 369 |
self.norm = Normalize(in_channels)
|
|
@@ -381,8 +619,12 @@ class SpatialTransformer(nn.Module):
|
|
| 381 |
n_heads,
|
| 382 |
d_head,
|
| 383 |
dropout=dropout,
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
)
|
| 387 |
for d in range(depth)
|
| 388 |
]
|
|
@@ -392,11 +634,14 @@ class SpatialTransformer(nn.Module):
|
|
| 392 |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 393 |
)
|
| 394 |
else:
|
|
|
|
| 395 |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
| 396 |
self.use_linear = use_linear
|
| 397 |
|
| 398 |
-
def forward(self, x,
|
| 399 |
-
|
|
|
|
|
|
|
| 400 |
b, c, h, w = x.shape
|
| 401 |
x_in = x
|
| 402 |
x = self.norm(x)
|
|
@@ -406,11 +651,326 @@ class SpatialTransformer(nn.Module):
|
|
| 406 |
if self.use_linear:
|
| 407 |
x = self.proj_in(x)
|
| 408 |
for i, block in enumerate(self.transformer_blocks):
|
| 409 |
-
|
|
|
|
|
|
|
| 410 |
if self.use_linear:
|
| 411 |
x = self.proj_out(x)
|
| 412 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
| 413 |
if not self.use_linear:
|
| 414 |
x = self.proj_out(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
-
|
|
|
|
| 5 |
import torch
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from einops import rearrange, repeat
|
| 8 |
+
from packaging import version
|
| 9 |
from torch import nn, einsum
|
| 10 |
|
| 11 |
+
|
| 12 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
| 13 |
+
SDP_IS_AVAILABLE = True
|
| 14 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
| 15 |
+
|
| 16 |
+
BACKEND_MAP = {
|
| 17 |
+
SDPBackend.MATH: {
|
| 18 |
+
"enable_math": True,
|
| 19 |
+
"enable_flash": False,
|
| 20 |
+
"enable_mem_efficient": False,
|
| 21 |
+
},
|
| 22 |
+
SDPBackend.FLASH_ATTENTION: {
|
| 23 |
+
"enable_math": False,
|
| 24 |
+
"enable_flash": True,
|
| 25 |
+
"enable_mem_efficient": False,
|
| 26 |
+
},
|
| 27 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
| 28 |
+
"enable_math": False,
|
| 29 |
+
"enable_flash": False,
|
| 30 |
+
"enable_mem_efficient": True,
|
| 31 |
+
},
|
| 32 |
+
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
|
| 33 |
+
}
|
| 34 |
+
else:
|
| 35 |
+
from contextlib import nullcontext
|
| 36 |
+
|
| 37 |
+
SDP_IS_AVAILABLE = False
|
| 38 |
+
sdp_kernel = nullcontext
|
| 39 |
+
BACKEND_MAP = {}
|
| 40 |
+
print(
|
| 41 |
+
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
|
| 42 |
+
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
try:
|
| 46 |
import xformers
|
| 47 |
import xformers.ops
|
| 48 |
+
|
| 49 |
XFORMERS_IS_AVAILABLE = True
|
| 50 |
except:
|
| 51 |
XFORMERS_IS_AVAILABLE = False
|
| 52 |
+
print("no module 'xformers'. Processing without...")
|
| 53 |
+
|
| 54 |
+
from .diffusionmodules.util import checkpoint
|
| 55 |
|
| 56 |
|
| 57 |
def exists(val):
|
|
|
|
| 146 |
return self.to_out(out)
|
| 147 |
|
| 148 |
|
| 149 |
+
class SpatialSelfAttention(nn.Module):
|
| 150 |
+
def __init__(self, in_channels):
|
| 151 |
+
super().__init__()
|
| 152 |
+
self.in_channels = in_channels
|
| 153 |
+
|
| 154 |
+
self.norm = Normalize(in_channels)
|
| 155 |
+
self.q = torch.nn.Conv2d(
|
| 156 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 157 |
+
)
|
| 158 |
+
self.k = torch.nn.Conv2d(
|
| 159 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 160 |
+
)
|
| 161 |
+
self.v = torch.nn.Conv2d(
|
| 162 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 163 |
+
)
|
| 164 |
+
self.proj_out = torch.nn.Conv2d(
|
| 165 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
def forward(self, x):
|
| 169 |
+
h_ = x
|
| 170 |
+
h_ = self.norm(h_)
|
| 171 |
+
q = self.q(h_)
|
| 172 |
+
k = self.k(h_)
|
| 173 |
+
v = self.v(h_)
|
| 174 |
+
|
| 175 |
+
# compute attention
|
| 176 |
+
b, c, h, w = q.shape
|
| 177 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
| 178 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
| 179 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
| 180 |
+
|
| 181 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 182 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 183 |
+
|
| 184 |
+
# attend to values
|
| 185 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
| 186 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
| 187 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
| 188 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
| 189 |
+
h_ = self.proj_out(h_)
|
| 190 |
+
|
| 191 |
+
return x + h_
|
| 192 |
+
|
| 193 |
+
|
| 194 |
class CrossAttention(nn.Module):
|
| 195 |
def __init__(
|
| 196 |
self,
|
|
|
|
| 198 |
context_dim=None,
|
| 199 |
heads=8,
|
| 200 |
dim_head=64,
|
| 201 |
+
dropout=0.0,
|
| 202 |
+
backend=None,
|
| 203 |
):
|
| 204 |
super().__init__()
|
| 205 |
inner_dim = dim_head * heads
|
|
|
|
| 212 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 213 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 214 |
|
| 215 |
+
self.to_out = zero_module(nn.Sequential(
|
| 216 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
| 217 |
+
))
|
| 218 |
+
self.backend = backend
|
|
|
|
|
|
|
| 219 |
|
| 220 |
self.attn_map_cache = None
|
| 221 |
|
| 222 |
def forward(
|
| 223 |
self,
|
| 224 |
x,
|
| 225 |
+
context=None,
|
| 226 |
+
mask=None,
|
| 227 |
+
additional_tokens=None,
|
| 228 |
+
n_times_crossframe_attn_in_self=0,
|
| 229 |
):
|
| 230 |
h = self.heads
|
| 231 |
|
| 232 |
+
if additional_tokens is not None:
|
| 233 |
+
# get the number of masked tokens at the beginning of the output sequence
|
| 234 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
| 235 |
+
# add additional token
|
| 236 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
| 237 |
+
|
| 238 |
q = self.to_q(x)
|
| 239 |
context = default(context, x)
|
| 240 |
k = self.to_k(context)
|
| 241 |
v = self.to_v(context)
|
| 242 |
|
| 243 |
+
if n_times_crossframe_attn_in_self:
|
| 244 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
| 245 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
| 246 |
+
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
|
| 247 |
+
k = repeat(
|
| 248 |
+
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
| 249 |
+
)
|
| 250 |
+
v = repeat(
|
| 251 |
+
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
| 255 |
|
| 256 |
## old
|
| 257 |
+
|
| 258 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 259 |
del q, k
|
| 260 |
|
| 261 |
+
if exists(mask):
|
| 262 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 263 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 264 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 265 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 266 |
+
|
| 267 |
# attention, what we cannot get enough of
|
| 268 |
+
sim = sim.softmax(dim=-1)
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
# save attn_map
|
| 271 |
if self.attn_map_cache is not None:
|
|
|
|
| 276 |
|
| 277 |
out = einsum('b i j, b j d -> b i d', sim, v)
|
| 278 |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
| 279 |
+
|
| 280 |
+
## new
|
| 281 |
+
# with sdp_kernel(**BACKEND_MAP[self.backend]):
|
| 282 |
+
# # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
|
| 283 |
+
# out = F.scaled_dot_product_attention(
|
| 284 |
+
# q, k, v, attn_mask=mask
|
| 285 |
+
# ) # scale is dim_head ** -0.5 per default
|
| 286 |
+
|
| 287 |
+
# del q, k, v
|
| 288 |
+
# out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
| 289 |
+
|
| 290 |
+
if additional_tokens is not None:
|
| 291 |
+
# remove additional token
|
| 292 |
+
out = out[:, n_tokens_to_mask:]
|
| 293 |
return self.to_out(out)
|
| 294 |
|
| 295 |
|
|
|
|
| 382 |
|
| 383 |
|
| 384 |
class BasicTransformerBlock(nn.Module):
|
| 385 |
+
ATTENTION_MODES = {
|
| 386 |
+
"softmax": CrossAttention, # vanilla attention
|
| 387 |
+
"softmax-xformers": MemoryEfficientCrossAttention, # ampere
|
| 388 |
+
}
|
| 389 |
|
| 390 |
def __init__(
|
| 391 |
self,
|
|
|
|
| 393 |
n_heads,
|
| 394 |
d_head,
|
| 395 |
dropout=0.0,
|
| 396 |
+
context_dim=None,
|
| 397 |
+
add_context_dim=None,
|
| 398 |
+
gated_ff=True,
|
| 399 |
+
checkpoint=True,
|
| 400 |
+
disable_self_attn=False,
|
| 401 |
+
attn_mode="softmax",
|
| 402 |
+
sdp_backend=None,
|
| 403 |
):
|
| 404 |
super().__init__()
|
| 405 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 406 |
+
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
|
| 407 |
+
print(
|
| 408 |
+
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
|
| 409 |
+
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
| 410 |
+
)
|
| 411 |
+
attn_mode = "softmax"
|
| 412 |
+
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
|
| 413 |
+
print(
|
| 414 |
+
"We do not support vanilla attention anymore, as it is too expensive. Sorry."
|
| 415 |
+
)
|
| 416 |
+
if not XFORMERS_IS_AVAILABLE:
|
| 417 |
+
assert (
|
| 418 |
+
False
|
| 419 |
+
), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
| 420 |
+
else:
|
| 421 |
+
print("Falling back to xformers efficient attention.")
|
| 422 |
+
attn_mode = "softmax-xformers"
|
| 423 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 424 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
| 425 |
+
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
|
| 426 |
+
else:
|
| 427 |
+
assert sdp_backend is None
|
| 428 |
+
self.disable_self_attn = disable_self_attn
|
| 429 |
self.attn1 = MemoryEfficientCrossAttention(
|
| 430 |
query_dim=dim,
|
| 431 |
heads=n_heads,
|
| 432 |
dim_head=d_head,
|
| 433 |
dropout=dropout,
|
| 434 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
| 435 |
+
backend=sdp_backend,
|
| 436 |
+
) # is a self-attention if not self.disable_self_attn
|
| 437 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 438 |
+
if context_dim is not None and context_dim > 0:
|
| 439 |
+
self.attn2 = attn_cls(
|
| 440 |
query_dim=dim,
|
| 441 |
+
context_dim=context_dim,
|
| 442 |
heads=n_heads,
|
| 443 |
dim_head=d_head,
|
| 444 |
+
dropout=dropout,
|
| 445 |
+
backend=sdp_backend,
|
| 446 |
+
) # is self-attn if context is none
|
| 447 |
+
if add_context_dim is not None and add_context_dim > 0:
|
| 448 |
+
self.add_attn = attn_cls(
|
|
|
|
|
|
|
| 449 |
query_dim=dim,
|
| 450 |
+
context_dim=add_context_dim,
|
| 451 |
heads=n_heads,
|
| 452 |
dim_head=d_head,
|
| 453 |
+
dropout=dropout,
|
| 454 |
+
backend=sdp_backend,
|
| 455 |
+
) # is self-attn if context is none
|
| 456 |
+
self.add_norm = nn.LayerNorm(dim)
|
| 457 |
self.norm1 = nn.LayerNorm(dim)
|
| 458 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 459 |
self.norm3 = nn.LayerNorm(dim)
|
| 460 |
+
self.checkpoint = checkpoint
|
| 461 |
+
|
| 462 |
+
def forward(
|
| 463 |
+
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
| 464 |
+
):
|
| 465 |
+
kwargs = {"x": x}
|
| 466 |
+
|
| 467 |
+
if context is not None:
|
| 468 |
+
kwargs.update({"context": context})
|
| 469 |
+
|
| 470 |
+
if additional_tokens is not None:
|
| 471 |
+
kwargs.update({"additional_tokens": additional_tokens})
|
| 472 |
|
| 473 |
+
if n_times_crossframe_attn_in_self:
|
| 474 |
+
kwargs.update(
|
| 475 |
+
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
return checkpoint(
|
| 479 |
+
self._forward, (x, context, add_context), self.parameters(), self.checkpoint
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
def _forward(
|
| 483 |
+
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
| 484 |
+
):
|
| 485 |
x = (
|
| 486 |
self.attn1(
|
| 487 |
self.norm1(x),
|
| 488 |
+
context=context if self.disable_self_attn else None,
|
| 489 |
+
additional_tokens=additional_tokens,
|
| 490 |
+
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
|
| 491 |
+
if not self.disable_self_attn
|
| 492 |
+
else 0,
|
| 493 |
)
|
| 494 |
+ x
|
| 495 |
)
|
| 496 |
+
if hasattr(self, "attn2"):
|
| 497 |
x = (
|
| 498 |
+
self.attn2(
|
| 499 |
+
self.norm2(x), context=context, additional_tokens=additional_tokens
|
|
|
|
| 500 |
)
|
| 501 |
+ x
|
| 502 |
)
|
| 503 |
+
if hasattr(self, "add_attn"):
|
| 504 |
x = (
|
| 505 |
+
self.add_attn(
|
| 506 |
+
self.add_norm(x), context=add_context, additional_tokens=additional_tokens
|
|
|
|
| 507 |
)
|
| 508 |
+ x
|
| 509 |
)
|
|
|
|
| 510 |
x = self.ff(self.norm3(x)) + x
|
| 511 |
+
return x
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
class BasicTransformerSingleLayerBlock(nn.Module):
|
| 515 |
+
ATTENTION_MODES = {
|
| 516 |
+
"softmax": CrossAttention, # vanilla attention
|
| 517 |
+
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
|
| 518 |
+
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
|
| 519 |
+
}
|
| 520 |
+
|
| 521 |
+
def __init__(
|
| 522 |
+
self,
|
| 523 |
+
dim,
|
| 524 |
+
n_heads,
|
| 525 |
+
d_head,
|
| 526 |
+
dropout=0.0,
|
| 527 |
+
context_dim=None,
|
| 528 |
+
gated_ff=True,
|
| 529 |
+
checkpoint=True,
|
| 530 |
+
attn_mode="softmax",
|
| 531 |
+
):
|
| 532 |
+
super().__init__()
|
| 533 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 534 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 535 |
+
self.attn1 = attn_cls(
|
| 536 |
+
query_dim=dim,
|
| 537 |
+
heads=n_heads,
|
| 538 |
+
dim_head=d_head,
|
| 539 |
+
dropout=dropout,
|
| 540 |
+
context_dim=context_dim,
|
| 541 |
+
)
|
| 542 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 543 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 544 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 545 |
+
self.checkpoint = checkpoint
|
| 546 |
|
| 547 |
+
def forward(self, x, context=None):
|
| 548 |
+
return checkpoint(
|
| 549 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
def _forward(self, x, context=None):
|
| 553 |
+
x = self.attn1(self.norm1(x), context=context) + x
|
| 554 |
+
x = self.ff(self.norm2(x)) + x
|
| 555 |
return x
|
| 556 |
|
| 557 |
|
| 558 |
+
class SpatialTransformer(nn.Module):
|
| 559 |
"""
|
| 560 |
Transformer block for image-like data.
|
| 561 |
First, project the input (aka embedding)
|
|
|
|
| 572 |
d_head,
|
| 573 |
depth=1,
|
| 574 |
dropout=0.0,
|
| 575 |
+
context_dim=None,
|
| 576 |
+
add_context_dim=None,
|
| 577 |
+
disable_self_attn=False,
|
| 578 |
+
use_linear=False,
|
| 579 |
+
attn_type="softmax",
|
| 580 |
+
use_checkpoint=True,
|
| 581 |
+
# sdp_backend=SDPBackend.FLASH_ATTENTION
|
| 582 |
+
sdp_backend=None,
|
| 583 |
):
|
| 584 |
super().__init__()
|
| 585 |
+
# print(
|
| 586 |
+
# f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
|
| 587 |
+
# )
|
| 588 |
+
from omegaconf import ListConfig
|
| 589 |
+
|
| 590 |
+
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
|
| 591 |
+
context_dim = [context_dim]
|
| 592 |
+
if exists(context_dim) and isinstance(context_dim, list):
|
| 593 |
+
if depth != len(context_dim):
|
| 594 |
+
# print(
|
| 595 |
+
# f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
|
| 596 |
+
# f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
|
| 597 |
+
# )
|
| 598 |
+
# depth does not match context dims.
|
| 599 |
+
assert all(
|
| 600 |
+
map(lambda x: x == context_dim[0], context_dim)
|
| 601 |
+
), "need homogenous context_dim to match depth automatically"
|
| 602 |
+
context_dim = depth * [context_dim[0]]
|
| 603 |
+
elif context_dim is None:
|
| 604 |
+
context_dim = [None] * depth
|
| 605 |
self.in_channels = in_channels
|
| 606 |
inner_dim = n_heads * d_head
|
| 607 |
self.norm = Normalize(in_channels)
|
|
|
|
| 619 |
n_heads,
|
| 620 |
d_head,
|
| 621 |
dropout=dropout,
|
| 622 |
+
context_dim=context_dim[d],
|
| 623 |
+
add_context_dim=add_context_dim,
|
| 624 |
+
disable_self_attn=disable_self_attn,
|
| 625 |
+
attn_mode=attn_type,
|
| 626 |
+
checkpoint=use_checkpoint,
|
| 627 |
+
sdp_backend=sdp_backend,
|
| 628 |
)
|
| 629 |
for d in range(depth)
|
| 630 |
]
|
|
|
|
| 634 |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 635 |
)
|
| 636 |
else:
|
| 637 |
+
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 638 |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
| 639 |
self.use_linear = use_linear
|
| 640 |
|
| 641 |
+
def forward(self, x, context=None, add_context=None):
|
| 642 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 643 |
+
if not isinstance(context, list):
|
| 644 |
+
context = [context]
|
| 645 |
b, c, h, w = x.shape
|
| 646 |
x_in = x
|
| 647 |
x = self.norm(x)
|
|
|
|
| 651 |
if self.use_linear:
|
| 652 |
x = self.proj_in(x)
|
| 653 |
for i, block in enumerate(self.transformer_blocks):
|
| 654 |
+
if i > 0 and len(context) == 1:
|
| 655 |
+
i = 0 # use same context for each block
|
| 656 |
+
x = block(x, context=context[i], add_context=add_context)
|
| 657 |
if self.use_linear:
|
| 658 |
x = self.proj_out(x)
|
| 659 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
| 660 |
if not self.use_linear:
|
| 661 |
x = self.proj_out(x)
|
| 662 |
+
return x + x_in
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
def benchmark_attn():
|
| 666 |
+
# Lets define a helpful benchmarking function:
|
| 667 |
+
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
|
| 668 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 669 |
+
import torch.nn.functional as F
|
| 670 |
+
import torch.utils.benchmark as benchmark
|
| 671 |
+
|
| 672 |
+
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
| 673 |
+
t0 = benchmark.Timer(
|
| 674 |
+
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
| 675 |
+
)
|
| 676 |
+
return t0.blocked_autorange().mean * 1e6
|
| 677 |
+
|
| 678 |
+
# Lets define the hyper-parameters of our input
|
| 679 |
+
batch_size = 32
|
| 680 |
+
max_sequence_len = 1024
|
| 681 |
+
num_heads = 32
|
| 682 |
+
embed_dimension = 32
|
| 683 |
+
|
| 684 |
+
dtype = torch.float16
|
| 685 |
+
|
| 686 |
+
query = torch.rand(
|
| 687 |
+
batch_size,
|
| 688 |
+
num_heads,
|
| 689 |
+
max_sequence_len,
|
| 690 |
+
embed_dimension,
|
| 691 |
+
device=device,
|
| 692 |
+
dtype=dtype,
|
| 693 |
+
)
|
| 694 |
+
key = torch.rand(
|
| 695 |
+
batch_size,
|
| 696 |
+
num_heads,
|
| 697 |
+
max_sequence_len,
|
| 698 |
+
embed_dimension,
|
| 699 |
+
device=device,
|
| 700 |
+
dtype=dtype,
|
| 701 |
+
)
|
| 702 |
+
value = torch.rand(
|
| 703 |
+
batch_size,
|
| 704 |
+
num_heads,
|
| 705 |
+
max_sequence_len,
|
| 706 |
+
embed_dimension,
|
| 707 |
+
device=device,
|
| 708 |
+
dtype=dtype,
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
print(f"q/k/v shape:", query.shape, key.shape, value.shape)
|
| 712 |
+
|
| 713 |
+
# Lets explore the speed of each of the 3 implementations
|
| 714 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
| 715 |
+
|
| 716 |
+
# Helpful arguments mapper
|
| 717 |
+
backend_map = {
|
| 718 |
+
SDPBackend.MATH: {
|
| 719 |
+
"enable_math": True,
|
| 720 |
+
"enable_flash": False,
|
| 721 |
+
"enable_mem_efficient": False,
|
| 722 |
+
},
|
| 723 |
+
SDPBackend.FLASH_ATTENTION: {
|
| 724 |
+
"enable_math": False,
|
| 725 |
+
"enable_flash": True,
|
| 726 |
+
"enable_mem_efficient": False,
|
| 727 |
+
},
|
| 728 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
| 729 |
+
"enable_math": False,
|
| 730 |
+
"enable_flash": False,
|
| 731 |
+
"enable_mem_efficient": True,
|
| 732 |
+
},
|
| 733 |
+
}
|
| 734 |
+
|
| 735 |
+
from torch.profiler import ProfilerActivity, profile, record_function
|
| 736 |
+
|
| 737 |
+
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
| 738 |
+
|
| 739 |
+
print(
|
| 740 |
+
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
| 741 |
+
)
|
| 742 |
+
with profile(
|
| 743 |
+
activities=activities, record_shapes=False, profile_memory=True
|
| 744 |
+
) as prof:
|
| 745 |
+
with record_function("Default detailed stats"):
|
| 746 |
+
for _ in range(25):
|
| 747 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
| 748 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
| 749 |
+
|
| 750 |
+
print(
|
| 751 |
+
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
| 752 |
+
)
|
| 753 |
+
with sdp_kernel(**backend_map[SDPBackend.MATH]):
|
| 754 |
+
with profile(
|
| 755 |
+
activities=activities, record_shapes=False, profile_memory=True
|
| 756 |
+
) as prof:
|
| 757 |
+
with record_function("Math implmentation stats"):
|
| 758 |
+
for _ in range(25):
|
| 759 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
| 760 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
| 761 |
+
|
| 762 |
+
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
|
| 763 |
+
try:
|
| 764 |
+
print(
|
| 765 |
+
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
| 766 |
+
)
|
| 767 |
+
except RuntimeError:
|
| 768 |
+
print("FlashAttention is not supported. See warnings for reasons.")
