Spaces:
Build error
Build error
| import os | |
| import ffmpeg | |
| from datetime import datetime | |
| from pathlib import Path | |
| import numpy as np | |
| import cv2 | |
| import spaces | |
| import shutil | |
| import torch | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from scipy.spatial.transform import Rotation as R | |
| from scipy.interpolate import interp1d | |
| from torchvision import transforms | |
| from diffusers import AutoencoderKL, DDIMScheduler | |
| from omegaconf import OmegaConf | |
| from transformers import CLIPVisionModelWithProjection | |
| from src.models.pose_guider import PoseGuider | |
| from src.models.unet_2d_condition import UNet2DConditionModel | |
| from src.models.unet_3d import UNet3DConditionModel | |
| from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline | |
| from src.audio_models.model import Audio2MeshModel | |
| from src.utils.mp_utils import LMKExtractor | |
| from src.utils.draw_util import FaceMeshVisualizer | |
| from src.utils.util import get_fps, read_frames, save_videos_grid | |
| from src.utils.audio_util import prepare_audio_feature | |
| from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix, project_points | |
| from src.utils.crop_face_single import crop_face | |
| class Processer(): | |
| def __init__(self): | |
| self.a2m_model, self.pipe = self.create_models() | |
| # @spaces.GPU | |
| def create_models(self): | |
| config = OmegaConf.load('./configs/prompts/animation_audio.yaml') | |
| if config.weight_dtype == "fp16": | |
| weight_dtype = torch.float16 | |
| else: | |
| weight_dtype = torch.float32 | |
| audio_infer_config = OmegaConf.load(config.audio_inference_config) | |
| # prepare model | |
| a2m_model = Audio2MeshModel(audio_infer_config['a2m_model']) | |
| a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt'], map_location="cpu"), strict=False) | |
| a2m_model.to("cuda").eval() | |
| vae = AutoencoderKL.from_pretrained( | |
| config.pretrained_vae_path, | |
| ).to("cuda", dtype=weight_dtype) | |
| reference_unet = UNet2DConditionModel.from_pretrained( | |
| config.pretrained_base_model_path, | |
| subfolder="unet", | |
| ).to(dtype=weight_dtype, device="cuda") | |
| inference_config_path = config.inference_config | |
| infer_config = OmegaConf.load(inference_config_path) | |
| denoising_unet = UNet3DConditionModel.from_pretrained_2d( | |
| config.pretrained_base_model_path, | |
| config.motion_module_path, | |
| subfolder="unet", | |
| unet_additional_kwargs=infer_config.unet_additional_kwargs, | |
| ).to(dtype=weight_dtype, device="cuda") | |
| pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention | |
| image_enc = CLIPVisionModelWithProjection.from_pretrained( | |
| config.image_encoder_path | |
| ).to(dtype=weight_dtype, device="cuda") | |
| sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) | |
| scheduler = DDIMScheduler(**sched_kwargs) | |
| # load pretrained weights | |
| denoising_unet.load_state_dict( | |
| torch.load(config.denoising_unet_path, map_location="cpu"), | |
| strict=False, | |
| ) | |
| reference_unet.load_state_dict( | |
| torch.load(config.reference_unet_path, map_location="cpu"), | |
| ) | |
| pose_guider.load_state_dict( | |
| torch.load(config.pose_guider_path, map_location="cpu"), | |
| ) | |
| pipe = Pose2VideoPipeline( | |
| vae=vae, | |
| image_encoder=image_enc, | |
| reference_unet=reference_unet, | |
| denoising_unet=denoising_unet, | |
| pose_guider=pose_guider, | |
| scheduler=scheduler, | |
| ) | |
| pipe = pipe.to("cuda", dtype=weight_dtype) | |
| return a2m_model, pipe | |
| def audio2video(self, input_audio, ref_img, headpose_video=None, size=512, steps=25, length=150, seed=42): | |
| fps = 30 | |
| cfg = 3.5 | |
| lmk_extractor = LMKExtractor() | |
| vis = FaceMeshVisualizer() | |
| config = OmegaConf.load('./configs/prompts/animation_audio.yaml') | |
| audio_infer_config = OmegaConf.load(config.audio_inference_config) | |
| generator = torch.manual_seed(seed) | |
| width, height = size, size | |
| date_str = datetime.now().strftime("%Y%m%d") | |
| time_str = datetime.now().strftime("%H%M") | |
| save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}" | |
| save_dir = Path(f"output/{date_str}/{save_dir_name}") | |
| save_dir.mkdir(exist_ok=True, parents=True) | |
| ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR) | |
| ref_image_np = crop_face(ref_image_np, lmk_extractor) | |
| if ref_image_np is None: | |
| return None, Image.fromarray(ref_img) | |
| ref_image_np = cv2.resize(ref_image_np, (size, size)) | |
| ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB)) | |
| face_result = lmk_extractor(ref_image_np) | |
| if face_result is None: | |
| return None, ref_image_pil | |
| lmks = face_result['lmks'].astype(np.float32) | |
| ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True) | |
| sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path']) | |
| sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda() | |
| sample['audio_feature'] = sample['audio_feature'].unsqueeze(0) | |
| # inference | |
| pred = self.a2m_model.infer(sample['audio_feature'], sample['seq_len']) | |
| pred = pred.squeeze().detach().cpu().numpy() | |
| pred = pred.reshape(pred.shape[0], -1, 3) | |
| pred = pred + face_result['lmks3d'] | |
| if headpose_video is not None: | |
| pose_seq = get_headpose_temp(headpose_video, lmk_extractor) | |
| else: | |
| pose_seq = np.load(config['pose_temp']) | |
| mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0) | |
| cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']] | |
| # project 3D mesh to 2D landmark | |
| projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width]) | |
| pose_images = [] | |
| for i, verts in enumerate(projected_vertices): | |
| lmk_img = vis.draw_landmarks((width, height), verts, normed=False) | |
| pose_images.append(lmk_img) | |
| pose_list = [] | |
| pose_tensor_list = [] | |
| pose_transform = transforms.Compose( | |
| [transforms.Resize((height, width)), transforms.ToTensor()] | |
| ) | |
| args_L = len(pose_images) if length==0 or length > len(pose_images) else length | |
| args_L = min(args_L, 300) | |
| for pose_image_np in pose_images[: args_L]: | |
| pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB)) | |
| pose_tensor_list.append(pose_transform(pose_image_pil)) | |
| pose_image_np = cv2.resize(pose_image_np, (width, height)) | |
| pose_list.append(pose_image_np) | |
| pose_list = np.array(pose_list) | |
| video_length = len(pose_tensor_list) | |
| video = self.pipe( | |
| ref_image_pil, | |
| pose_list, | |
| ref_pose, | |
| width, | |
| height, | |
| video_length, | |
| steps, | |
| cfg, | |
| generator=generator, | |
| ).videos | |
| save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4" | |
| save_videos_grid( | |
| video, | |
| save_path, | |
| n_rows=1, | |
| fps=fps, | |
| ) | |
| stream = ffmpeg.input(save_path) | |
| audio = ffmpeg.input(input_audio) | |
| ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run() | |
| os.remove(save_path) | |
| return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil | |
| def video2video(self, ref_img, source_video, size=512, steps=25, length=150, seed=42): | |
| cfg = 3.5 | |
| lmk