|
| 769 |
+
with profile(
|
| 770 |
+
activities=activities, record_shapes=False, profile_memory=True
|
| 771 |
+
) as prof:
|
| 772 |
+
with record_function("FlashAttention stats"):
|
| 773 |
+
for _ in range(25):
|
| 774 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
| 775 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
| 776 |
+
|
| 777 |
+
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
| 778 |
+
try:
|
| 779 |
+
print(
|
| 780 |
+
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
| 781 |
+
)
|
| 782 |
+
except RuntimeError:
|
| 783 |
+
print("EfficientAttention is not supported. See warnings for reasons.")
|
| 784 |
+
with profile(
|
| 785 |
+
activities=activities, record_shapes=False, profile_memory=True
|
| 786 |
+
) as prof:
|
| 787 |
+
with record_function("EfficientAttention stats"):
|
| 788 |
+
for _ in range(25):
|
| 789 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
| 790 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
def run_model(model, x, context):
|
| 794 |
+
return model(x, context)
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
def benchmark_transformer_blocks():
|
| 798 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 799 |
+
import torch.utils.benchmark as benchmark
|
| 800 |
+
|
| 801 |
+
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
| 802 |
+
t0 = benchmark.Timer(
|
| 803 |
+
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
| 804 |
+
)
|
| 805 |
+
return t0.blocked_autorange().mean * 1e6
|
| 806 |
+
|
| 807 |
+
checkpoint = True
|
| 808 |
+
compile = False
|
| 809 |
+
|
| 810 |
+
batch_size = 32
|
| 811 |
+
h, w = 64, 64
|
| 812 |
+
context_len = 77
|
| 813 |
+
embed_dimension = 1024
|
| 814 |
+
context_dim = 1024
|
| 815 |
+
d_head = 64
|
| 816 |
+
|
| 817 |
+
transformer_depth = 4
|
| 818 |
+
|
| 819 |
+
n_heads = embed_dimension // d_head
|
| 820 |
+
|
| 821 |
+
dtype = torch.float16
|
| 822 |
+
|
| 823 |
+
model_native = SpatialTransformer(
|
| 824 |
+
embed_dimension,
|
| 825 |
+
n_heads,
|
| 826 |
+
d_head,
|
| 827 |
+
context_dim=context_dim,
|
| 828 |
+
use_linear=True,
|
| 829 |
+
use_checkpoint=checkpoint,
|
| 830 |
+
attn_type="softmax",
|
| 831 |
+
depth=transformer_depth,
|
| 832 |
+
sdp_backend=SDPBackend.FLASH_ATTENTION,
|
| 833 |
+
).to(device)
|
| 834 |
+
model_efficient_attn = SpatialTransformer(
|
| 835 |
+
embed_dimension,
|
| 836 |
+
n_heads,
|
| 837 |
+
d_head,
|
| 838 |
+
context_dim=context_dim,
|
| 839 |
+
use_linear=True,
|
| 840 |
+
depth=transformer_depth,
|
| 841 |
+
use_checkpoint=checkpoint,
|
| 842 |
+
attn_type="softmax-xformers",
|
| 843 |
+
).to(device)
|
| 844 |
+
if not checkpoint and compile:
|
| 845 |
+
print("compiling models")
|
| 846 |
+
model_native = torch.compile(model_native)
|
| 847 |
+
model_efficient_attn = torch.compile(model_efficient_attn)
|
| 848 |
+
|
| 849 |
+
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype)
|
| 850 |
+
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype)
|
| 851 |
+
|
| 852 |
+
from torch.profiler import ProfilerActivity, profile, record_function
|
| 853 |
+
|
| 854 |
+
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
| 855 |
+
|
| 856 |
+
with torch.autocast("cuda"):
|
| 857 |
+
print(
|
| 858 |
+
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds"
|
| 859 |
+
)
|
| 860 |
+
print(
|
| 861 |
+
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds"
|
| 862 |
+
)
|
| 863 |
+
|
| 864 |
+
print(75 * "+")
|
| 865 |
+
print("NATIVE")
|
| 866 |
+
print(75 * "+")
|
| 867 |
+
torch.cuda.reset_peak_memory_stats()
|
| 868 |
+
with profile(
|
| 869 |
+
activities=activities, record_shapes=False, profile_memory=True
|
| 870 |
+
) as prof:
|
| 871 |
+
with record_function("NativeAttention stats"):
|
| 872 |
+
for _ in range(25):
|
| 873 |
+
model_native(x, c)
|
| 874 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
| 875 |
+
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block")
|
| 876 |
+
|
| 877 |
+
print(75 * "+")
|
| 878 |
+
print("Xformers")
|
| 879 |
+
print(75 * "+")
|
| 880 |
+
torch.cuda.reset_peak_memory_stats()
|
| 881 |
+
with profile(
|
| 882 |
+
activities=activities, record_shapes=False, profile_memory=True
|
| 883 |
+
) as prof:
|
| 884 |
+
with record_function("xformers stats"):
|
| 885 |
+
for _ in range(25):
|
| 886 |
+
model_efficient_attn(x, c)
|
| 887 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
| 888 |
+
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block")
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
def test01():
|
| 892 |
+
# conv1x1 vs linear
|
| 893 |
+
from ..util import count_params
|
| 894 |
+
|
| 895 |
+
conv = nn.Conv2d(3, 32, kernel_size=1).cuda()
|
| 896 |
+
print(count_params(conv))
|
| 897 |
+
linear = torch.nn.Linear(3, 32).cuda()
|
| 898 |
+
print(count_params(linear))
|
| 899 |
+
|
| 900 |
+
print(conv.weight.shape)
|
| 901 |
+
|
| 902 |
+
# use same initialization
|
| 903 |
+
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1))
|
| 904 |
+
linear.bias = torch.nn.Parameter(conv.bias)
|
| 905 |
+
|
| 906 |
+
print(linear.weight.shape)
|
| 907 |
+
|
| 908 |
+
x = torch.randn(11, 3, 64, 64).cuda()
|
| 909 |
+
|
| 910 |
+
xr = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
| 911 |
+
print(xr.shape)
|
| 912 |
+
out_linear = linear(xr)
|
| 913 |
+
print(out_linear.mean(), out_linear.shape)
|
| 914 |
+
|
| 915 |
+
out_conv = conv(x)
|
| 916 |
+
print(out_conv.mean(), out_conv.shape)
|
| 917 |
+
print("done with test01.\n")
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
def test02():
|
| 921 |
+
# try cosine flash attention
|
| 922 |
+
import time
|
| 923 |
+
|
| 924 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 925 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 926 |
+
torch.backends.cudnn.benchmark = True
|
| 927 |
+
print("testing cosine flash attention...")
|
| 928 |
+
DIM = 1024
|
| 929 |
+
SEQLEN = 4096
|
| 930 |
+
BS = 16
|
| 931 |
+
|
| 932 |
+
print(" softmax (vanilla) first...")
|
| 933 |
+
model = BasicTransformerBlock(
|
| 934 |
+
dim=DIM,
|
| 935 |
+
n_heads=16,
|
| 936 |
+
d_head=64,
|
| 937 |
+
dropout=0.0,
|
| 938 |
+
context_dim=None,
|
| 939 |
+
attn_mode="softmax",
|
| 940 |
+
).cuda()
|
| 941 |
+
try:
|
| 942 |
+
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
| 943 |
+
tic = time.time()
|
| 944 |
+
y = model(x)
|
| 945 |
+
toc = time.time()
|
| 946 |
+
print(y.shape, toc - tic)
|
| 947 |
+
except RuntimeError as e:
|
| 948 |
+
# likely oom
|
| 949 |
+
print(str(e))
|
| 950 |
+
|
| 951 |
+
print("\n now flash-cosine...")
|
| 952 |
+
model = BasicTransformerBlock(
|
| 953 |
+
dim=DIM,
|
| 954 |
+
n_heads=16,
|
| 955 |
+
d_head=64,
|
| 956 |
+
dropout=0.0,
|
| 957 |
+
context_dim=None,
|
| 958 |
+
attn_mode="flash-cosine",
|
| 959 |
+
).cuda()
|
| 960 |
+
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
| 961 |
+
tic = time.time()
|
| 962 |
+
y = model(x)
|
| 963 |
+
toc = time.time()
|
| 964 |
+
print(y.shape, toc - tic)
|
| 965 |
+
print("done with test02.\n")
|
| 966 |
+
|
| 967 |
+
|
| 968 |
+
if __name__ == "__main__":
|
| 969 |
+
# test01()
|
| 970 |
+
# test02()
|
| 971 |
+
# test03()
|
| 972 |
+
|
| 973 |
+
# benchmark_attn()
|
| 974 |
+
benchmark_transformer_blocks()
|
| 975 |
|
| 976 |
+
print("done.")
|
sgm/modules/diffusionmodules/__init__.py
CHANGED
|
@@ -2,6 +2,6 @@ from .denoiser import Denoiser
|
|
| 2 |
from .discretizer import Discretization
|
| 3 |
from .loss import StandardDiffusionLoss
|
| 4 |
from .model import Model, Encoder, Decoder
|
| 5 |
-
from .openaimodel import
|
| 6 |
from .sampling import BaseDiffusionSampler
|
| 7 |
from .wrappers import OpenAIWrapper
|
|
|
|
| 2 |
from .discretizer import Discretization
|
| 3 |
from .loss import StandardDiffusionLoss
|
| 4 |
from .model import Model, Encoder, Decoder
|
| 5 |
+
from .openaimodel import UNetModel
|
| 6 |
from .sampling import BaseDiffusionSampler
|
| 7 |
from .wrappers import OpenAIWrapper
|
sgm/modules/diffusionmodules/guiders.py
CHANGED
|
@@ -11,8 +11,8 @@ class VanillaCFG:
|
|
| 11 |
"""
|
| 12 |
|
| 13 |
def __init__(self, scale, dyn_thresh_config=None):
|
| 14 |
-
|
| 15 |
-
self.
|
| 16 |
self.dyn_thresh = instantiate_from_config(
|
| 17 |
default(
|
| 18 |
dyn_thresh_config,
|
|
@@ -24,14 +24,15 @@ class VanillaCFG:
|
|
| 24 |
|
| 25 |
def __call__(self, x, sigma):
|
| 26 |
x_u, x_c = x.chunk(2)
|
| 27 |
-
|
|
|
|
| 28 |
return x_pred
|
| 29 |
|
| 30 |
def prepare_inputs(self, x, s, c, uc):
|
| 31 |
c_out = dict()
|
| 32 |
|
| 33 |
for k in c:
|
| 34 |
-
if k in ["vector", "
|
| 35 |
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
| 36 |
else:
|
| 37 |
assert c[k] == uc[k]
|
|
@@ -39,6 +40,34 @@ class VanillaCFG:
|
|
| 39 |
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
| 40 |
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
class IdentityGuider:
|
| 43 |
def __call__(self, x, sigma):
|
| 44 |
return x
|
|
|
|
| 11 |
"""
|
| 12 |
|
| 13 |
def __init__(self, scale, dyn_thresh_config=None):
|
| 14 |
+
scale_schedule = lambda scale, sigma: scale # independent of step
|
| 15 |
+
self.scale_schedule = partial(scale_schedule, scale)
|
| 16 |
self.dyn_thresh = instantiate_from_config(
|
| 17 |
default(
|
| 18 |
dyn_thresh_config,
|
|
|
|
| 24 |
|
| 25 |
def __call__(self, x, sigma):
|
| 26 |
x_u, x_c = x.chunk(2)
|
| 27 |
+
scale_value = self.scale_schedule(sigma)
|
| 28 |
+
x_pred = self.dyn_thresh(x_u, x_c, scale_value)
|
| 29 |
return x_pred
|
| 30 |
|
| 31 |
def prepare_inputs(self, x, s, c, uc):
|
| 32 |
c_out = dict()
|
| 33 |
|
| 34 |
for k in c:
|
| 35 |
+
if k in ["vector", "crossattn", "add_crossattn", "concat"]:
|
| 36 |
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
| 37 |
else:
|
| 38 |
assert c[k] == uc[k]
|
|
|
|
| 40 |
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
| 41 |
|
| 42 |
|
| 43 |
+
class DualCFG:
|
| 44 |
+
|
| 45 |
+
def __init__(self, scale):
|
| 46 |
+
self.scale = scale
|
| 47 |
+
self.dyn_thresh = instantiate_from_config(
|
| 48 |
+
{
|
| 49 |
+
"target": "sgm.modules.diffusionmodules.sampling_utils.DualThresholding"
|
| 50 |
+
},
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def __call__(self, x, sigma):
|
| 54 |
+
x_u_1, x_u_2, x_c = x.chunk(3)
|
| 55 |
+
x_pred = self.dyn_thresh(x_u_1, x_u_2, x_c, self.scale)
|
| 56 |
+
return x_pred
|
| 57 |
+
|
| 58 |
+
def prepare_inputs(self, x, s, c, uc_1, uc_2):
|
| 59 |
+
c_out = dict()
|
| 60 |
+
|
| 61 |
+
for k in c:
|
| 62 |
+
if k in ["vector", "crossattn", "concat", "add_crossattn"]:
|
| 63 |
+
c_out[k] = torch.cat((uc_1[k], uc_2[k], c[k]), 0)
|
| 64 |
+
else:
|
| 65 |
+
assert c[k] == uc_1[k]
|
| 66 |
+
c_out[k] = c[k]
|
| 67 |
+
return torch.cat([x] * 3), torch.cat([s] * 3), c_out
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
class IdentityGuider:
|
| 72 |
def __call__(self, x, sigma):
|
| 73 |
return x
|
sgm/modules/diffusionmodules/loss.py
CHANGED
|
@@ -78,9 +78,7 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 78 |
min_attn_size=16,
|
| 79 |
lambda_local_loss=0.0,
|
| 80 |
lambda_ocr_loss=0.0,
|
| 81 |
-
lambda_style_loss=0.0,
|
| 82 |
ocr_enabled = False,
|
| 83 |
-
style_enabled = False,
|
| 84 |
predictor_config = None,
|
| 85 |
*args, **kwarg
|
| 86 |
):
|
|
@@ -93,9 +91,7 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 93 |
self.min_attn_size = min_attn_size
|
| 94 |
self.lambda_local_loss = lambda_local_loss
|
| 95 |
self.lambda_ocr_loss = lambda_ocr_loss
|
| 96 |
-
self.lambda_style_loss = lambda_style_loss
|
| 97 |
|
| 98 |
-
self.style_enabled = style_enabled
|
| 99 |
self.ocr_enabled = ocr_enabled
|
| 100 |
if ocr_enabled:
|
| 101 |
self.predictor = instantiate_from_config(predictor_config)
|
|
@@ -152,15 +148,9 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 152 |
ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
|
| 153 |
ocr_loss = ocr_loss.mean()
|
| 154 |
|
| 155 |
-
if self.style_enabled:
|
| 156 |
-
style_loss = self.get_style_local_loss(network.diffusion_model.attn_map_cache, batch["mask"])
|
| 157 |
-
style_loss = style_loss.mean()
|
| 158 |
-
|
| 159 |
loss = diff_loss + self.lambda_local_loss * local_loss
|
| 160 |
if self.ocr_enabled:
|
| 161 |
loss += self.lambda_ocr_loss * ocr_loss
|
| 162 |
-
if self.style_enabled:
|
| 163 |
-
loss += self.lambda_style_loss * style_loss
|
| 164 |
|
| 165 |
loss_dict = {
|
| 166 |
"loss/diff_loss": diff_loss,
|
|
@@ -170,8 +160,6 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 170 |
|
| 171 |
if self.ocr_enabled:
|
| 172 |
loss_dict["loss/ocr_loss"] = ocr_loss
|
| 173 |
-
if self.style_enabled:
|
| 174 |
-
loss_dict["loss/style_loss"] = style_loss
|
| 175 |
|
| 176 |
return loss, loss_dict
|
| 177 |
|
|
@@ -196,9 +184,6 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 196 |
|
| 197 |
for item in attn_map_cache:
|
| 198 |
|
| 199 |
-
name = item["name"]
|
| 200 |
-
if not name.endswith("t_attn"): continue
|
| 201 |
-
|
| 202 |
heads = item["heads"]
|
| 203 |
size = item["size"]
|
| 204 |
attn_map = item["attn_map"]
|
|
@@ -241,9 +226,6 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 241 |
|
| 242 |
for item in attn_map_cache:
|
| 243 |
|
| 244 |
-
name = item["name"]
|
| 245 |
-
if not name.endswith("t_attn"): continue
|
| 246 |
-
|
| 247 |
heads = item["heads"]
|
| 248 |
size = item["size"]
|
| 249 |
attn_map = item["attn_map"]
|
|
@@ -252,7 +234,7 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 252 |
|
| 253 |
seg_l = seg_mask.shape[1]
|
| 254 |
|
| 255 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n: pixel length(h*w) / l: token length
|
| 256 |
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
| 257 |
|
| 258 |
assert seg_l <= l
|
|
@@ -283,43 +265,4 @@ class FullLoss(StandardDiffusionLoss):
|
|
| 283 |
|
| 284 |
loss = loss / count
|
| 285 |
|
| 286 |
-
return loss
|
| 287 |
-
|
| 288 |
-
def get_style_local_loss(self, attn_map_cache, mask):
|
| 289 |
-
|
| 290 |
-
loss = 0
|
| 291 |
-
count = 0
|
| 292 |
-
|
| 293 |
-
for item in attn_map_cache:
|
| 294 |
-
|
| 295 |
-
name = item["name"]
|
| 296 |
-
if not name.endswith("v_attn"): continue
|
| 297 |
-
|
| 298 |
-
heads = item["heads"]
|
| 299 |
-
size = item["size"]
|
| 300 |
-
attn_map = item["attn_map"]
|
| 301 |
-
|
| 302 |
-
if size < self.min_attn_size: continue
|
| 303 |
-
|
| 304 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n: pixel length(h*w) / l: token length
|
| 305 |
-
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
| 306 |
-
attn_map = attn_map.permute(0, 1, 3, 2) # b, h, l, n
|
| 307 |
-
attn_map = attn_map.mean(dim = 1) # b, l, n
|
| 308 |
-
|
| 309 |
-
mask_map = F.interpolate(mask, (size, size))
|
| 310 |
-
mask_map = mask_map.reshape((-1, l, n)) # b, l, n
|
| 311 |
-
n_mask_map = 1 - mask_map
|
| 312 |
-
|
| 313 |
-
p_loss = (mask_map * attn_map).sum(dim = -1) / (mask_map.sum(dim = -1) + 1e-5) # b, l
|
| 314 |
-
n_loss = (n_mask_map * attn_map).sum(dim = -1) / (n_mask_map.sum(dim = -1) + 1e-5) # b, l
|
| 315 |
-
|
| 316 |
-
p_loss = p_loss.mean(dim = -1)
|
| 317 |
-
n_loss = n_loss.mean(dim = -1)
|
| 318 |
-
|
| 319 |
-
f_loss = n_loss - p_loss # b,
|
| 320 |
-
loss += f_loss
|
| 321 |
-
count += 1
|
| 322 |
-
|
| 323 |
-
loss = loss / count
|
| 324 |
-
|
| 325 |
return loss
|
|
|
|
| 78 |
min_attn_size=16,
|
| 79 |
lambda_local_loss=0.0,
|
| 80 |
lambda_ocr_loss=0.0,
|
|
|
|
| 81 |
ocr_enabled = False,
|
|
|
|
| 82 |
predictor_config = None,
|
| 83 |
*args, **kwarg
|
| 84 |
):
|
|
|
|
| 91 |
self.min_attn_size = min_attn_size
|
| 92 |
self.lambda_local_loss = lambda_local_loss
|
| 93 |
self.lambda_ocr_loss = lambda_ocr_loss
|
|
|
|
| 94 |
|
|
|
|
| 95 |
self.ocr_enabled = ocr_enabled
|
| 96 |
if ocr_enabled:
|
| 97 |
self.predictor = instantiate_from_config(predictor_config)
|
|
|
|
| 148 |
ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
|
| 149 |
ocr_loss = ocr_loss.mean()
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
loss = diff_loss + self.lambda_local_loss * local_loss
|
| 152 |
if self.ocr_enabled:
|
| 153 |
loss += self.lambda_ocr_loss * ocr_loss
|
|
|
|
|
|
|
| 154 |
|
| 155 |
loss_dict = {
|
| 156 |
"loss/diff_loss": diff_loss,
|
|
|
|
| 160 |
|
| 161 |
if self.ocr_enabled:
|
| 162 |
loss_dict["loss/ocr_loss"] = ocr_loss
|
|
|
|
|
|
|
| 163 |
|
| 164 |
return loss, loss_dict
|
| 165 |
|
|
|
|
| 184 |
|
| 185 |
for item in attn_map_cache:
|
| 186 |
|
|
|
|
|
|
|
|
|
|
| 187 |
heads = item["heads"]
|
| 188 |
size = item["size"]
|
| 189 |
attn_map = item["attn_map"]
|
|
|
|
| 226 |
|
| 227 |
for item in attn_map_cache:
|
| 228 |
|
|
|
|
|
|
|
|
|
|
| 229 |
heads = item["heads"]
|
| 230 |
size = item["size"]
|
| 231 |
attn_map = item["attn_map"]
|
|
|
|
| 234 |
|
| 235 |
seg_l = seg_mask.shape[1]
|
| 236 |
|
| 237 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
| 238 |
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
| 239 |
|
| 240 |
assert seg_l <= l
|
|
|
|
| 265 |
|
| 266 |
loss = loss / count
|
| 267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
return loss
|
sgm/modules/diffusionmodules/openaimodel.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
from abc import abstractmethod
|
|
|
|
| 2 |
from typing import Iterable
|
| 3 |
|
| 4 |
import numpy as np
|
|
@@ -10,6 +13,7 @@ from einops import rearrange
|
|
| 10 |
from ...modules.attention import SpatialTransformer
|
| 11 |
from ...modules.diffusionmodules.util import (
|
| 12 |
avg_pool_nd,
|
|
|
|
| 13 |
conv_nd,
|
| 14 |
linear,
|
| 15 |
normalization,
|
|
@@ -19,14 +23,47 @@ from ...modules.diffusionmodules.util import (
|
|
| 19 |
from ...util import default, exists
|
| 20 |
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
super().__init__()
|
| 25 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
def forward(self, t):
|
| 28 |
-
return timestep_embedding(t, self.dim)
|
| 29 |
-
|
| 30 |
|
| 31 |
class TimestepBlock(nn.Module):
|
| 32 |
"""
|
|
@@ -50,14 +87,19 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
| 50 |
self,
|
| 51 |
x,
|
| 52 |
emb,
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
):
|
| 56 |
for layer in self:
|
| 57 |
if isinstance(layer, TimestepBlock):
|
| 58 |
x = layer(x, emb)
|
| 59 |
elif isinstance(layer, SpatialTransformer):
|
| 60 |
-
x = layer(x,
|
| 61 |
else:
|
| 62 |
x = layer(x)
|
| 63 |
return x
|
|
@@ -102,6 +144,22 @@ class Upsample(nn.Module):
|
|
| 102 |
return x
|
| 103 |
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
class Downsample(nn.Module):
|
| 106 |
"""
|
| 107 |
A downsampling layer with an optional convolution.
|
|
@@ -149,6 +207,17 @@ class Downsample(nn.Module):
|
|
| 149 |
class ResBlock(TimestepBlock):
|
| 150 |
"""
|
| 151 |
A residual block that can optionally change the number of channels.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
"""
|
| 153 |
|
| 154 |
def __init__(
|
|
@@ -160,11 +229,12 @@ class ResBlock(TimestepBlock):
|
|
| 160 |
use_conv=False,
|
| 161 |
use_scale_shift_norm=False,
|
| 162 |
dims=2,
|
|
|
|
| 163 |
up=False,
|
| 164 |
down=False,
|
| 165 |
kernel_size=3,
|
| 166 |
exchange_temb_dims=False,
|
| 167 |
-
skip_t_emb=False
|
| 168 |
):
|
| 169 |
super().__init__()
|
| 170 |
self.channels = channels
|
|
@@ -172,6 +242,7 @@ class ResBlock(TimestepBlock):
|
|
| 172 |
self.dropout = dropout
|
| 173 |
self.out_channels = out_channels or channels
|
| 174 |
self.use_conv = use_conv
|
|
|
|
| 175 |
self.use_scale_shift_norm = use_scale_shift_norm
|
| 176 |
self.exchange_temb_dims = exchange_temb_dims
|
| 177 |
|
|
@@ -240,6 +311,17 @@ class ResBlock(TimestepBlock):
|
|
| 240 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 241 |
|
| 242 |
def forward(self, x, emb):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
if self.updown:
|
| 244 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 245 |
h = in_rest(x)
|
|
@@ -267,42 +349,233 @@ class ResBlock(TimestepBlock):
|
|
| 267 |
h = self.out_layers(h)
|
| 268 |
return self.skip_connection(x) + h
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
|
| 275 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
def __init__(
|
| 278 |
self,
|
| 279 |
in_channels,
|
| 280 |
-
ctrl_channels,
|
| 281 |
model_channels,
|
| 282 |
out_channels,
|
| 283 |
num_res_blocks,
|
| 284 |
attention_resolutions,
|
| 285 |
dropout=0,
|
| 286 |
channel_mult=(1, 2, 4, 8),
|
| 287 |
-
save_attn_type=None,
|
| 288 |
-
save_attn_layers=[],
|
| 289 |
conv_resample=True,
|
| 290 |
dims=2,
|
| 291 |
-
|
|
|
|
|
|
|
| 292 |
num_heads=-1,
|
| 293 |
num_head_channels=-1,
|
| 294 |
num_heads_upsample=-1,
|
| 295 |
use_scale_shift_norm=False,
|
| 296 |
resblock_updown=False,
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
num_attention_blocks=None,
|
|
|
|
| 301 |
use_linear_in_transformer=False,
|
|
|
|
| 302 |
adm_in_channels=None,
|
| 303 |
-
|
|
|
|
|
|
|
| 304 |
):
|
| 305 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
if num_heads_upsample == -1:
|
| 308 |
num_heads_upsample = num_heads
|
|
@@ -318,39 +591,106 @@ class UnifiedUNetModel(nn.Module):
|
|
| 318 |
), "Either num_heads or num_head_channels has to be set"
|
| 319 |
|
| 320 |
self.in_channels = in_channels
|
| 321 |
-
self.ctrl_channels = ctrl_channels
|
| 322 |
self.model_channels = model_channels
|
| 323 |
self.out_channels = out_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
self.attention_resolutions = attention_resolutions
|
| 331 |
self.dropout = dropout
|
| 332 |
self.channel_mult = channel_mult
|
| 333 |
self.conv_resample = conv_resample
|
| 334 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
self.num_heads = num_heads
|
| 336 |
self.num_head_channels = num_head_channels
|
| 337 |
self.num_heads_upsample = num_heads_upsample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
time_embed_dim = model_channels * 4
|
| 340 |
-
self.time_embed =
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
| 344 |
)
|
| 345 |
-
|
| 346 |
-
if self.
|
| 347 |
-
self.
|
| 348 |
-
nn.
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
)
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
self.input_blocks = nn.ModuleList(
|
| 356 |
[
|
|
@@ -359,26 +699,6 @@ class UnifiedUNetModel(nn.Module):
|
|
| 359 |
)
|
| 360 |
]
|
| 361 |
)
|
| 362 |
-
|
| 363 |
-
if self.ctrl_channels > 0:
|
| 364 |
-
self.ctrl_block = TimestepEmbedSequential(
|
| 365 |
-
conv_nd(dims, ctrl_channels, 16, 3, padding=1),
|
| 366 |
-
nn.SiLU(),
|
| 367 |
-
conv_nd(dims, 16, 16, 3, padding=1),
|
| 368 |
-
nn.SiLU(),
|
| 369 |
-
conv_nd(dims, 16, 32, 3, padding=1),
|
| 370 |
-
nn.SiLU(),
|
| 371 |
-
conv_nd(dims, 32, 32, 3, padding=1),
|
| 372 |
-
nn.SiLU(),
|
| 373 |
-
conv_nd(dims, 32, 96, 3, padding=1),
|
| 374 |
-
nn.SiLU(),
|
| 375 |
-
conv_nd(dims, 96, 96, 3, padding=1),
|
| 376 |
-
nn.SiLU(),
|
| 377 |
-
conv_nd(dims, 96, 256, 3, padding=1),
|
| 378 |
-
nn.SiLU(),
|
| 379 |
-
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
self._feature_size = model_channels
|
| 383 |
input_block_chans = [model_channels]
|
| 384 |
ch = model_channels
|
|
@@ -386,13 +706,16 @@ class UnifiedUNetModel(nn.Module):
|
|
| 386 |
for level, mult in enumerate(channel_mult):
|
| 387 |
for nr in range(self.num_res_blocks[level]):
|
| 388 |
layers = [
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
| 396 |
)
|
| 397 |
]
|
| 398 |
ch = mult * model_channels
|
|
@@ -402,19 +725,45 @@ class UnifiedUNetModel(nn.Module):
|
|
| 402 |
else:
|
| 403 |
num_heads = ch // num_head_channels
|
| 404 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
if (
|
| 406 |
not exists(num_attention_blocks)
|
| 407 |
or nr < num_attention_blocks[level]
|
| 408 |
):
|
| 409 |
layers.append(
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
)
|
| 419 |
)
|
| 420 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
@@ -424,14 +773,17 @@ class UnifiedUNetModel(nn.Module):
|
|
| 424 |
out_ch = ch
|
| 425 |
self.input_blocks.append(
|
| 426 |
TimestepEmbedSequential(
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
|
|
|
|
|
|
|
|
|
| 435 |
)
|
| 436 |
if resblock_updown
|
| 437 |
else Downsample(
|
|
@@ -449,33 +801,54 @@ class UnifiedUNetModel(nn.Module):
|
|
| 449 |
else:
|
| 450 |
num_heads = ch // num_head_channels
|
| 451 |
dim_head = num_head_channels
|
| 452 |
-
|
|
|
|
|
|
|
| 453 |
self.middle_block = TimestepEmbedSequential(
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
num_heads,
|
| 464 |
-
dim_head,
|
| 465 |
-
depth=transformer_depth_middle,
|
| 466 |
-
t_context_dim=t_context_dim,
|
| 467 |
-
v_context_dim=v_context_dim,
|
| 468 |
-
use_linear=use_linear_in_transformer
|
| 469 |
),
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
|
|
|
|
|
|
| 476 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
)
|
| 478 |
-
|
| 479 |
self._feature_size += ch
|
| 480 |
|
| 481 |
self.output_blocks = nn.ModuleList([])
|
|
@@ -483,13 +856,16 @@ class UnifiedUNetModel(nn.Module):
|
|
| 483 |
for i in range(self.num_res_blocks[level] + 1):
|
| 484 |
ich = input_block_chans.pop()
|
| 485 |
layers = [
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
|
|
|
|
|
|
|
|
|
| 493 |
)
|
| 494 |
]
|
| 495 |
ch = model_channels * mult
|
|
@@ -499,32 +875,61 @@ class UnifiedUNetModel(nn.Module):
|
|
| 499 |
else:
|
| 500 |
num_heads = ch // num_head_channels
|
| 501 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
if (
|
| 503 |
not exists(num_attention_blocks)
|
| 504 |
or i < num_attention_blocks[level]
|
| 505 |
):
|
| 506 |
layers.append(
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
)
|
| 516 |
)
|
| 517 |
if level and i == self.num_res_blocks[level]:
|
| 518 |
out_ch = ch
|
| 519 |
layers.append(
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
|
|
|
|
|
|
|
|
|
| 528 |
)
|
| 529 |
if resblock_updown
|
| 530 |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
@@ -533,92 +938,1133 @@ class UnifiedUNetModel(nn.Module):
|
|
| 533 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 534 |
self._feature_size += ch
|
| 535 |
|
| 536 |
-
self.out =
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
|
|
|
|
|
|
| 540 |
)
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
self.attn_map_cache.append(item)
|
| 550 |
-
module.attn_map_cache = item
|
| 551 |
-
|
| 552 |
-
def clear_attn_map(self):
|
| 553 |
-
|
| 554 |
-
for item in self.attn_map_cache:
|
| 555 |
-
if item["attn_map"] is not None:
|
| 556 |
-
del item["attn_map"]
|
| 557 |
-
item["attn_map"] = None
|
| 558 |
-
|
| 559 |
-
def save_attn_map(self, attn_type="t_attn", save_name="temp", tokens=""):
|
| 560 |
-
|
| 561 |
-
attn_maps = []
|
| 562 |
-
for item in self.attn_map_cache:
|
| 563 |
-
name = item["name"]
|
| 564 |
-
if any([name.startswith(block) for block in self.attn_layers]) and name.endswith(attn_type):
|
| 565 |
-
heads = item["heads"]
|
| 566 |
-
attn_maps.append(item["attn_map"].detach().cpu())
|
| 567 |
-
|
| 568 |
-
attn_map = th.stack(attn_maps, dim=0)
|
| 569 |
-
attn_map = th.mean(attn_map, dim=0)
|
| 570 |
-
|
| 571 |
-
# attn_map: bh * n * l
|
| 572 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
| 573 |
-
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1)
|
| 574 |
-
b = attn_map.shape[0]
|
| 575 |
-
|
| 576 |
-
h = w = int(n**0.5)
|
| 577 |
-
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy()
|
| 578 |
-
attn_map_i = attn_map[-1]
|
| 579 |
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
ax.set_title(tokens[j])
|
| 588 |
-
fig.savefig(f"temp/attn_map/attn_map_{save_name}.png")
|
| 589 |
-
plt.close()
|
| 590 |
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 595 |
assert (y is not None) == (
|
| 596 |
-
self.
|
| 597 |
), "must specify y if and only if the model is class-conditional"
|
| 598 |
-
|
| 599 |
-
self.clear_attn_map()
|
| 600 |
-
|
| 601 |
hs = []
|
| 602 |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 603 |
emb = self.time_embed(t_emb)
|
| 604 |
|
| 605 |
-
if self.
|
| 606 |
assert y.shape[0] == x.shape[0]
|
| 607 |
emb = emb + self.label_emb(y)
|
| 608 |
|
|
|
|
| 609 |
h = x
|
| 610 |
-
|
| 611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
for i, module in enumerate(self.input_blocks):
|
| 613 |
if self.ctrl_channels > 0 and i == 0:
|
| 614 |
-
h = module(in_h, emb,
|
| 615 |
else:
|
| 616 |
-
h = module(h, emb,
|
| 617 |
hs.append(h)
|
| 618 |
-
h = self.middle_block(h, emb,
|
| 619 |
for i, module in enumerate(self.output_blocks):
|
| 620 |
h = th.cat([h, hs.pop()], dim=1)
|
| 621 |
-
h = module(h, emb,
|
| 622 |
h = h.type(x.dtype)
|
| 623 |
|
| 624 |
return self.out(h)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import math
|
| 3 |
from abc import abstractmethod
|
| 4 |
+
from functools import partial
|
| 5 |
from typing import Iterable
|
| 6 |
|
| 7 |
import numpy as np
|
|
|
|
| 13 |
from ...modules.attention import SpatialTransformer
|
| 14 |
from ...modules.diffusionmodules.util import (
|
| 15 |
avg_pool_nd,
|
| 16 |
+
checkpoint,
|
| 17 |
conv_nd,
|
| 18 |
linear,
|
| 19 |
normalization,
|
|
|
|
| 23 |
from ...util import default, exists
|
| 24 |
|
| 25 |
|
| 26 |
+
# dummy replace
|
| 27 |
+
def convert_module_to_f16(x):
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def convert_module_to_f32(x):
|
| 32 |
+
pass
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
## go
|
| 36 |
+
class AttentionPool2d(nn.Module):
|
| 37 |
+
"""
|
| 38 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
spacial_dim: int,
|
| 44 |
+
embed_dim: int,
|
| 45 |
+
num_heads_channels: int,
|
| 46 |
+
output_dim: int = None,
|
| 47 |
+
):
|
| 48 |
super().__init__()
|
| 49 |
+
self.positional_embedding = nn.Parameter(
|
| 50 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
| 51 |
+
)
|
| 52 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
| 53 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
| 54 |
+
self.num_heads = embed_dim // num_heads_channels
|
| 55 |
+
self.attention = QKVAttention(self.num_heads)
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
b, c, *_spatial = x.shape
|
| 59 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
| 60 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
| 61 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
| 62 |
+
x = self.qkv_proj(x)
|
| 63 |
+
x = self.attention(x)
|
| 64 |
+
x = self.c_proj(x)
|
| 65 |
+
return x[:, :, 0]
|
| 66 |
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
class TimestepBlock(nn.Module):
|
| 69 |
"""
|
|
|
|
| 87 |
self,
|
| 88 |
x,
|
| 89 |
emb,
|
| 90 |
+
context=None,
|
| 91 |
+
add_context=None,
|
| 92 |
+
skip_time_mix=False,
|
| 93 |
+
time_context=None,
|
| 94 |
+
num_video_frames=None,
|
| 95 |
+
time_context_cat=None,
|
| 96 |
+
use_crossframe_attention_in_spatial_layers=False,
|
| 97 |
):
|
| 98 |
for layer in self:
|
| 99 |
if isinstance(layer, TimestepBlock):
|
| 100 |
x = layer(x, emb)
|
| 101 |
elif isinstance(layer, SpatialTransformer):
|
| 102 |
+
x = layer(x, context, add_context)
|
| 103 |
else:
|
| 104 |
x = layer(x)
|
| 105 |
return x
|
|
|
|
| 144 |
return x
|
| 145 |
|
| 146 |
|
| 147 |
+
class TransposedUpsample(nn.Module):
|
| 148 |
+
"Learned 2x upsampling without padding"
|
| 149 |
+
|
| 150 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
| 151 |
+
super().__init__()
|
| 152 |
+
self.channels = channels
|
| 153 |
+
self.out_channels = out_channels or channels
|
| 154 |
+
|
| 155 |
+
self.up = nn.ConvTranspose2d(
|
| 156 |
+
self.channels, self.out_channels, kernel_size=ks, stride=2
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
def forward(self, x):
|
| 160 |
+
return self.up(x)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
class Downsample(nn.Module):
|
| 164 |
"""
|
| 165 |
A downsampling layer with an optional convolution.
|
|
|
|
| 207 |
class ResBlock(TimestepBlock):
|
| 208 |
"""
|
| 209 |
A residual block that can optionally change the number of channels.
|
| 210 |
+
:param channels: the number of input channels.
|
| 211 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 212 |
+
:param dropout: the rate of dropout.
|
| 213 |
+
:param out_channels: if specified, the number of out channels.
|
| 214 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 215 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 216 |
+
channels in the skip connection.
|
| 217 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 218 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 219 |
+
:param up: if True, use this block for upsampling.
|
| 220 |
+
:param down: if True, use this block for downsampling.
|
| 221 |
"""
|
| 222 |
|
| 223 |
def __init__(
|
|
|
|
| 229 |
use_conv=False,
|
| 230 |
use_scale_shift_norm=False,
|
| 231 |
dims=2,
|
| 232 |
+
use_checkpoint=False,
|
| 233 |
up=False,
|
| 234 |
down=False,
|
| 235 |
kernel_size=3,
|
| 236 |
exchange_temb_dims=False,
|
| 237 |
+
skip_t_emb=False,
|
| 238 |
):
|
| 239 |
super().__init__()
|
| 240 |
self.channels = channels
|
|
|
|
| 242 |
self.dropout = dropout
|
| 243 |
self.out_channels = out_channels or channels
|
| 244 |
self.use_conv = use_conv
|
| 245 |
+
self.use_checkpoint = use_checkpoint
|
| 246 |
self.use_scale_shift_norm = use_scale_shift_norm
|
| 247 |
self.exchange_temb_dims = exchange_temb_dims
|
| 248 |
|
|
|
|
| 311 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 312 |
|
| 313 |
def forward(self, x, emb):
|
| 314 |
+
"""
|
| 315 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 316 |
+
:param x: an [N x C x ...] Tensor of features.
|
| 317 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 318 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 319 |
+
"""
|
| 320 |
+
return checkpoint(
|
| 321 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
def _forward(self, x, emb):
|
| 325 |
if self.updown:
|
| 326 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 327 |
h = in_rest(x)
|
|
|
|
| 349 |
h = self.out_layers(h)
|
| 350 |
return self.skip_connection(x) + h
|
| 351 |
|
| 352 |
+
|
| 353 |
+
class AttentionBlock(nn.Module):
|
| 354 |
+
"""
|
| 355 |
+
An attention block that allows spatial positions to attend to each other.
|
| 356 |
+
Originally ported from here, but adapted to the N-d case.
|
| 357 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 358 |
+
"""
|
| 359 |
+
|
| 360 |
+
def __init__(
|
| 361 |
+
self,
|
| 362 |
+
channels,
|
| 363 |
+
num_heads=1,
|
| 364 |
+
num_head_channels=-1,
|
| 365 |
+
use_checkpoint=False,
|
| 366 |
+
use_new_attention_order=False,
|
| 367 |
+
):
|
| 368 |
+
super().__init__()
|
| 369 |
+
self.channels = channels
|
| 370 |
+
if num_head_channels == -1:
|
| 371 |
+
self.num_heads = num_heads
|
| 372 |
+
else:
|
| 373 |
+
assert (
|
| 374 |
+
channels % num_head_channels == 0
|
| 375 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 376 |
+
self.num_heads = channels // num_head_channels
|
| 377 |
+
self.use_checkpoint = use_checkpoint
|
| 378 |
+
self.norm = normalization(channels)
|
| 379 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
| 380 |
+
if use_new_attention_order:
|
| 381 |
+
# split qkv before split heads
|
| 382 |
+
self.attention = QKVAttention(self.num_heads)
|
| 383 |
+
else:
|
| 384 |
+
# split heads before split qkv
|
| 385 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
| 386 |
+
|
| 387 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
| 388 |
+
|
| 389 |
+
def forward(self, x, **kwargs):
|
| 390 |
+
# TODO add crossframe attention and use mixed checkpoint
|
| 391 |
+
return checkpoint(
|
| 392 |
+
self._forward, (x,), self.parameters(), True
|
| 393 |
+
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
| 394 |
+
# return pt_checkpoint(self._forward, x) # pytorch
|
| 395 |
+
|
| 396 |
+
def _forward(self, x):
|
| 397 |
+
b, c, *spatial = x.shape
|
| 398 |
+
x = x.reshape(b, c, -1)
|
| 399 |
+
qkv = self.qkv(self.norm(x))
|
| 400 |
+
h = self.attention(qkv)
|
| 401 |
+
h = self.proj_out(h)
|
| 402 |
+
return (x + h).reshape(b, c, *spatial)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def count_flops_attn(model, _x, y):
|
| 406 |
+
"""
|
| 407 |
+
A counter for the `thop` package to count the operations in an
|
| 408 |
+
attention operation.
|
| 409 |
+
Meant to be used like:
|
| 410 |
+
macs, params = thop.profile(
|
| 411 |
+
model,
|
| 412 |
+
inputs=(inputs, timestamps),
|
| 413 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
| 414 |
+
)
|
| 415 |
+
"""
|
| 416 |
+
b, c, *spatial = y[0].shape
|
| 417 |
+
num_spatial = int(np.prod(spatial))
|
| 418 |
+
# We perform two matmuls with the same number of ops.
|
| 419 |
+
# The first computes the weight matrix, the second computes
|
| 420 |
+
# the combination of the value vectors.
|
| 421 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
| 422 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
class QKVAttentionLegacy(nn.Module):
|
| 426 |
+
"""
|
| 427 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 428 |
+
"""
|
| 429 |
+
|
| 430 |
+
def __init__(self, n_heads):
|
| 431 |
+
super().__init__()
|
| 432 |
+
self.n_heads = n_heads
|
| 433 |
+
|
| 434 |
+
def forward(self, qkv):
|
| 435 |
+
"""
|
| 436 |
+
Apply QKV attention.
|
| 437 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 438 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 439 |
+
"""
|
| 440 |
+
bs, width, length = qkv.shape
|
| 441 |
+
assert width % (3 * self.n_heads) == 0
|
| 442 |
+
ch = width // (3 * self.n_heads)
|
| 443 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
| 444 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 445 |
+
weight = th.einsum(
|
| 446 |
+
"bct,bcs->bts", q * scale, k * scale
|
| 447 |
+
) # More stable with f16 than dividing afterwards
|
| 448 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 449 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
| 450 |
+
return a.reshape(bs, -1, length)
|
| 451 |
+
|
| 452 |
+
@staticmethod
|
| 453 |
+
def count_flops(model, _x, y):
|
| 454 |
+
return count_flops_attn(model, _x, y)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
class QKVAttention(nn.Module):
|
| 458 |
+
"""
|
| 459 |
+
A module which performs QKV attention and splits in a different order.
|
| 460 |
+
"""
|
| 461 |
+
|
| 462 |
+
def __init__(self, n_heads):
|
| 463 |
+
super().__init__()
|
| 464 |
+
self.n_heads = n_heads
|
| 465 |
+
|
| 466 |
+
def forward(self, qkv):
|
| 467 |
+
"""
|
| 468 |
+
Apply QKV attention.
|
| 469 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 470 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 471 |
+
"""
|
| 472 |
+
bs, width, length = qkv.shape
|
| 473 |
+
assert width % (3 * self.n_heads) == 0
|
| 474 |
+
ch = width // (3 * self.n_heads)
|
| 475 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 476 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 477 |
+
weight = th.einsum(
|
| 478 |
+
"bct,bcs->bts",
|
| 479 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
| 480 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
| 481 |
+
) # More stable with f16 than dividing afterwards
|
| 482 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 483 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
| 484 |
+
return a.reshape(bs, -1, length)
|
| 485 |
+
|
| 486 |
+
@staticmethod
|
| 487 |
+
def count_flops(model, _x, y):
|
| 488 |
+
return count_flops_attn(model, _x, y)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
class Timestep(nn.Module):
|
| 492 |
+
def __init__(self, dim):
|
| 493 |
+
super().__init__()
|
| 494 |
+
self.dim = dim
|
| 495 |
+
|
| 496 |
+
def forward(self, t):
|
| 497 |
+
return timestep_embedding(t, self.dim)
|
| 498 |
|
| 499 |
|
| 500 |
+
class UNetModel(nn.Module):
|
| 501 |
+
"""
|
| 502 |
+
The full UNet model with attention and timestep embedding.
|
| 503 |
+
:param in_channels: channels in the input Tensor.
|
| 504 |
+
:param model_channels: base channel count for the model.
|
| 505 |
+
:param out_channels: channels in the output Tensor.
|
| 506 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 507 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 508 |
+
attention will take place. May be a set, list, or tuple.
|
| 509 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 510 |
+
will be used.
|
| 511 |
+
:param dropout: the dropout probability.
|
| 512 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 513 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 514 |
+
downsampling.
|
| 515 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 516 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 517 |
+
class-conditional with `num_classes` classes.
|
| 518 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 519 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 520 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 521 |
+
a fixed channel width per attention head.
|
| 522 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 523 |
+
of heads for upsampling. Deprecated.
|
| 524 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 525 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 526 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 527 |
+
increased efficiency.
|
| 528 |
+
"""
|
| 529 |
|
| 530 |
def __init__(
|
| 531 |
self,
|
| 532 |
in_channels,
|
|
|
|
| 533 |
model_channels,
|
| 534 |
out_channels,
|
| 535 |
num_res_blocks,
|
| 536 |
attention_resolutions,
|
| 537 |
dropout=0,
|
| 538 |
channel_mult=(1, 2, 4, 8),
|
|
|
|
|
|
|
| 539 |
conv_resample=True,
|
| 540 |
dims=2,
|
| 541 |
+
num_classes=None,
|
| 542 |
+
use_checkpoint=False,
|
| 543 |
+
use_fp16=False,
|
| 544 |
num_heads=-1,
|
| 545 |
num_head_channels=-1,
|
| 546 |
num_heads_upsample=-1,
|
| 547 |
use_scale_shift_norm=False,
|
| 548 |
resblock_updown=False,
|
| 549 |
+
use_new_attention_order=False,
|
| 550 |
+
use_spatial_transformer=False, # custom transformer support
|
| 551 |
+
transformer_depth=1, # custom transformer support
|
| 552 |
+
context_dim=None, # custom transformer support
|
| 553 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 554 |
+
legacy=True,
|
| 555 |
+
disable_self_attentions=None,
|
| 556 |
num_attention_blocks=None,
|
| 557 |
+
disable_middle_self_attn=False,
|
| 558 |
use_linear_in_transformer=False,
|
| 559 |
+
spatial_transformer_attn_type="softmax",
|
| 560 |
adm_in_channels=None,
|
| 561 |
+
use_fairscale_checkpoint=False,
|
| 562 |
+
offload_to_cpu=False,
|
| 563 |
+
transformer_depth_middle=None,
|
| 564 |
):
|
| 565 |
super().__init__()
|
| 566 |
+
from omegaconf.listconfig import ListConfig
|
| 567 |
+
|
| 568 |
+
if use_spatial_transformer:
|
| 569 |
+
assert (
|
| 570 |
+
context_dim is not None
|
| 571 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
| 572 |
+
|
| 573 |
+
if context_dim is not None:
|
| 574 |
+
assert (
|
| 575 |
+
use_spatial_transformer
|
| 576 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
| 577 |
+
if type(context_dim) == ListConfig:
|
| 578 |
+
context_dim = list(context_dim)
|
| 579 |
|
| 580 |
if num_heads_upsample == -1:
|
| 581 |
num_heads_upsample = num_heads
|
|
|
|
| 591 |
), "Either num_heads or num_head_channels has to be set"
|
| 592 |
|
| 593 |
self.in_channels = in_channels
|
|
|
|
| 594 |
self.model_channels = model_channels
|
| 595 |
self.out_channels = out_channels
|
| 596 |
+
if isinstance(transformer_depth, int):
|
| 597 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
| 598 |
+
elif isinstance(transformer_depth, ListConfig):
|
| 599 |
+
transformer_depth = list(transformer_depth)
|
| 600 |
+
transformer_depth_middle = default(
|
| 601 |
+
transformer_depth_middle, transformer_depth[-1]
|
| 602 |
+
)
|
| 603 |
|
| 604 |
+
if isinstance(num_res_blocks, int):
|
| 605 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 606 |
+
else:
|
| 607 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 608 |
+
raise ValueError(
|
| 609 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
| 610 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 611 |
+
)
|
| 612 |
+
self.num_res_blocks = num_res_blocks
|
| 613 |
+
# self.num_res_blocks = num_res_blocks
|
| 614 |
+
if disable_self_attentions is not None:
|
| 615 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 616 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 617 |
+
if num_attention_blocks is not None:
|
| 618 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 619 |
+
assert all(
|
| 620 |
+
map(
|
| 621 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 622 |
+
range(len(num_attention_blocks)),
|
| 623 |
+
)
|
| 624 |
+
)
|
| 625 |
+
print(
|
| 626 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 627 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 628 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 629 |
+
f"attention will still not be set."
|
| 630 |
+
) # todo: convert to warning
|
| 631 |
|
| 632 |
self.attention_resolutions = attention_resolutions
|
| 633 |
self.dropout = dropout
|
| 634 |
self.channel_mult = channel_mult
|
| 635 |
self.conv_resample = conv_resample
|
| 636 |
+
self.num_classes = num_classes
|
| 637 |
+
self.use_checkpoint = use_checkpoint
|
| 638 |
+
if use_fp16:
|
| 639 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
| 640 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
| 641 |
self.num_heads = num_heads
|
| 642 |
self.num_head_channels = num_head_channels
|
| 643 |
self.num_heads_upsample = num_heads_upsample
|
| 644 |
+
self.predict_codebook_ids = n_embed is not None
|
| 645 |
+
|
| 646 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
| 647 |
+
use_checkpoint or use_fairscale_checkpoint
|
| 648 |
+
)
|
| 649 |
+
|
| 650 |
+
self.use_fairscale_checkpoint = False
|
| 651 |
+
checkpoint_wrapper_fn = (
|
| 652 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
| 653 |
+
if self.use_fairscale_checkpoint
|
| 654 |
+
else lambda x: x
|
| 655 |
+
)
|
| 656 |
|
| 657 |
time_embed_dim = model_channels * 4
|
| 658 |
+
self.time_embed = checkpoint_wrapper_fn(
|
| 659 |
+
nn.Sequential(
|
| 660 |
+
linear(model_channels, time_embed_dim),
|
| 661 |
+
nn.SiLU(),
|
| 662 |
+
linear(time_embed_dim, time_embed_dim),
|
| 663 |
+
)
|
| 664 |
)
|
| 665 |
+
|
| 666 |
+
if self.num_classes is not None:
|
| 667 |
+
if isinstance(self.num_classes, int):
|
| 668 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 669 |
+
elif self.num_classes == "continuous":
|
| 670 |
+
print("setting up linear c_adm embedding layer")
|
| 671 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 672 |
+
elif self.num_classes == "timestep":
|
| 673 |
+
self.label_emb = checkpoint_wrapper_fn(
|
| 674 |
+
nn.Sequential(
|
| 675 |
+
Timestep(model_channels),
|
| 676 |
+
nn.Sequential(
|
| 677 |
+
linear(model_channels, time_embed_dim),
|
| 678 |
+
nn.SiLU(),
|
| 679 |
+
linear(time_embed_dim, time_embed_dim),
|
| 680 |
+
),
|
| 681 |
+
)
|
| 682 |
)
|
| 683 |
+
elif self.num_classes == "sequential":
|
| 684 |
+
assert adm_in_channels is not None
|
| 685 |
+
self.label_emb = nn.Sequential(
|
| 686 |
+
nn.Sequential(
|
| 687 |
+
linear(adm_in_channels, time_embed_dim),
|
| 688 |
+
nn.SiLU(),
|
| 689 |
+
linear(time_embed_dim, time_embed_dim),
|
| 690 |
+
)
|
| 691 |
+
)
|
| 692 |
+
else:
|
| 693 |
+
raise ValueError()
|
| 694 |
|
| 695 |
self.input_blocks = nn.ModuleList(
|
| 696 |
[
|
|
|
|
| 699 |
)
|
| 700 |
]
|
| 701 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 702 |
self._feature_size = model_channels
|
| 703 |
input_block_chans = [model_channels]
|
| 704 |
ch = model_channels
|
|
|
|
| 706 |
for level, mult in enumerate(channel_mult):
|
| 707 |
for nr in range(self.num_res_blocks[level]):
|
| 708 |
layers = [
|
| 709 |
+
checkpoint_wrapper_fn(
|
| 710 |
+
ResBlock(
|
| 711 |
+
ch,
|
| 712 |
+
time_embed_dim,
|
| 713 |
+
dropout,
|
| 714 |
+
out_channels=mult * model_channels,
|
| 715 |
+
dims=dims,
|
| 716 |
+
use_checkpoint=use_checkpoint,
|
| 717 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 718 |
+
)
|
| 719 |
)
|
| 720 |
]
|
| 721 |
ch = mult * model_channels
|
|
|
|
| 725 |
else:
|
| 726 |
num_heads = ch // num_head_channels
|
| 727 |
dim_head = num_head_channels
|
| 728 |
+
if legacy:
|
| 729 |
+
# num_heads = 1
|
| 730 |
+
dim_head = (
|
| 731 |
+
ch // num_heads
|
| 732 |
+
if use_spatial_transformer
|
| 733 |
+
else num_head_channels
|
| 734 |
+
)
|
| 735 |
+
if exists(disable_self_attentions):
|
| 736 |
+
disabled_sa = disable_self_attentions[level]
|
| 737 |
+
else:
|
| 738 |
+
disabled_sa = False
|
| 739 |
+
|
| 740 |
if (
|
| 741 |
not exists(num_attention_blocks)
|
| 742 |
or nr < num_attention_blocks[level]
|
| 743 |
):
|
| 744 |
layers.append(
|
| 745 |
+
checkpoint_wrapper_fn(
|
| 746 |
+
AttentionBlock(
|
| 747 |
+
ch,
|
| 748 |
+
use_checkpoint=use_checkpoint,
|
| 749 |
+
num_heads=num_heads,
|
| 750 |
+
num_head_channels=dim_head,
|
| 751 |
+
use_new_attention_order=use_new_attention_order,
|
| 752 |
+
)
|
| 753 |
+
)
|
| 754 |
+
if not use_spatial_transformer
|
| 755 |
+
else checkpoint_wrapper_fn(
|
| 756 |
+
SpatialTransformer(
|
| 757 |
+
ch,
|
| 758 |
+
num_heads,
|
| 759 |
+
dim_head,
|
| 760 |
+
depth=transformer_depth[level],
|
| 761 |
+
context_dim=context_dim,
|
| 762 |
+
disable_self_attn=disabled_sa,
|
| 763 |
+
use_linear=use_linear_in_transformer,
|
| 764 |
+
attn_type=spatial_transformer_attn_type,
|
| 765 |
+
use_checkpoint=use_checkpoint,
|
| 766 |
+
)
|
| 767 |
)
|
| 768 |
)
|
| 769 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
|
| 773 |
out_ch = ch
|
| 774 |
self.input_blocks.append(
|
| 775 |
TimestepEmbedSequential(
|
| 776 |
+
checkpoint_wrapper_fn(
|
| 777 |
+
ResBlock(
|
| 778 |
+
ch,
|
| 779 |
+
time_embed_dim,
|
| 780 |
+
dropout,
|
| 781 |
+
out_channels=out_ch,
|
| 782 |
+
dims=dims,
|
| 783 |
+
use_checkpoint=use_checkpoint,
|
| 784 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 785 |
+
down=True,
|
| 786 |
+
)
|
| 787 |
)
|
| 788 |
if resblock_updown
|
| 789 |
else Downsample(
|
|
|
|
| 801 |
else:
|
| 802 |
num_heads = ch // num_head_channels
|
| 803 |
dim_head = num_head_channels
|
| 804 |
+
if legacy:
|
| 805 |
+
# num_heads = 1
|
| 806 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 807 |
self.middle_block = TimestepEmbedSequential(
|
| 808 |
+
checkpoint_wrapper_fn(
|
| 809 |
+
ResBlock(
|
| 810 |
+
ch,
|
| 811 |
+
time_embed_dim,
|
| 812 |
+
dropout,
|
| 813 |
+
dims=dims,
|
| 814 |
+
use_checkpoint=use_checkpoint,
|
| 815 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 816 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 817 |
),
|
| 818 |
+
checkpoint_wrapper_fn(
|
| 819 |
+
AttentionBlock(
|
| 820 |
+
ch,
|
| 821 |
+
use_checkpoint=use_checkpoint,
|
| 822 |
+
num_heads=num_heads,
|
| 823 |
+
num_head_channels=dim_head,
|
| 824 |
+
use_new_attention_order=use_new_attention_order,
|
| 825 |
+
)
|
| 826 |
)
|
| 827 |
+
if not use_spatial_transformer
|
| 828 |
+
else checkpoint_wrapper_fn(
|
| 829 |
+
SpatialTransformer( # always uses a self-attn
|
| 830 |
+
ch,
|
| 831 |
+
num_heads,
|
| 832 |
+
dim_head,
|
| 833 |
+
depth=transformer_depth_middle,
|
| 834 |
+
context_dim=context_dim,
|
| 835 |
+
disable_self_attn=disable_middle_self_attn,
|
| 836 |
+
use_linear=use_linear_in_transformer,
|
| 837 |
+
attn_type=spatial_transformer_attn_type,
|
| 838 |
+
use_checkpoint=use_checkpoint,
|
| 839 |
+
)
|
| 840 |
+
),
|
| 841 |
+
checkpoint_wrapper_fn(
|
| 842 |
+
ResBlock(
|
| 843 |
+
ch,
|
| 844 |
+
time_embed_dim,
|
| 845 |
+
dropout,
|
| 846 |
+
dims=dims,
|
| 847 |
+
use_checkpoint=use_checkpoint,
|
| 848 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 849 |
+
)
|
| 850 |
+
),
|
| 851 |
)
|
|
|
|
| 852 |
self._feature_size += ch
|
| 853 |
|
| 854 |
self.output_blocks = nn.ModuleList([])
|
|
|
|
| 856 |
for i in range(self.num_res_blocks[level] + 1):
|
| 857 |
ich = input_block_chans.pop()
|
| 858 |
layers = [
|
| 859 |
+
checkpoint_wrapper_fn(
|
| 860 |
+
ResBlock(
|
| 861 |
+
ch + ich,
|
| 862 |
+
time_embed_dim,
|
| 863 |
+
dropout,
|
| 864 |
+
out_channels=model_channels * mult,
|
| 865 |
+
dims=dims,
|
| 866 |
+
use_checkpoint=use_checkpoint,
|
| 867 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 868 |
+
)
|
| 869 |
)
|
| 870 |
]
|
| 871 |
ch = model_channels * mult
|
|
|
|
| 875 |
else:
|
| 876 |
num_heads = ch // num_head_channels
|
| 877 |
dim_head = num_head_channels
|
| 878 |
+
if legacy:
|
| 879 |
+
# num_heads = 1
|
| 880 |
+
dim_head = (
|
| 881 |
+
ch // num_heads
|
| 882 |
+
if use_spatial_transformer
|
| 883 |
+
else num_head_channels
|
| 884 |
+
)
|
| 885 |
+
if exists(disable_self_attentions):
|
| 886 |
+
disabled_sa = disable_self_attentions[level]
|
| 887 |
+
else:
|
| 888 |
+
disabled_sa = False
|
| 889 |
+
|
| 890 |
if (
|
| 891 |
not exists(num_attention_blocks)
|
| 892 |
or i < num_attention_blocks[level]
|
| 893 |
):
|
| 894 |
layers.append(
|
| 895 |
+
checkpoint_wrapper_fn(
|
| 896 |
+
AttentionBlock(
|
| 897 |
+
ch,
|
| 898 |
+
use_checkpoint=use_checkpoint,
|
| 899 |
+
num_heads=num_heads_upsample,
|
| 900 |
+
num_head_channels=dim_head,
|
| 901 |
+
use_new_attention_order=use_new_attention_order,
|
| 902 |
+
)
|
| 903 |
+
)
|
| 904 |
+
if not use_spatial_transformer
|
| 905 |
+
else checkpoint_wrapper_fn(
|
| 906 |
+
SpatialTransformer(
|
| 907 |
+
ch,
|
| 908 |
+
num_heads,
|
| 909 |
+
dim_head,
|
| 910 |
+
depth=transformer_depth[level],
|
| 911 |
+
context_dim=context_dim,
|
| 912 |
+
disable_self_attn=disabled_sa,
|
| 913 |
+
use_linear=use_linear_in_transformer,
|
| 914 |
+
attn_type=spatial_transformer_attn_type,
|
| 915 |
+
use_checkpoint=use_checkpoint,
|
| 916 |
+
)
|
| 917 |
)
|
| 918 |
)
|
| 919 |
if level and i == self.num_res_blocks[level]:
|
| 920 |
out_ch = ch
|
| 921 |
layers.append(
|
| 922 |
+
checkpoint_wrapper_fn(
|
| 923 |
+
ResBlock(
|
| 924 |
+
ch,
|
| 925 |
+
time_embed_dim,
|
| 926 |
+
dropout,
|
| 927 |
+
out_channels=out_ch,
|
| 928 |
+
dims=dims,
|
| 929 |
+
use_checkpoint=use_checkpoint,
|
| 930 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 931 |
+
up=True,
|
| 932 |
+
)
|
| 933 |
)
|
| 934 |
if resblock_updown
|
| 935 |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
|
|
| 938 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 939 |
self._feature_size += ch
|
| 940 |
|
| 941 |
+
self.out = checkpoint_wrapper_fn(
|
| 942 |
+
nn.Sequential(
|
| 943 |
+
normalization(ch),
|
| 944 |
+
nn.SiLU(),
|
| 945 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 946 |
+
)
|
| 947 |
)
|
| 948 |
+
if self.predict_codebook_ids:
|
| 949 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
| 950 |
+
nn.Sequential(
|
| 951 |
+
normalization(ch),
|
| 952 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 953 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 954 |
+
)
|
| 955 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 956 |
|
| 957 |
+
def convert_to_fp16(self):
|
| 958 |
+
"""
|
| 959 |
+
Convert the torso of the model to float16.
|
| 960 |
+
"""
|
| 961 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 962 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 963 |
+
self.output_blocks.apply(convert_module_to_f16)
|
|
|
|
|
|
|
|
|
|
| 964 |
|
| 965 |
+
def convert_to_fp32(self):
|
| 966 |
+
"""
|
| 967 |
+
Convert the torso of the model to float32.
|
| 968 |
+
"""
|
| 969 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 970 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 971 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 972 |
|
| 973 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
| 974 |
+
"""
|
| 975 |
+
Apply the model to an input batch.
|
| 976 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 977 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 978 |
+
:param context: conditioning plugged in via crossattn
|
| 979 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 980 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 981 |
+
"""
|
| 982 |
assert (y is not None) == (
|
| 983 |
+
self.num_classes is not None
|
| 984 |
), "must specify y if and only if the model is class-conditional"
|
|
|
|
|
|
|
|
|
|
| 985 |
hs = []
|
| 986 |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 987 |
emb = self.time_embed(t_emb)
|
| 988 |
|
| 989 |
+
if self.num_classes is not None:
|
| 990 |
assert y.shape[0] == x.shape[0]
|
| 991 |
emb = emb + self.label_emb(y)
|
| 992 |
|
| 993 |
+
# h = x.type(self.dtype)
|
| 994 |
h = x
|
| 995 |
+
for i, module in enumerate(self.input_blocks):
|
| 996 |
+
h = module(h, emb, context)
|
| 997 |
+
hs.append(h)
|
| 998 |
+
h = self.middle_block(h, emb, context)
|
| 999 |
+
for i, module in enumerate(self.output_blocks):
|
| 1000 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 1001 |
+
h = module(h, emb, context)
|
| 1002 |
+
h = h.type(x.dtype)
|
| 1003 |
+
if self.predict_codebook_ids:
|
| 1004 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
| 1005 |
+
else:
|
| 1006 |
+
return self.out(h)
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
class UNetModel(nn.Module):
|
| 1011 |
+
"""
|
| 1012 |
+
The full UNet model with attention and timestep embedding.
|
| 1013 |
+
:param in_channels: channels in the input Tensor.
|
| 1014 |
+
:param model_channels: base channel count for the model.
|
| 1015 |
+
:param out_channels: channels in the output Tensor.
|
| 1016 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 1017 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 1018 |
+
attention will take place. May be a set, list, or tuple.
|
| 1019 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 1020 |
+
will be used.
|
| 1021 |
+
:param dropout: the dropout probability.
|
| 1022 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 1023 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 1024 |
+
downsampling.
|
| 1025 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 1026 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 1027 |
+
class-conditional with `num_classes` classes.
|
| 1028 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 1029 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 1030 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 1031 |
+
a fixed channel width per attention head.
|
| 1032 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 1033 |
+
of heads for upsampling. Deprecated.
|
| 1034 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 1035 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 1036 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 1037 |
+
increased efficiency.
|
| 1038 |
+
"""
|
| 1039 |
+
|
| 1040 |
+
def __init__(
|
| 1041 |
+
self,
|
| 1042 |
+
in_channels,
|
| 1043 |
+
model_channels,
|
| 1044 |
+
out_channels,
|
| 1045 |
+
num_res_blocks,
|
| 1046 |
+
attention_resolutions,
|
| 1047 |
+
dropout=0,
|
| 1048 |
+
channel_mult=(1, 2, 4, 8),
|
| 1049 |
+
conv_resample=True,
|
| 1050 |
+
dims=2,
|
| 1051 |
+
num_classes=None,
|
| 1052 |
+
use_checkpoint=False,
|
| 1053 |
+
use_fp16=False,
|
| 1054 |
+
num_heads=-1,
|
| 1055 |
+
num_head_channels=-1,
|
| 1056 |
+
num_heads_upsample=-1,
|
| 1057 |
+
use_scale_shift_norm=False,
|
| 1058 |
+
resblock_updown=False,
|
| 1059 |
+
use_new_attention_order=False,
|
| 1060 |
+
use_spatial_transformer=False, # custom transformer support
|
| 1061 |
+
transformer_depth=1, # custom transformer support
|
| 1062 |
+
context_dim=None, # custom transformer support
|
| 1063 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 1064 |
+
legacy=True,
|
| 1065 |
+
disable_self_attentions=None,
|
| 1066 |
+
num_attention_blocks=None,
|
| 1067 |
+
disable_middle_self_attn=False,
|
| 1068 |
+
use_linear_in_transformer=False,
|
| 1069 |
+
spatial_transformer_attn_type="softmax",
|
| 1070 |
+
adm_in_channels=None,
|
| 1071 |
+
use_fairscale_checkpoint=False,
|
| 1072 |
+
offload_to_cpu=False,
|
| 1073 |
+
transformer_depth_middle=None,
|
| 1074 |
+
):
|
| 1075 |
+
super().__init__()
|
| 1076 |
+
from omegaconf.listconfig import ListConfig
|
| 1077 |
+
|
| 1078 |
+
if use_spatial_transformer:
|
| 1079 |
+
assert (
|
| 1080 |
+
context_dim is not None
|
| 1081 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
| 1082 |
+
|
| 1083 |
+
if context_dim is not None:
|
| 1084 |
+
assert (
|
| 1085 |
+
use_spatial_transformer
|
| 1086 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
| 1087 |
+
if type(context_dim) == ListConfig:
|
| 1088 |
+
context_dim = list(context_dim)
|
| 1089 |
+
|
| 1090 |
+
if num_heads_upsample == -1:
|
| 1091 |
+
num_heads_upsample = num_heads
|
| 1092 |
+
|
| 1093 |
+
if num_heads == -1:
|
| 1094 |
+
assert (
|
| 1095 |
+
num_head_channels != -1
|
| 1096 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 1097 |
+
|
| 1098 |
+
if num_head_channels == -1:
|
| 1099 |
+
assert (
|
| 1100 |
+
num_heads != -1
|
| 1101 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 1102 |
+
|
| 1103 |
+
self.in_channels = in_channels
|
| 1104 |
+
self.model_channels = model_channels
|
| 1105 |
+
self.out_channels = out_channels
|
| 1106 |
+
if isinstance(transformer_depth, int):
|
| 1107 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
| 1108 |
+
elif isinstance(transformer_depth, ListConfig):
|
| 1109 |
+
transformer_depth = list(transformer_depth)
|
| 1110 |
+
transformer_depth_middle = default(
|
| 1111 |
+
transformer_depth_middle, transformer_depth[-1]
|
| 1112 |
+
)
|
| 1113 |
+
|
| 1114 |
+
if isinstance(num_res_blocks, int):
|
| 1115 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 1116 |
+
else:
|
| 1117 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 1118 |
+
raise ValueError(
|
| 1119 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
| 1120 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 1121 |
+
)
|
| 1122 |
+
self.num_res_blocks = num_res_blocks
|
| 1123 |
+
# self.num_res_blocks = num_res_blocks
|
| 1124 |
+
if disable_self_attentions is not None:
|
| 1125 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 1126 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 1127 |
+
if num_attention_blocks is not None:
|
| 1128 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 1129 |
+
assert all(
|
| 1130 |
+
map(
|
| 1131 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 1132 |
+
range(len(num_attention_blocks)),
|
| 1133 |
+
)
|
| 1134 |
+
)
|
| 1135 |
+
print(
|
| 1136 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 1137 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 1138 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 1139 |
+
f"attention will still not be set."
|
| 1140 |
+
) # todo: convert to warning
|
| 1141 |
+
|
| 1142 |
+
self.attention_resolutions = attention_resolutions
|
| 1143 |
+
self.dropout = dropout
|
| 1144 |
+
self.channel_mult = channel_mult
|
| 1145 |
+
self.conv_resample = conv_resample
|
| 1146 |
+
self.num_classes = num_classes
|
| 1147 |
+
self.use_checkpoint = use_checkpoint
|
| 1148 |
+
if use_fp16:
|
| 1149 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
| 1150 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
| 1151 |
+
self.num_heads = num_heads
|
| 1152 |
+
self.num_head_channels = num_head_channels
|
| 1153 |
+
self.num_heads_upsample = num_heads_upsample
|
| 1154 |
+
self.predict_codebook_ids = n_embed is not None
|
| 1155 |
+
|
| 1156 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
| 1157 |
+
use_checkpoint or use_fairscale_checkpoint
|
| 1158 |
+
)
|
| 1159 |
+
|
| 1160 |
+
self.use_fairscale_checkpoint = False
|
| 1161 |
+
checkpoint_wrapper_fn = (
|
| 1162 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
| 1163 |
+
if self.use_fairscale_checkpoint
|
| 1164 |
+
else lambda x: x
|
| 1165 |
+
)
|
| 1166 |
+
|
| 1167 |
+
time_embed_dim = model_channels * 4
|
| 1168 |
+
self.time_embed = checkpoint_wrapper_fn(
|
| 1169 |
+
nn.Sequential(
|
| 1170 |
+
linear(model_channels, time_embed_dim),
|
| 1171 |
+
nn.SiLU(),
|
| 1172 |
+
linear(time_embed_dim, time_embed_dim),
|
| 1173 |
+
)
|
| 1174 |
+
)
|
| 1175 |
+
|
| 1176 |
+
if self.num_classes is not None:
|
| 1177 |
+
if isinstance(self.num_classes, int):
|
| 1178 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 1179 |
+
elif self.num_classes == "continuous":
|
| 1180 |
+
print("setting up linear c_adm embedding layer")
|
| 1181 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 1182 |
+
elif self.num_classes == "timestep":
|
| 1183 |
+
self.label_emb = checkpoint_wrapper_fn(
|
| 1184 |
+
nn.Sequential(
|
| 1185 |
+
Timestep(model_channels),
|
| 1186 |
+
nn.Sequential(
|
| 1187 |
+
linear(model_channels, time_embed_dim),
|
| 1188 |
+
nn.SiLU(),
|
| 1189 |
+
linear(time_embed_dim, time_embed_dim),
|
| 1190 |
+
),
|
| 1191 |
+
)
|
| 1192 |
+
)
|
| 1193 |
+
elif self.num_classes == "sequential":
|
| 1194 |
+
assert adm_in_channels is not None
|
| 1195 |
+
self.label_emb = nn.Sequential(
|
| 1196 |
+
nn.Sequential(
|
| 1197 |
+
linear(adm_in_channels, time_embed_dim),
|
| 1198 |
+
nn.SiLU(),
|
| 1199 |
+
linear(time_embed_dim, time_embed_dim),
|
| 1200 |
+
)
|
| 1201 |
+
)
|
| 1202 |
+
else:
|
| 1203 |
+
raise ValueError()
|
| 1204 |
+
|
| 1205 |
+
self.input_blocks = nn.ModuleList(
|
| 1206 |
+
[
|
| 1207 |
+
TimestepEmbedSequential(
|
| 1208 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 1209 |
+
)
|
| 1210 |
+
]
|
| 1211 |
+
)
|
| 1212 |
+
self._feature_size = model_channels
|
| 1213 |
+
input_block_chans = [model_channels]
|
| 1214 |
+
ch = model_channels
|
| 1215 |
+
ds = 1
|
| 1216 |
+
for level, mult in enumerate(channel_mult):
|
| 1217 |
+
for nr in range(self.num_res_blocks[level]):
|
| 1218 |
+
layers = [
|
| 1219 |
+
checkpoint_wrapper_fn(
|
| 1220 |
+
ResBlock(
|
| 1221 |
+
ch,
|
| 1222 |
+
time_embed_dim,
|
| 1223 |
+
dropout,
|
| 1224 |
+
out_channels=mult * model_channels,
|
| 1225 |
+
dims=dims,
|
| 1226 |
+
use_checkpoint=use_checkpoint,
|
| 1227 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1228 |
+
)
|
| 1229 |
+
)
|
| 1230 |
+
]
|
| 1231 |
+
ch = mult * model_channels
|
| 1232 |
+
if ds in attention_resolutions:
|
| 1233 |
+
if num_head_channels == -1:
|
| 1234 |
+
dim_head = ch // num_heads
|
| 1235 |
+
else:
|
| 1236 |
+
num_heads = ch // num_head_channels
|
| 1237 |
+
dim_head = num_head_channels
|
| 1238 |
+
if legacy:
|
| 1239 |
+
# num_heads = 1
|
| 1240 |
+
dim_head = (
|
| 1241 |
+
ch // num_heads
|
| 1242 |
+
if use_spatial_transformer
|
| 1243 |
+
else num_head_channels
|
| 1244 |
+
)
|
| 1245 |
+
if exists(disable_self_attentions):
|
| 1246 |
+
disabled_sa = disable_self_attentions[level]
|
| 1247 |
+
else:
|
| 1248 |
+
disabled_sa = False
|
| 1249 |
+
|
| 1250 |
+
if (
|
| 1251 |
+
not exists(num_attention_blocks)
|
| 1252 |
+
or nr < num_attention_blocks[level]
|
| 1253 |
+
):
|
| 1254 |
+
layers.append(
|
| 1255 |
+
checkpoint_wrapper_fn(
|
| 1256 |
+
AttentionBlock(
|
| 1257 |
+
ch,
|
| 1258 |
+
use_checkpoint=use_checkpoint,
|
| 1259 |
+
num_heads=num_heads,
|
| 1260 |
+
num_head_channels=dim_head,
|
| 1261 |
+
use_new_attention_order=use_new_attention_order,
|
| 1262 |
+
)
|
| 1263 |
+
)
|
| 1264 |
+
if not use_spatial_transformer
|
| 1265 |
+
else checkpoint_wrapper_fn(
|
| 1266 |
+
SpatialTransformer(
|
| 1267 |
+
ch,
|
| 1268 |
+
num_heads,
|
| 1269 |
+
dim_head,
|
| 1270 |
+
depth=transformer_depth[level],
|
| 1271 |
+
context_dim=context_dim,
|
| 1272 |
+
disable_self_attn=disabled_sa,
|
| 1273 |
+
use_linear=use_linear_in_transformer,
|
| 1274 |
+
attn_type=spatial_transformer_attn_type,
|
| 1275 |
+
use_checkpoint=use_checkpoint,
|
| 1276 |
+
)
|
| 1277 |
+
)
|
| 1278 |
+
)
|
| 1279 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 1280 |
+
self._feature_size += ch
|
| 1281 |
+
input_block_chans.append(ch)
|
| 1282 |
+
if level != len(channel_mult) - 1:
|
| 1283 |
+
out_ch = ch
|
| 1284 |
+
self.input_blocks.append(
|
| 1285 |
+
TimestepEmbedSequential(
|
| 1286 |
+
checkpoint_wrapper_fn(
|
| 1287 |
+
ResBlock(
|
| 1288 |
+
ch,
|
| 1289 |
+
time_embed_dim,
|
| 1290 |
+
dropout,
|
| 1291 |
+
out_channels=out_ch,
|
| 1292 |
+
dims=dims,
|
| 1293 |
+
use_checkpoint=use_checkpoint,
|
| 1294 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1295 |
+
down=True,
|
| 1296 |
+
)
|
| 1297 |
+
)
|
| 1298 |
+
if resblock_updown
|
| 1299 |
+
else Downsample(
|
| 1300 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 1301 |
+
)
|
| 1302 |
+
)
|
| 1303 |
+
)
|
| 1304 |
+
ch = out_ch
|
| 1305 |
+
input_block_chans.append(ch)
|
| 1306 |
+
ds *= 2
|
| 1307 |
+
self._feature_size += ch
|
| 1308 |
+
|
| 1309 |
+
if num_head_channels == -1:
|
| 1310 |
+
dim_head = ch // num_heads
|
| 1311 |
+
else:
|
| 1312 |
+
num_heads = ch // num_head_channels
|
| 1313 |
+
dim_head = num_head_channels
|
| 1314 |
+
if legacy:
|
| 1315 |
+
# num_heads = 1
|
| 1316 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 1317 |
+
self.middle_block = TimestepEmbedSequential(
|
| 1318 |
+
checkpoint_wrapper_fn(
|
| 1319 |
+
ResBlock(
|
| 1320 |
+
ch,
|
| 1321 |
+
time_embed_dim,
|
| 1322 |
+
dropout,
|
| 1323 |
+
dims=dims,
|
| 1324 |
+
use_checkpoint=use_checkpoint,
|
| 1325 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1326 |
+
)
|
| 1327 |
+
),
|
| 1328 |
+
checkpoint_wrapper_fn(
|
| 1329 |
+
AttentionBlock(
|
| 1330 |
+
ch,
|
| 1331 |
+
use_checkpoint=use_checkpoint,
|
| 1332 |
+
num_heads=num_heads,
|
| 1333 |
+
num_head_channels=dim_head,
|
| 1334 |
+
use_new_attention_order=use_new_attention_order,
|
| 1335 |
+
)
|
| 1336 |
+
)
|
| 1337 |
+
if not use_spatial_transformer
|
| 1338 |
+
else checkpoint_wrapper_fn(
|
| 1339 |
+
SpatialTransformer( # always uses a self-attn
|
| 1340 |
+
ch,
|
| 1341 |
+
num_heads,
|
| 1342 |
+
dim_head,
|
| 1343 |
+
depth=transformer_depth_middle,
|
| 1344 |
+
context_dim=context_dim,
|
| 1345 |
+
disable_self_attn=disable_middle_self_attn,
|
| 1346 |
+
use_linear=use_linear_in_transformer,
|
| 1347 |
+
attn_type=spatial_transformer_attn_type,
|
| 1348 |
+
use_checkpoint=use_checkpoint,
|
| 1349 |
+
)
|
| 1350 |
+
),
|
| 1351 |
+
checkpoint_wrapper_fn(
|
| 1352 |
+
ResBlock(
|
| 1353 |
+
ch,
|
| 1354 |
+
time_embed_dim,
|
| 1355 |
+
dropout,
|
| 1356 |
+
dims=dims,
|
| 1357 |
+
use_checkpoint=use_checkpoint,
|
| 1358 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1359 |
+
)
|
| 1360 |
+
),
|
| 1361 |
+
)
|
| 1362 |
+
self._feature_size += ch
|
| 1363 |
+
|
| 1364 |
+
self.output_blocks = nn.ModuleList([])
|
| 1365 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 1366 |
+
for i in range(self.num_res_blocks[level] + 1):
|
| 1367 |
+
ich = input_block_chans.pop()
|
| 1368 |
+
layers = [
|
| 1369 |
+
checkpoint_wrapper_fn(
|
| 1370 |
+
ResBlock(
|
| 1371 |
+
ch + ich,
|
| 1372 |
+
time_embed_dim,
|
| 1373 |
+
dropout,
|
| 1374 |
+
out_channels=model_channels * mult,
|
| 1375 |
+
dims=dims,
|
| 1376 |
+
use_checkpoint=use_checkpoint,
|
| 1377 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1378 |
+
)
|
| 1379 |
+
)
|
| 1380 |
+
]
|
| 1381 |
+
ch = model_channels * mult
|
| 1382 |
+
if ds in attention_resolutions:
|
| 1383 |
+
if num_head_channels == -1:
|
| 1384 |
+
dim_head = ch // num_heads
|
| 1385 |
+
else:
|
| 1386 |
+
num_heads = ch // num_head_channels
|
| 1387 |
+
dim_head = num_head_channels
|
| 1388 |
+
if legacy:
|
| 1389 |
+
# num_heads = 1
|
| 1390 |
+
dim_head = (
|
| 1391 |
+
ch // num_heads
|
| 1392 |
+
if use_spatial_transformer
|
| 1393 |
+
else num_head_channels
|
| 1394 |
+
)
|
| 1395 |
+
if exists(disable_self_attentions):
|
| 1396 |
+
disabled_sa = disable_self_attentions[level]
|
| 1397 |
+
else:
|
| 1398 |
+
disabled_sa = False
|
| 1399 |
+
|
| 1400 |
+
if (
|
| 1401 |
+
not exists(num_attention_blocks)
|
| 1402 |
+
or i < num_attention_blocks[level]
|
| 1403 |
+
):
|
| 1404 |
+
layers.append(
|
| 1405 |
+
checkpoint_wrapper_fn(
|
| 1406 |
+
AttentionBlock(
|
| 1407 |
+
ch,
|
| 1408 |
+
use_checkpoint=use_checkpoint,
|
| 1409 |
+
num_heads=num_heads_upsample,
|
| 1410 |
+
num_head_channels=dim_head,
|
| 1411 |
+
use_new_attention_order=use_new_attention_order,
|
| 1412 |
+
)
|
| 1413 |
+
)
|
| 1414 |
+
if not use_spatial_transformer
|
| 1415 |
+
else checkpoint_wrapper_fn(
|
| 1416 |
+
SpatialTransformer(
|
| 1417 |
+
ch,
|
| 1418 |
+
num_heads,
|
| 1419 |
+
dim_head,
|
| 1420 |
+
depth=transformer_depth[level],
|
| 1421 |
+
context_dim=context_dim,
|
| 1422 |
+
disable_self_attn=disabled_sa,
|
| 1423 |
+
use_linear=use_linear_in_transformer,
|
| 1424 |
+
attn_type=spatial_transformer_attn_type,
|
| 1425 |
+
use_checkpoint=use_checkpoint,
|
| 1426 |
+
)
|
| 1427 |
+
)
|
| 1428 |
+
)
|
| 1429 |
+
if level and i == self.num_res_blocks[level]:
|
| 1430 |
+
out_ch = ch
|
| 1431 |
+
layers.append(
|
| 1432 |
+
checkpoint_wrapper_fn(
|
| 1433 |
+
ResBlock(
|
| 1434 |
+
ch,
|
| 1435 |
+
time_embed_dim,
|
| 1436 |
+
dropout,
|
| 1437 |
+
out_channels=out_ch,
|
| 1438 |
+
dims=dims,
|
| 1439 |
+
use_checkpoint=use_checkpoint,
|
| 1440 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1441 |
+
up=True,
|
| 1442 |
+
)
|
| 1443 |
+
)
|
| 1444 |
+
if resblock_updown
|
| 1445 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 1446 |
+
)
|
| 1447 |
+
ds //= 2
|
| 1448 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 1449 |
+
self._feature_size += ch
|
| 1450 |
+
|
| 1451 |
+
self.out = checkpoint_wrapper_fn(
|
| 1452 |
+
nn.Sequential(
|
| 1453 |
+
normalization(ch),
|
| 1454 |
+
nn.SiLU(),
|
| 1455 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 1456 |
+
)
|
| 1457 |
+
)
|
| 1458 |
+
if self.predict_codebook_ids:
|
| 1459 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
| 1460 |
+
nn.Sequential(
|
| 1461 |
+
normalization(ch),
|
| 1462 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 1463 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 1464 |
+
)
|
| 1465 |
+
)
|
| 1466 |
+
|
| 1467 |
+
def convert_to_fp16(self):
|
| 1468 |
+
"""
|
| 1469 |
+
Convert the torso of the model to float16.
|
| 1470 |
+
"""
|
| 1471 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 1472 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 1473 |
+
self.output_blocks.apply(convert_module_to_f16)
|
| 1474 |
+
|
| 1475 |
+
def convert_to_fp32(self):
|
| 1476 |
+
"""
|
| 1477 |
+
Convert the torso of the model to float32.
|
| 1478 |
+
"""
|
| 1479 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 1480 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 1481 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 1482 |
+
|
| 1483 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
| 1484 |
+
"""
|
| 1485 |
+
Apply the model to an input batch.
|
| 1486 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 1487 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 1488 |
+
:param context: conditioning plugged in via crossattn
|
| 1489 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 1490 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 1491 |
+
"""
|
| 1492 |
+
assert (y is not None) == (
|
| 1493 |
+
self.num_classes is not None
|
| 1494 |
+
), "must specify y if and only if the model is class-conditional"
|
| 1495 |
+
hs = []
|
| 1496 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 1497 |
+
emb = self.time_embed(t_emb)
|
| 1498 |
+
|
| 1499 |
+
if self.num_classes is not None:
|
| 1500 |
+
assert y.shape[0] == x.shape[0]
|
| 1501 |
+
emb = emb + self.label_emb(y)
|
| 1502 |
+
|
| 1503 |
+
# h = x.type(self.dtype)
|
| 1504 |
+
h = x
|
| 1505 |
+
for i, module in enumerate(self.input_blocks):
|
| 1506 |
+
h = module(h, emb, context)
|
| 1507 |
+
hs.append(h)
|
| 1508 |
+
h = self.middle_block(h, emb, context)
|
| 1509 |
+
for i, module in enumerate(self.output_blocks):
|
| 1510 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 1511 |
+
h = module(h, emb, context)
|
| 1512 |
+
h = h.type(x.dtype)
|
| 1513 |
+
if self.predict_codebook_ids:
|
| 1514 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
| 1515 |
+
else:
|
| 1516 |
+
return self.out(h)
|
| 1517 |
+
|
| 1518 |
+
|
| 1519 |
+
import seaborn as sns
|
| 1520 |
+
import matplotlib.pyplot as plt
|
| 1521 |
+
|
| 1522 |
+
class UNetAddModel(nn.Module):
|
| 1523 |
+
|
| 1524 |
+
def __init__(
|
| 1525 |
+
self,
|
| 1526 |
+
in_channels,
|
| 1527 |
+
ctrl_channels,
|
| 1528 |
+
model_channels,
|
| 1529 |
+
out_channels,
|
| 1530 |
+
num_res_blocks,
|
| 1531 |
+
attention_resolutions,
|
| 1532 |
+
dropout=0,
|
| 1533 |
+
channel_mult=(1, 2, 4, 8),
|
| 1534 |
+
attn_type="attn2",
|
| 1535 |
+
attn_layers=[],
|
| 1536 |
+
conv_resample=True,
|
| 1537 |
+
dims=2,
|
| 1538 |
+
num_classes=None,
|
| 1539 |
+
use_checkpoint=False,
|
| 1540 |
+
use_fp16=False,
|
| 1541 |
+
num_heads=-1,
|
| 1542 |
+
num_head_channels=-1,
|
| 1543 |
+
num_heads_upsample=-1,
|
| 1544 |
+
use_scale_shift_norm=False,
|
| 1545 |
+
resblock_updown=False,
|
| 1546 |
+
use_new_attention_order=False,
|
| 1547 |
+
use_spatial_transformer=False, # custom transformer support
|
| 1548 |
+
transformer_depth=1, # custom transformer support
|
| 1549 |
+
context_dim=None, # custom transformer support
|
| 1550 |
+
add_context_dim=None,
|
| 1551 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 1552 |
+
legacy=True,
|
| 1553 |
+
disable_self_attentions=None,
|
| 1554 |
+
num_attention_blocks=None,
|
| 1555 |
+
disable_middle_self_attn=False,
|
| 1556 |
+
use_linear_in_transformer=False,
|
| 1557 |
+
spatial_transformer_attn_type="softmax",
|
| 1558 |
+
adm_in_channels=None,
|
| 1559 |
+
use_fairscale_checkpoint=False,
|
| 1560 |
+
offload_to_cpu=False,
|
| 1561 |
+
transformer_depth_middle=None,
|
| 1562 |
+
):
|
| 1563 |
+
super().__init__()
|
| 1564 |
+
from omegaconf.listconfig import ListConfig
|
| 1565 |
+
|
| 1566 |
+
if use_spatial_transformer:
|
| 1567 |
+
assert (
|
| 1568 |
+
context_dim is not None
|
| 1569 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
| 1570 |
+
|
| 1571 |
+
if context_dim is not None:
|
| 1572 |
+
assert (
|
| 1573 |
+
use_spatial_transformer
|
| 1574 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
| 1575 |
+
if type(context_dim) == ListConfig:
|
| 1576 |
+
context_dim = list(context_dim)
|
| 1577 |
+
|
| 1578 |
+
if num_heads_upsample == -1:
|
| 1579 |
+
num_heads_upsample = num_heads
|
| 1580 |
+
|
| 1581 |
+
if num_heads == -1:
|
| 1582 |
+
assert (
|
| 1583 |
+
num_head_channels != -1
|
| 1584 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 1585 |
+
|
| 1586 |
+
if num_head_channels == -1:
|
| 1587 |
+
assert (
|
| 1588 |
+
num_heads != -1
|
| 1589 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 1590 |
+
|
| 1591 |
+
self.in_channels = in_channels
|
| 1592 |
+
self.ctrl_channels = ctrl_channels
|
| 1593 |
+
self.model_channels = model_channels
|
| 1594 |
+
self.out_channels = out_channels
|
| 1595 |
+
if isinstance(transformer_depth, int):
|
| 1596 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
| 1597 |
+
elif isinstance(transformer_depth, ListConfig):
|
| 1598 |
+
transformer_depth = list(transformer_depth)
|
| 1599 |
+
transformer_depth_middle = default(
|
| 1600 |
+
transformer_depth_middle, transformer_depth[-1]
|
| 1601 |
+
)
|
| 1602 |
+
|
| 1603 |
+
if isinstance(num_res_blocks, int):
|
| 1604 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 1605 |
+
else:
|
| 1606 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 1607 |
+
raise ValueError(
|
| 1608 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
| 1609 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 1610 |
+
)
|
| 1611 |
+
self.num_res_blocks = num_res_blocks
|
| 1612 |
+
# self.num_res_blocks = num_res_blocks
|
| 1613 |
+
if disable_self_attentions is not None:
|
| 1614 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 1615 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 1616 |
+
if num_attention_blocks is not None:
|
| 1617 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 1618 |
+
assert all(
|
| 1619 |
+
map(
|
| 1620 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 1621 |
+
range(len(num_attention_blocks)),
|
| 1622 |
+
)
|
| 1623 |
+
)
|
| 1624 |
+
print(
|
| 1625 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 1626 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 1627 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 1628 |
+
f"attention will still not be set."
|
| 1629 |
+
) # todo: convert to warning
|
| 1630 |
+
|
| 1631 |
+
self.attention_resolutions = attention_resolutions
|
| 1632 |
+
self.dropout = dropout
|
| 1633 |
+
self.channel_mult = channel_mult
|
| 1634 |
+
self.conv_resample = conv_resample
|
| 1635 |
+
self.num_classes = num_classes
|
| 1636 |
+
self.use_checkpoint = use_checkpoint
|
| 1637 |
+
if use_fp16:
|
| 1638 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
| 1639 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
| 1640 |
+
self.num_heads = num_heads
|
| 1641 |
+
self.num_head_channels = num_head_channels
|
| 1642 |
+
self.num_heads_upsample = num_heads_upsample
|
| 1643 |
+
self.predict_codebook_ids = n_embed is not None
|
| 1644 |
+
|
| 1645 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
| 1646 |
+
use_checkpoint or use_fairscale_checkpoint
|
| 1647 |
+
)
|
| 1648 |
+
|
| 1649 |
+
self.use_fairscale_checkpoint = False
|
| 1650 |
+
checkpoint_wrapper_fn = (
|
| 1651 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
| 1652 |
+
if self.use_fairscale_checkpoint
|
| 1653 |
+
else lambda x: x
|
| 1654 |
+
)
|
| 1655 |
+
|
| 1656 |
+
time_embed_dim = model_channels * 4
|
| 1657 |
+
self.time_embed = checkpoint_wrapper_fn(
|
| 1658 |
+
nn.Sequential(
|
| 1659 |
+
linear(model_channels, time_embed_dim),
|
| 1660 |
+
nn.SiLU(),
|
| 1661 |
+
linear(time_embed_dim, time_embed_dim),
|
| 1662 |
+
)
|
| 1663 |
+
)
|
| 1664 |
+
|
| 1665 |
+
if self.num_classes is not None:
|
| 1666 |
+
if isinstance(self.num_classes, int):
|
| 1667 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 1668 |
+
elif self.num_classes == "continuous":
|
| 1669 |
+
print("setting up linear c_adm embedding layer")
|
| 1670 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 1671 |
+
elif self.num_classes == "timestep":
|
| 1672 |
+
self.label_emb = checkpoint_wrapper_fn(
|
| 1673 |
+
nn.Sequential(
|
| 1674 |
+
Timestep(model_channels),
|
| 1675 |
+
nn.Sequential(
|
| 1676 |
+
linear(model_channels, time_embed_dim),
|
| 1677 |
+
nn.SiLU(),
|
| 1678 |
+
linear(time_embed_dim, time_embed_dim),
|
| 1679 |
+
),
|
| 1680 |
+
)
|
| 1681 |
+
)
|
| 1682 |
+
elif self.num_classes == "sequential":
|
| 1683 |
+
assert adm_in_channels is not None
|
| 1684 |
+
self.label_emb = nn.Sequential(
|
| 1685 |
+
nn.Sequential(
|
| 1686 |
+
linear(adm_in_channels, time_embed_dim),
|
| 1687 |
+
nn.SiLU(),
|
| 1688 |
+
linear(time_embed_dim, time_embed_dim),
|
| 1689 |
+
)
|
| 1690 |
+
)
|
| 1691 |
+
else:
|
| 1692 |
+
raise ValueError()
|
| 1693 |
+
|
| 1694 |
+
self.input_blocks = nn.ModuleList(
|
| 1695 |
+
[
|
| 1696 |
+
TimestepEmbedSequential(
|
| 1697 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 1698 |
+
)
|
| 1699 |
+
]
|
| 1700 |
+
)
|
| 1701 |
+
if self.ctrl_channels > 0:
|
| 1702 |
+
self.add_input_block = TimestepEmbedSequential(
|
| 1703 |
+
conv_nd(dims, ctrl_channels, 16, 3, padding=1),
|
| 1704 |
+
nn.SiLU(),
|
| 1705 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
| 1706 |
+
nn.SiLU(),
|
| 1707 |
+
conv_nd(dims, 16, 32, 3, padding=1),
|
| 1708 |
+
nn.SiLU(),
|
| 1709 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
| 1710 |
+
nn.SiLU(),
|
| 1711 |
+
conv_nd(dims, 32, 96, 3, padding=1),
|
| 1712 |
+
nn.SiLU(),
|
| 1713 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
| 1714 |
+
nn.SiLU(),
|
| 1715 |
+
conv_nd(dims, 96, 256, 3, padding=1),
|
| 1716 |
+
nn.SiLU(),
|
| 1717 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
| 1718 |
+
)
|
| 1719 |
+
|
| 1720 |
+
self._feature_size = model_channels
|
| 1721 |
+
input_block_chans = [model_channels]
|
| 1722 |
+
ch = model_channels
|
| 1723 |
+
ds = 1
|
| 1724 |
+
for level, mult in enumerate(channel_mult):
|
| 1725 |
+
for nr in range(self.num_res_blocks[level]):
|
| 1726 |
+
layers = [
|
| 1727 |
+
checkpoint_wrapper_fn(
|
| 1728 |
+
ResBlock(
|
| 1729 |
+
ch,
|
| 1730 |
+
time_embed_dim,
|
| 1731 |
+
dropout,
|
| 1732 |
+
out_channels=mult * model_channels,
|
| 1733 |
+
dims=dims,
|
| 1734 |
+
use_checkpoint=use_checkpoint,
|
| 1735 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1736 |
+
)
|
| 1737 |
+
)
|
| 1738 |
+
]
|
| 1739 |
+
ch = mult * model_channels
|
| 1740 |
+
if ds in attention_resolutions:
|
| 1741 |
+
if num_head_channels == -1:
|
| 1742 |
+
dim_head = ch // num_heads
|
| 1743 |
+
else:
|
| 1744 |
+
num_heads = ch // num_head_channels
|
| 1745 |
+
dim_head = num_head_channels
|
| 1746 |
+
if legacy:
|
| 1747 |
+
# num_heads = 1
|
| 1748 |
+
dim_head = (
|
| 1749 |
+
ch // num_heads
|
| 1750 |
+
if use_spatial_transformer
|
| 1751 |
+
else num_head_channels
|
| 1752 |
+
)
|
| 1753 |
+
if exists(disable_self_attentions):
|
| 1754 |
+
disabled_sa = disable_self_attentions[level]
|
| 1755 |
+
else:
|
| 1756 |
+
disabled_sa = False
|
| 1757 |
+
|
| 1758 |
+
if (
|
| 1759 |
+
not exists(num_attention_blocks)
|
| 1760 |
+
or nr < num_attention_blocks[level]
|
| 1761 |
+
):
|
| 1762 |
+
layers.append(
|
| 1763 |
+
checkpoint_wrapper_fn(
|
| 1764 |
+
AttentionBlock(
|
| 1765 |
+
ch,
|
| 1766 |
+
use_checkpoint=use_checkpoint,
|
| 1767 |
+
num_heads=num_heads,
|
| 1768 |
+
num_head_channels=dim_head,
|
| 1769 |
+
use_new_attention_order=use_new_attention_order,
|
| 1770 |
+
)
|
| 1771 |
+
)
|
| 1772 |
+
if not use_spatial_transformer
|
| 1773 |
+
else checkpoint_wrapper_fn(
|
| 1774 |
+
SpatialTransformer(
|
| 1775 |
+
ch,
|
| 1776 |
+
num_heads,
|
| 1777 |
+
dim_head,
|
| 1778 |
+
depth=transformer_depth[level],
|
| 1779 |
+
context_dim=context_dim,
|
| 1780 |
+
add_context_dim=add_context_dim,
|
| 1781 |
+
disable_self_attn=disabled_sa,
|
| 1782 |
+
use_linear=use_linear_in_transformer,
|
| 1783 |
+
attn_type=spatial_transformer_attn_type,
|
| 1784 |
+
use_checkpoint=use_checkpoint,
|
| 1785 |
+
)
|
| 1786 |
+
)
|
| 1787 |
+
)
|
| 1788 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 1789 |
+
self._feature_size += ch
|
| 1790 |
+
input_block_chans.append(ch)
|
| 1791 |
+
if level != len(channel_mult) - 1:
|
| 1792 |
+
out_ch = ch
|
| 1793 |
+
self.input_blocks.append(
|
| 1794 |
+
TimestepEmbedSequential(
|
| 1795 |
+
checkpoint_wrapper_fn(
|
| 1796 |
+
ResBlock(
|
| 1797 |
+
ch,
|
| 1798 |
+
time_embed_dim,
|
| 1799 |
+
dropout,
|
| 1800 |
+
out_channels=out_ch,
|
| 1801 |
+
dims=dims,
|
| 1802 |
+
use_checkpoint=use_checkpoint,
|
| 1803 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1804 |
+
down=True,
|
| 1805 |
+
)
|
| 1806 |
+
)
|
| 1807 |
+
if resblock_updown
|
| 1808 |
+
else Downsample(
|
| 1809 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 1810 |
+
)
|
| 1811 |
+
)
|
| 1812 |
+
)
|
| 1813 |
+
ch = out_ch
|
| 1814 |
+
input_block_chans.append(ch)
|
| 1815 |
+
ds *= 2
|
| 1816 |
+
self._feature_size += ch
|
| 1817 |
+
|
| 1818 |
+
if num_head_channels == -1:
|
| 1819 |
+
dim_head = ch // num_heads
|
| 1820 |
+
else:
|
| 1821 |
+
num_heads = ch // num_head_channels
|
| 1822 |
+
dim_head = num_head_channels
|
| 1823 |
+
if legacy:
|
| 1824 |
+
# num_heads = 1
|
| 1825 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 1826 |
+
self.middle_block = TimestepEmbedSequential(
|
| 1827 |
+
checkpoint_wrapper_fn(
|
| 1828 |
+
ResBlock(
|
| 1829 |
+
ch,
|
| 1830 |
+
time_embed_dim,
|
| 1831 |
+
dropout,
|
| 1832 |
+
dims=dims,
|
| 1833 |
+
use_checkpoint=use_checkpoint,
|
| 1834 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1835 |
+
)
|
| 1836 |
+
),
|
| 1837 |
+
checkpoint_wrapper_fn(
|
| 1838 |
+
AttentionBlock(
|
| 1839 |
+
ch,
|
| 1840 |
+
use_checkpoint=use_checkpoint,
|
| 1841 |
+
num_heads=num_heads,
|
| 1842 |
+
num_head_channels=dim_head,
|
| 1843 |
+
use_new_attention_order=use_new_attention_order,
|
| 1844 |
+
)
|
| 1845 |
+
)
|
| 1846 |
+
if not use_spatial_transformer
|
| 1847 |
+
else checkpoint_wrapper_fn(
|
| 1848 |
+
SpatialTransformer( # always uses a self-attn
|
| 1849 |
+
ch,
|
| 1850 |
+
num_heads,
|
| 1851 |
+
dim_head,
|
| 1852 |
+
depth=transformer_depth_middle,
|
| 1853 |
+
context_dim=context_dim,
|
| 1854 |
+
add_context_dim=add_context_dim,
|
| 1855 |
+
disable_self_attn=disable_middle_self_attn,
|
| 1856 |
+
use_linear=use_linear_in_transformer,
|
| 1857 |
+
attn_type=spatial_transformer_attn_type,
|
| 1858 |
+
use_checkpoint=use_checkpoint,
|
| 1859 |
+
)
|
| 1860 |
+
),
|
| 1861 |
+
checkpoint_wrapper_fn(
|
| 1862 |
+
ResBlock(
|
| 1863 |
+
ch,
|
| 1864 |
+
time_embed_dim,
|
| 1865 |
+
dropout,
|
| 1866 |
+
dims=dims,
|
| 1867 |
+
use_checkpoint=use_checkpoint,
|
| 1868 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1869 |
+
)
|
| 1870 |
+
),
|
| 1871 |
+
)
|
| 1872 |
+
self._feature_size += ch
|
| 1873 |
+
|
| 1874 |
+
self.output_blocks = nn.ModuleList([])
|
| 1875 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 1876 |
+
for i in range(self.num_res_blocks[level] + 1):
|
| 1877 |
+
ich = input_block_chans.pop()
|
| 1878 |
+
layers = [
|
| 1879 |
+
checkpoint_wrapper_fn(
|
| 1880 |
+
ResBlock(
|
| 1881 |
+
ch + ich,
|
| 1882 |
+
time_embed_dim,
|
| 1883 |
+
dropout,
|
| 1884 |
+
out_channels=model_channels * mult,
|
| 1885 |
+
dims=dims,
|
| 1886 |
+
use_checkpoint=use_checkpoint,
|
| 1887 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1888 |
+
)
|
| 1889 |
+
)
|
| 1890 |
+
]
|
| 1891 |
+
ch = model_channels * mult
|
| 1892 |
+
if ds in attention_resolutions:
|
| 1893 |
+
if num_head_channels == -1:
|
| 1894 |
+
dim_head = ch // num_heads
|
| 1895 |
+
else:
|
| 1896 |
+
num_heads = ch // num_head_channels
|
| 1897 |
+
dim_head = num_head_channels
|
| 1898 |
+
if legacy:
|
| 1899 |
+
# num_heads = 1
|
| 1900 |
+
dim_head = (
|
| 1901 |
+
ch // num_heads
|
| 1902 |
+
if use_spatial_transformer
|
| 1903 |
+
else num_head_channels
|
| 1904 |
+
)
|
| 1905 |
+
if exists(disable_self_attentions):
|
| 1906 |
+
disabled_sa = disable_self_attentions[level]
|
| 1907 |
+
else:
|
| 1908 |
+
disabled_sa = False
|
| 1909 |
+
|
| 1910 |
+
if (
|
| 1911 |
+
not exists(num_attention_blocks)
|
| 1912 |
+
or i < num_attention_blocks[level]
|
| 1913 |
+
):
|
| 1914 |
+
layers.append(
|
| 1915 |
+
checkpoint_wrapper_fn(
|
| 1916 |
+
AttentionBlock(
|
| 1917 |
+
ch,
|
| 1918 |
+
use_checkpoint=use_checkpoint,
|
| 1919 |
+
num_heads=num_heads_upsample,
|
| 1920 |
+
num_head_channels=dim_head,
|
| 1921 |
+
use_new_attention_order=use_new_attention_order,
|
| 1922 |
+
)
|
| 1923 |
+
)
|
| 1924 |
+
if not use_spatial_transformer
|
| 1925 |
+
else checkpoint_wrapper_fn(
|
| 1926 |
+
SpatialTransformer(
|
| 1927 |
+
ch,
|
| 1928 |
+
num_heads,
|
| 1929 |
+
dim_head,
|
| 1930 |
+
depth=transformer_depth[level],
|
| 1931 |
+
context_dim=context_dim,
|
| 1932 |
+
add_context_dim=add_context_dim,
|
| 1933 |
+
disable_self_attn=disabled_sa,
|
| 1934 |
+
use_linear=use_linear_in_transformer,
|
| 1935 |
+
attn_type=spatial_transformer_attn_type,
|
| 1936 |
+
use_checkpoint=use_checkpoint,
|
| 1937 |
+
)
|
| 1938 |
+
)
|
| 1939 |
+
)
|
| 1940 |
+
if level and i == self.num_res_blocks[level]:
|
| 1941 |
+
out_ch = ch
|
| 1942 |
+
layers.append(
|
| 1943 |
+
checkpoint_wrapper_fn(
|
| 1944 |
+
ResBlock(
|
| 1945 |
+
ch,
|
| 1946 |
+
time_embed_dim,
|
| 1947 |
+
dropout,
|
| 1948 |
+
out_channels=out_ch,
|
| 1949 |
+
dims=dims,
|
| 1950 |
+
use_checkpoint=use_checkpoint,
|
| 1951 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 1952 |
+
up=True,
|
| 1953 |
+
)
|
| 1954 |
+
)
|
| 1955 |
+
if resblock_updown
|
| 1956 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 1957 |
+
)
|
| 1958 |
+
ds //= 2
|
| 1959 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 1960 |
+
self._feature_size += ch
|
| 1961 |
+
|
| 1962 |
+
self.out = checkpoint_wrapper_fn(
|
| 1963 |
+
nn.Sequential(
|
| 1964 |
+
normalization(ch),
|
| 1965 |
+
nn.SiLU(),
|
| 1966 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 1967 |
+
)
|
| 1968 |
+
)
|
| 1969 |
+
if self.predict_codebook_ids:
|
| 1970 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
| 1971 |
+
nn.Sequential(
|
| 1972 |
+
normalization(ch),
|
| 1973 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 1974 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 1975 |
+
)
|
| 1976 |
+
)
|
| 1977 |
+
|
| 1978 |
+
# cache attn map
|
| 1979 |
+
self.attn_type = attn_type
|
| 1980 |
+
self.attn_layers = attn_layers
|
| 1981 |
+
self.attn_map_cache = []
|
| 1982 |
+
for name, module in self.named_modules():
|
| 1983 |
+
if name.endswith(self.attn_type):
|
| 1984 |
+
item = {"name": name, "heads": module.heads, "size": None, "attn_map": None}
|
| 1985 |
+
self.attn_map_cache.append(item)
|
| 1986 |
+
module.attn_map_cache = item
|
| 1987 |
+
|
| 1988 |
+
def clear_attn_map(self):
|
| 1989 |
+
|
| 1990 |
+
for item in self.attn_map_cache:
|
| 1991 |
+
if item["attn_map"] is not None:
|
| 1992 |
+
del item["attn_map"]
|
| 1993 |
+
item["attn_map"] = None
|
| 1994 |
+
|
| 1995 |
+
def save_attn_map(self, save_name="temp", tokens=""):
|
| 1996 |
+
|
| 1997 |
+
attn_maps = []
|
| 1998 |
+
for item in self.attn_map_cache:
|
| 1999 |
+
name = item["name"]
|
| 2000 |
+
if any([name.startswith(block) for block in self.attn_layers]):
|
| 2001 |
+
heads = item["heads"]
|
| 2002 |
+
attn_maps.append(item["attn_map"].detach().cpu())
|
| 2003 |
+
|
| 2004 |
+
attn_map = th.stack(attn_maps, dim=0)
|
| 2005 |
+
attn_map = th.mean(attn_map, dim=0)
|
| 2006 |
+
|
| 2007 |
+
# attn_map: bh * n * l
|
| 2008 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
| 2009 |
+
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1)
|
| 2010 |
+
b = attn_map.shape[0]
|
| 2011 |
+
|
| 2012 |
+
h = w = int(n**0.5)
|
| 2013 |
+
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy()
|
| 2014 |
+
|
| 2015 |
+
attn_map_i = attn_map[-1]
|
| 2016 |
+
|
| 2017 |
+
l = attn_map_i.shape[0]
|
| 2018 |
+
fig = plt.figure(figsize=(12, 8), dpi=300)
|
| 2019 |
+
for j in range(12):
|
| 2020 |
+
if j >= l: break
|
| 2021 |
+
ax = fig.add_subplot(3, 4, j+1)
|
| 2022 |
+
sns.heatmap(attn_map_i[j], square=True, xticklabels=False, yticklabels=False)
|
| 2023 |
+
if j < len(tokens):
|
| 2024 |
+
ax.set_title(tokens[j])
|
| 2025 |
+
fig.savefig(f"temp/attn_map/attn_map_{save_name}.png")
|
| 2026 |
+
plt.close()
|
| 2027 |
+
|
| 2028 |
+
return attn_map_i
|
| 2029 |
+
|
| 2030 |
+
def forward(self, x, timesteps=None, context=None, add_context=None, y=None, **kwargs):
|
| 2031 |
+
"""
|
| 2032 |
+
Apply the model to an input batch.
|
| 2033 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 2034 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 2035 |
+
:param context: conditioning plugged in via crossattn
|
| 2036 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 2037 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 2038 |
+
"""
|
| 2039 |
+
assert (y is not None) == (
|
| 2040 |
+
self.num_classes is not None
|
| 2041 |
+
), "must specify y if and only if the model is class-conditional"
|
| 2042 |
+
|
| 2043 |
+
self.clear_attn_map()
|
| 2044 |
+
|
| 2045 |
+
hs = []
|
| 2046 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 2047 |
+
emb = self.time_embed(t_emb)
|
| 2048 |
+
|
| 2049 |
+
if self.num_classes is not None:
|
| 2050 |
+
assert y.shape[0] == x.shape[0]
|
| 2051 |
+
emb = emb + self.label_emb(y)
|
| 2052 |
+
|
| 2053 |
+
# h = x.type(self.dtype)
|
| 2054 |
+
h = x
|
| 2055 |
+
if self.ctrl_channels > 0:
|
| 2056 |
+
in_h, add_h = th.split(h, [self.in_channels, self.ctrl_channels], dim=1)
|
| 2057 |
+
|
| 2058 |
for i, module in enumerate(self.input_blocks):
|
| 2059 |
if self.ctrl_channels > 0 and i == 0:
|
| 2060 |
+
h = module(in_h, emb, context, add_context) + self.add_input_block(add_h, emb, context, add_context)
|
| 2061 |
else:
|
| 2062 |
+
h = module(h, emb, context, add_context)
|
| 2063 |
hs.append(h)
|
| 2064 |
+
h = self.middle_block(h, emb, context, add_context)
|
| 2065 |
for i, module in enumerate(self.output_blocks):
|
| 2066 |
h = th.cat([h, hs.pop()], dim=1)
|
| 2067 |
+
h = module(h, emb, context, add_context)
|
| 2068 |
h = h.type(x.dtype)
|
| 2069 |
|
| 2070 |
return self.out(h)
|
sgm/modules/diffusionmodules/sampling.py
CHANGED
|
@@ -7,6 +7,7 @@ from typing import Dict, Union
|
|
| 7 |
|
| 8 |
import imageio
|
| 9 |
import torch
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
import torch.nn.functional as F
|
| 12 |
from omegaconf import ListConfig, OmegaConf
|
|
@@ -251,15 +252,47 @@ class EulerEDMSampler(EDMSampler):
|
|
| 251 |
|
| 252 |
return x
|
| 253 |
|
| 254 |
-
def
|
|
|
|
|
|
|
| 255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
sections = []
|
| 257 |
for i in range(len(tokens)):
|
| 258 |
attn_map = attn_maps[i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
sections.append(attn_map)
|
| 260 |
|
| 261 |
section = np.stack(sections)
|
| 262 |
-
np.save(f"
|
|
|
|
|
|
|
| 263 |
|
| 264 |
def get_init_noise(self, cfgs, model, cond, batch, uc=None):
|
| 265 |
|
|
@@ -343,7 +376,8 @@ class EulerEDMSampler(EDMSampler):
|
|
| 343 |
local_loss = torch.zeros(1)
|
| 344 |
if save_attn:
|
| 345 |
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0])
|
| 346 |
-
|
|
|
|
| 347 |
|
| 348 |
d = to_d(x, sigma_hat, denoised)
|
| 349 |
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
|
@@ -376,7 +410,7 @@ class EulerEDMSampler(EDMSampler):
|
|
| 376 |
|
| 377 |
alpha = 20 * np.sqrt(scales[i])
|
| 378 |
update = aae_enabled
|
| 379 |
-
save_loss =
|
| 380 |
save_attn = detailed and (i == (num_sigmas-1)//2)
|
| 381 |
save_inter = aae_enabled
|
| 382 |
|
|
@@ -412,12 +446,195 @@ class EulerEDMSampler(EDMSampler):
|
|
| 412 |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
| 413 |
inters.append(inter.astype(np.uint8))
|
| 414 |
|
| 415 |
-
|
| 416 |
|
| 417 |
if len(inters) > 0:
|
| 418 |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
|
| 419 |
|
| 420 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
|
| 422 |
|
| 423 |
class HeunEDMSampler(EDMSampler):
|
|
|
|
| 7 |
|
| 8 |
import imageio
|
| 9 |
import torch
|
| 10 |
+
import json
|
| 11 |
import numpy as np
|
| 12 |
import torch.nn.functional as F
|
| 13 |
from omegaconf import ListConfig, OmegaConf
|
|
|
|
| 252 |
|
| 253 |
return x
|
| 254 |
|
| 255 |
+
def create_pascal_label_colormap(self):
|
| 256 |
+
"""
|
| 257 |
+
PASCAL VOC 分割数据集的类别标签颜色映射label colormap
|
| 258 |
|
| 259 |
+
返回:
|
| 260 |
+
可视化分割结果的颜色映射Colormap
|
| 261 |
+
"""
|
| 262 |
+
colormap = np.zeros((256, 3), dtype=int)
|
| 263 |
+
ind = np.arange(256, dtype=int)
|
| 264 |
+
|
| 265 |
+
for shift in reversed(range(8)):
|
| 266 |
+
for channel in range(3):
|
| 267 |
+
colormap[:, channel] |= ((ind >> channel) & 1) << shift
|
| 268 |
+
ind >>= 3
|
| 269 |
+
|
| 270 |
+
return colormap
|
| 271 |
+
|
| 272 |
+
def save_segment_map(self, image, attn_maps, tokens=None, save_name=None):
|
| 273 |
+
|
| 274 |
+
colormap = self.create_pascal_label_colormap()
|
| 275 |
+
H, W = image.shape[-2:]
|
| 276 |
+
|
| 277 |
+
image_ = image*0.3
|
| 278 |
sections = []
|
| 279 |
for i in range(len(tokens)):
|
| 280 |
attn_map = attn_maps[i]
|
| 281 |
+
attn_map_t = np.tile(attn_map[None], (1,3,1,1)) # b, 3, h, w
|
| 282 |
+
attn_map_t = torch.from_numpy(attn_map_t)
|
| 283 |
+
attn_map_t = F.interpolate(attn_map_t, (W, H))
|
| 284 |
+
|
| 285 |
+
color = torch.from_numpy(colormap[i+1][None,:,None,None] / 255.0)
|
| 286 |
+
colored_attn_map = attn_map_t * color
|
| 287 |
+
colored_attn_map = colored_attn_map.to(device=image_.device)
|
| 288 |
+
|
| 289 |
+
image_ += colored_attn_map*0.7
|
| 290 |
sections.append(attn_map)
|
| 291 |
|
| 292 |
section = np.stack(sections)
|
| 293 |
+
np.save(f"temp/seg_map/seg_{save_name}.npy", section)
|
| 294 |
+
|
| 295 |
+
save_image(image_, f"temp/seg_map/seg_{save_name}.png", normalize=True)
|
| 296 |
|
| 297 |
def get_init_noise(self, cfgs, model, cond, batch, uc=None):
|
| 298 |
|
|
|
|
| 376 |
local_loss = torch.zeros(1)
|
| 377 |
if save_attn:
|
| 378 |
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0])
|
| 379 |
+
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
|
| 380 |
+
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
|
| 381 |
|
| 382 |
d = to_d(x, sigma_hat, denoised)
|
| 383 |
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
|
|
|
| 410 |
|
| 411 |
alpha = 20 * np.sqrt(scales[i])
|
| 412 |
update = aae_enabled
|
| 413 |
+
save_loss = detailed
|
| 414 |
save_attn = detailed and (i == (num_sigmas-1)//2)
|
| 415 |
save_inter = aae_enabled
|
| 416 |
|
|
|
|
| 446 |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
| 447 |
inters.append(inter.astype(np.uint8))
|
| 448 |
|
| 449 |
+
print(f"Local losses: {local_losses}")
|
| 450 |
|
| 451 |
if len(inters) > 0:
|
| 452 |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
|
| 453 |
|
| 454 |
return x
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
class EulerEDMDualSampler(EulerEDMSampler):
|
| 458 |
+
|
| 459 |
+
def prepare_sampling_loop(self, x, cond, uc_1=None, uc_2=None, num_steps=None):
|
| 460 |
+
sigmas = self.discretization(
|
| 461 |
+
self.num_steps if num_steps is None else num_steps, device=self.device
|
| 462 |
+
)
|
| 463 |
+
uc_1 = default(uc_1, cond)
|
| 464 |
+
uc_2 = default(uc_2, cond)
|
| 465 |
+
|
| 466 |
+
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
| 467 |
+
num_sigmas = len(sigmas)
|
| 468 |
+
|
| 469 |
+
s_in = x.new_ones([x.shape[0]])
|
| 470 |
+
|
| 471 |
+
return x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2
|
| 472 |
+
|
| 473 |
+
def denoise(self, x, model, sigma, cond, uc_1, uc_2):
|
| 474 |
+
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc_1, uc_2))
|
| 475 |
+
denoised = self.guider(denoised, sigma)
|
| 476 |
+
return denoised
|
| 477 |
+
|
| 478 |
+
def get_init_noise(self, cfgs, model, cond, batch, uc_1=None, uc_2=None):
|
| 479 |
+
|
| 480 |
+
H, W = batch["target_size_as_tuple"][0]
|
| 481 |
+
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor)
|
| 482 |
+
|
| 483 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
| 484 |
+
x = randn.clone()
|
| 485 |
+
|
| 486 |
+
xs = []
|
| 487 |
+
self.verbose = False
|
| 488 |
+
for _ in range(cfgs.noise_iters):
|
| 489 |
+
|
| 490 |
+
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
| 491 |
+
x, cond, uc_1, uc_2, num_steps=2
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
superv = {
|
| 495 |
+
"mask": batch["mask"] if "mask" in batch else None,
|
| 496 |
+
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None
|
| 497 |
+
}
|
| 498 |
+
|
| 499 |
+
local_losses = []
|
| 500 |
+
|
| 501 |
+
for i in self.get_sigma_gen(num_sigmas):
|
| 502 |
+
|
| 503 |
+
gamma = (
|
| 504 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
| 505 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
| 506 |
+
else 0.0
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
x, inter, local_loss = self.sampler_step(
|
| 510 |
+
s_in * sigmas[i],
|
| 511 |
+
s_in * sigmas[i + 1],
|
| 512 |
+
model,
|
| 513 |
+
x,
|
| 514 |
+
cond,
|
| 515 |
+
superv,
|
| 516 |
+
uc_1,
|
| 517 |
+
uc_2,
|
| 518 |
+
gamma,
|
| 519 |
+
save_loss=True
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
local_losses.append(local_loss.item())
|
| 523 |
+
|
| 524 |
+
xs.append((randn, local_losses[-1]))
|
| 525 |
+
|
| 526 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
| 527 |
+
x = randn.clone()
|
| 528 |
+
|
| 529 |
+
self.verbose = True
|
| 530 |
+
|
| 531 |
+
xs.sort(key = lambda x: x[-1])
|
| 532 |
+
|
| 533 |
+
if len(xs) > 0:
|
| 534 |
+
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}")
|
| 535 |
+
x = xs[0][0]
|
| 536 |
+
|
| 537 |
+
return x
|
| 538 |
+
|
| 539 |
+
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc_1=None, uc_2=None,
|
| 540 |
+
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False,
|
| 541 |
+
name=None, save_loss=False, save_attn=False, save_inter=False):
|
| 542 |
+
|
| 543 |
+
sigma_hat = sigma * (gamma + 1.0)
|
| 544 |
+
if gamma > 0:
|
| 545 |
+
eps = torch.randn_like(x) * self.s_noise
|
| 546 |
+
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
|
| 547 |
+
|
| 548 |
+
if update:
|
| 549 |
+
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres)
|
| 550 |
+
|
| 551 |
+
denoised = self.denoise(x, model, sigma_hat, cond, uc_1, uc_2)
|
| 552 |
+
denoised_decode = model.decode_first_stage(denoised) if save_inter else None
|
| 553 |
+
|
| 554 |
+
if save_loss:
|
| 555 |
+
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
|
| 556 |
+
local_loss = local_loss[-local_loss.shape[0]//3:]
|
| 557 |
+
else:
|
| 558 |
+
local_loss = torch.zeros(1)
|
| 559 |
+
if save_attn:
|
| 560 |
+
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, save_single=True)
|
| 561 |
+
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
|
| 562 |
+
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
|
| 563 |
+
|
| 564 |
+
d = to_d(x, sigma_hat, denoised)
|
| 565 |
+
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
| 566 |
+
|
| 567 |
+
euler_step = self.euler_step(x, d, dt)
|
| 568 |
+
|
| 569 |
+
return euler_step, denoised_decode, local_loss
|
| 570 |
+
|
| 571 |
+
def __call__(self, model, x, cond, batch=None, uc_1=None, uc_2=None, num_steps=None, init_step=0,
|
| 572 |
+
name=None, aae_enabled=False, detailed=False):
|
| 573 |
+
|
| 574 |
+
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
| 575 |
+
x, cond, uc_1, uc_2, num_steps
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
name = batch["name"][0]
|
| 579 |
+
inters = []
|
| 580 |
+
local_losses = []
|
| 581 |
+
scales = np.linspace(start=1.0, stop=0, num=num_sigmas)
|
| 582 |
+
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32)
|
| 583 |
+
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6)
|
| 584 |
+
|
| 585 |
+
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
|
| 586 |
+
|
| 587 |
+
gamma = (
|
| 588 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
| 589 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
| 590 |
+
else 0.0
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
alpha = 20 * np.sqrt(scales[i])
|
| 594 |
+
update = aae_enabled
|
| 595 |
+
save_loss = aae_enabled
|
| 596 |
+
save_attn = detailed and (i == (num_sigmas-1)//2)
|
| 597 |
+
save_inter = aae_enabled
|
| 598 |
+
|
| 599 |
+
if i in iter_lst:
|
| 600 |
+
iter_enabled = True
|
| 601 |
+
thres = thres_lst[list(iter_lst).index(i)]
|
| 602 |
+
else:
|
| 603 |
+
iter_enabled = False
|
| 604 |
+
thres = 0.0
|
| 605 |
+
|
| 606 |
+
x, inter, local_loss = self.sampler_step(
|
| 607 |
+
s_in * sigmas[i],
|
| 608 |
+
s_in * sigmas[i + 1],
|
| 609 |
+
model,
|
| 610 |
+
x,
|
| 611 |
+
cond,
|
| 612 |
+
batch,
|
| 613 |
+
uc_1,
|
| 614 |
+
uc_2,
|
| 615 |
+
gamma,
|
| 616 |
+
alpha=alpha,
|
| 617 |
+
iter_enabled=iter_enabled,
|
| 618 |
+
thres=thres,
|
| 619 |
+
update=update,
|
| 620 |
+
name=name,
|
| 621 |
+
save_loss=save_loss,
|
| 622 |
+
save_attn=save_attn,
|
| 623 |
+
save_inter=save_inter
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
local_losses.append(local_loss.item())
|
| 627 |
+
if inter is not None:
|
| 628 |
+
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0]
|
| 629 |
+
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
| 630 |
+
inters.append(inter.astype(np.uint8))
|
| 631 |
+
|
| 632 |
+
print(f"Local losses: {local_losses}")
|
| 633 |
+
|
| 634 |
+
if len(inters) > 0:
|
| 635 |
+
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.1)
|
| 636 |
+
|
| 637 |
+
return x
|
| 638 |
|
| 639 |
|
| 640 |
class HeunEDMSampler(EDMSampler):
|
sgm/modules/diffusionmodules/sampling_utils.py
CHANGED
|
@@ -7,7 +7,10 @@ from ...util import append_dims
|
|
| 7 |
class NoDynamicThresholding:
|
| 8 |
def __call__(self, uncond, cond, scale):
|
| 9 |
return uncond + scale * (cond - uncond)
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
| 13 |
if order - 1 > i:
|
|
|
|
| 7 |
class NoDynamicThresholding:
|
| 8 |
def __call__(self, uncond, cond, scale):
|
| 9 |
return uncond + scale * (cond - uncond)
|
| 10 |
+
|
| 11 |
+
class DualThresholding: # Dual condition CFG (from instructPix2Pix)
|
| 12 |
+
def __call__(self, uncond_1, uncond_2, cond, scale):
|
| 13 |
+
return uncond_1 + scale[0] * (uncond_2 - uncond_1) + scale[1] * (cond - uncond_2)
|
| 14 |
|
| 15 |
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
| 16 |
if order - 1 > i:
|
sgm/modules/diffusionmodules/wrappers.py
CHANGED
|
@@ -28,8 +28,8 @@ class OpenAIWrapper(IdentityWrapper):
|
|
| 28 |
return self.diffusion_model(
|
| 29 |
x,
|
| 30 |
timesteps=t,
|
| 31 |
-
|
| 32 |
-
|
| 33 |
y=c.get("vector", None),
|
| 34 |
**kwargs
|
| 35 |
)
|
|
|
|
| 28 |
return self.diffusion_model(
|
| 29 |
x,
|
| 30 |
timesteps=t,
|
| 31 |
+
context=c.get("crossattn", None),
|
| 32 |
+
add_context=c.get("add_crossattn", None),
|
| 33 |
y=c.get("vector", None),
|
| 34 |
**kwargs
|
| 35 |
)
|
sgm/modules/encoders/modules.py
CHANGED
|
@@ -14,7 +14,6 @@ from transformers import (
|
|
| 14 |
ByT5Tokenizer,
|
| 15 |
CLIPTextModel,
|
| 16 |
CLIPTokenizer,
|
| 17 |
-
CLIPVisionModel,
|
| 18 |
T5EncoderModel,
|
| 19 |
T5Tokenizer,
|
| 20 |
)
|
|
@@ -39,19 +38,18 @@ import pytorch_lightning as pl
|
|
| 39 |
from torchvision import transforms
|
| 40 |
from timm.models.vision_transformer import VisionTransformer
|
| 41 |
from safetensors.torch import load_file as load_safetensors
|
| 42 |
-
from torchvision.utils import save_image
|
| 43 |
|
| 44 |
# disable warning
|
| 45 |
from transformers import logging
|
| 46 |
logging.set_verbosity_error()
|
| 47 |
|
| 48 |
class AbstractEmbModel(nn.Module):
|
| 49 |
-
def __init__(self):
|
| 50 |
super().__init__()
|
| 51 |
self._is_trainable = None
|
| 52 |
self._ucg_rate = None
|
| 53 |
self._input_key = None
|
| 54 |
-
self.
|
| 55 |
|
| 56 |
@property
|
| 57 |
def is_trainable(self) -> bool:
|
|
@@ -65,10 +63,6 @@ class AbstractEmbModel(nn.Module):
|
|
| 65 |
def input_key(self) -> str:
|
| 66 |
return self._input_key
|
| 67 |
|
| 68 |
-
@property
|
| 69 |
-
def emb_key(self) -> str:
|
| 70 |
-
return self._emb_key
|
| 71 |
-
|
| 72 |
@is_trainable.setter
|
| 73 |
def is_trainable(self, value: bool):
|
| 74 |
self._is_trainable = value
|
|
@@ -81,10 +75,6 @@ class AbstractEmbModel(nn.Module):
|
|
| 81 |
def input_key(self, value: str):
|
| 82 |
self._input_key = value
|
| 83 |
|
| 84 |
-
@emb_key.setter
|
| 85 |
-
def emb_key(self, value: str):
|
| 86 |
-
self._emb_key = value
|
| 87 |
-
|
| 88 |
@is_trainable.deleter
|
| 89 |
def is_trainable(self):
|
| 90 |
del self._is_trainable
|
|
@@ -97,13 +87,8 @@ class AbstractEmbModel(nn.Module):
|
|
| 97 |
def input_key(self):
|
| 98 |
del self._input_key
|
| 99 |
|
| 100 |
-
@emb_key.deleter
|
| 101 |
-
def emb_key(self):
|
| 102 |
-
del self._emb_key
|
| 103 |
-
|
| 104 |
|
| 105 |
class GeneralConditioner(nn.Module):
|
| 106 |
-
|
| 107 |
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
| 108 |
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
|
| 109 |
|
|
@@ -124,8 +109,7 @@ class GeneralConditioner(nn.Module):
|
|
| 124 |
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
|
| 125 |
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
|
| 126 |
)
|
| 127 |
-
|
| 128 |
-
embedder.emb_key = embconfig["emb_key"]
|
| 129 |
if "input_key" in embconfig:
|
| 130 |
embedder.input_key = embconfig["input_key"]
|
| 131 |
elif "input_keys" in embconfig:
|
|
@@ -172,10 +156,13 @@ class GeneralConditioner(nn.Module):
|
|
| 172 |
if not isinstance(emb_out, (list, tuple)):
|
| 173 |
emb_out = [emb_out]
|
| 174 |
for emb in emb_out:
|
| 175 |
-
if embedder.
|
| 176 |
-
out_key =
|
| 177 |
else:
|
| 178 |
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
|
|
|
|
|
|
|
|
|
| 179 |
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
| 180 |
emb = (
|
| 181 |
expand_dims_like(
|
|
@@ -217,6 +204,28 @@ class GeneralConditioner(nn.Module):
|
|
| 217 |
return c, uc
|
| 218 |
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
class InceptionV3(nn.Module):
|
| 221 |
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
|
| 222 |
port with an additional squeeze at the end"""
|
|
@@ -400,6 +409,7 @@ class FrozenCLIPEmbedder(AbstractEmbModel):
|
|
| 400 |
|
| 401 |
def freeze(self):
|
| 402 |
self.transformer = self.transformer.eval()
|
|
|
|
| 403 |
for param in self.parameters():
|
| 404 |
param.requires_grad = False
|
| 405 |
|
|
@@ -684,24 +694,24 @@ class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
|
|
| 684 |
if self.output_tokens:
|
| 685 |
z, tokens = z[0], z[1]
|
| 686 |
z = z.to(image.dtype)
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
if self.unsqueeze_dim:
|
| 706 |
z = z[:, None, :]
|
| 707 |
if self.output_tokens:
|
|
@@ -797,7 +807,7 @@ class FrozenCLIPT5Encoder(AbstractEmbModel):
|
|
| 797 |
return [clip_z, t5_z]
|
| 798 |
|
| 799 |
|
| 800 |
-
class SpatialRescaler(
|
| 801 |
def __init__(
|
| 802 |
self,
|
| 803 |
n_stages=1,
|
|
@@ -836,9 +846,6 @@ class SpatialRescaler(AbstractEmbModel):
|
|
| 836 |
padding=kernel_size // 2,
|
| 837 |
)
|
| 838 |
self.wrap_video = wrap_video
|
| 839 |
-
|
| 840 |
-
def freeze(self):
|
| 841 |
-
pass
|
| 842 |
|
| 843 |
def forward(self, x):
|
| 844 |
if self.wrap_video and x.ndim == 5:
|
|
|
|
| 14 |
ByT5Tokenizer,
|
| 15 |
CLIPTextModel,
|
| 16 |
CLIPTokenizer,
|
|
|
|
| 17 |
T5EncoderModel,
|
| 18 |
T5Tokenizer,
|
| 19 |
)
|
|
|
|
| 38 |
from torchvision import transforms
|
| 39 |
from timm.models.vision_transformer import VisionTransformer
|
| 40 |
from safetensors.torch import load_file as load_safetensors
|
|
|
|
| 41 |
|
| 42 |
# disable warning
|
| 43 |
from transformers import logging
|
| 44 |
logging.set_verbosity_error()
|
| 45 |
|
| 46 |
class AbstractEmbModel(nn.Module):
|
| 47 |
+
def __init__(self, is_add_embedder=False):
|
| 48 |
super().__init__()
|
| 49 |
self._is_trainable = None
|
| 50 |
self._ucg_rate = None
|
| 51 |
self._input_key = None
|
| 52 |
+
self.is_add_embedder = is_add_embedder
|
| 53 |
|
| 54 |
@property
|
| 55 |
def is_trainable(self) -> bool:
|
|
|
|
| 63 |
def input_key(self) -> str:
|
| 64 |
return self._input_key
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
@is_trainable.setter
|
| 67 |
def is_trainable(self, value: bool):
|
| 68 |
self._is_trainable = value
|
|
|
|
| 75 |
def input_key(self, value: str):
|
| 76 |
self._input_key = value
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
@is_trainable.deleter
|
| 79 |
def is_trainable(self):
|
| 80 |
del self._is_trainable
|
|
|
|
| 87 |
def input_key(self):
|
| 88 |
del self._input_key
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
class GeneralConditioner(nn.Module):
|
|
|
|
| 92 |
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
| 93 |
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
|
| 94 |
|
|
|
|
| 109 |
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
|
| 110 |
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
|
| 111 |
)
|
| 112 |
+
|
|
|
|
| 113 |
if "input_key" in embconfig:
|
| 114 |
embedder.input_key = embconfig["input_key"]
|
| 115 |
elif "input_keys" in embconfig:
|
|
|
|
| 156 |
if not isinstance(emb_out, (list, tuple)):
|
| 157 |
emb_out = [emb_out]
|
| 158 |
for emb in emb_out:
|
| 159 |
+
if embedder.is_add_embedder:
|
| 160 |
+
out_key = "add_crossattn"
|
| 161 |
else:
|
| 162 |
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
| 163 |
+
if embedder.input_key == "mask":
|
| 164 |
+
H, W = batch["image"].shape[-2:]
|
| 165 |
+
emb = nn.functional.interpolate(emb, (H//8, W//8))
|
| 166 |
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
| 167 |
emb = (
|
| 168 |
expand_dims_like(
|
|
|
|
| 204 |
return c, uc
|
| 205 |
|
| 206 |
|
| 207 |
+
class DualConditioner(GeneralConditioner):
|
| 208 |
+
|
| 209 |
+
def get_unconditional_conditioning(
|
| 210 |
+
self, batch_c, batch_uc_1=None, batch_uc_2=None, force_uc_zero_embeddings=None
|
| 211 |
+
):
|
| 212 |
+
if force_uc_zero_embeddings is None:
|
| 213 |
+
force_uc_zero_embeddings = []
|
| 214 |
+
ucg_rates = list()
|
| 215 |
+
for embedder in self.embedders:
|
| 216 |
+
ucg_rates.append(embedder.ucg_rate)
|
| 217 |
+
embedder.ucg_rate = 0.0
|
| 218 |
+
|
| 219 |
+
c = self(batch_c)
|
| 220 |
+
uc_1 = self(batch_uc_1, force_uc_zero_embeddings) if batch_uc_1 is not None else None
|
| 221 |
+
uc_2 = self(batch_uc_2, force_uc_zero_embeddings[:1]) if batch_uc_2 is not None else None
|
| 222 |
+
|
| 223 |
+
for embedder, rate in zip(self.embedders, ucg_rates):
|
| 224 |
+
embedder.ucg_rate = rate
|
| 225 |
+
|
| 226 |
+
return c, uc_1, uc_2
|
| 227 |
+
|
| 228 |
+
|
| 229 |
class InceptionV3(nn.Module):
|
| 230 |
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
|
| 231 |
port with an additional squeeze at the end"""
|
|
|
|
| 409 |
|
| 410 |
def freeze(self):
|
| 411 |
self.transformer = self.transformer.eval()
|
| 412 |
+
|
| 413 |
for param in self.parameters():
|
| 414 |
param.requires_grad = False
|
| 415 |
|
|
|
|
| 694 |
if self.output_tokens:
|
| 695 |
z, tokens = z[0], z[1]
|
| 696 |
z = z.to(image.dtype)
|
| 697 |
+
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
|
| 698 |
+
z = (
|
| 699 |
+
torch.bernoulli(
|
| 700 |
+
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
|
| 701 |
+
)[:, None]
|
| 702 |
+
* z
|
| 703 |
+
)
|
| 704 |
+
if tokens is not None:
|
| 705 |
+
tokens = (
|
| 706 |
+
expand_dims_like(
|
| 707 |
+
torch.bernoulli(
|
| 708 |
+
(1.0 - self.ucg_rate)
|
| 709 |
+
* torch.ones(tokens.shape[0], device=tokens.device)
|
| 710 |
+
),
|
| 711 |
+
tokens,
|
| 712 |
+
)
|
| 713 |
+
* tokens
|
| 714 |
+
)
|
| 715 |
if self.unsqueeze_dim:
|
| 716 |
z = z[:, None, :]
|
| 717 |
if self.output_tokens:
|
|
|
|
| 807 |
return [clip_z, t5_z]
|
| 808 |
|
| 809 |
|
| 810 |
+
class SpatialRescaler(nn.Module):
|
| 811 |
def __init__(
|
| 812 |
self,
|
| 813 |
n_stages=1,
|
|
|
|
| 846 |
padding=kernel_size // 2,
|
| 847 |
)
|
| 848 |
self.wrap_video = wrap_video
|
|
|
|
|
|
|
|
|
|
| 849 |
|
| 850 |
def forward(self, x):
|
| 851 |
if self.wrap_video and x.ndim == 5:
|
util.py
CHANGED
|
@@ -65,14 +65,6 @@ def prepare_batch(cfgs, batch):
|
|
| 65 |
if isinstance(batch[key], torch.Tensor):
|
| 66 |
batch[key] = batch[key].to(torch.device("cuda", index=cfgs.gpu))
|
| 67 |
|
| 68 |
-
batch_uc =
|
| 69 |
-
|
| 70 |
-
if "ntxt" in batch:
|
| 71 |
-
batch_uc["txt"] = batch["ntxt"]
|
| 72 |
-
else:
|
| 73 |
-
batch_uc["txt"] = ["" for _ in range(len(batch["txt"]))]
|
| 74 |
-
|
| 75 |
-
if "label" in batch:
|
| 76 |
-
batch_uc["label"] = ["" for _ in range(len(batch["label"]))]
|
| 77 |
|
| 78 |
return batch, batch_uc
|
|
|
|
| 65 |
if isinstance(batch[key], torch.Tensor):
|
| 66 |
batch[key] = batch[key].to(torch.device("cuda", index=cfgs.gpu))
|
| 67 |
|
| 68 |
+
batch_uc = batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
return batch, batch_uc
|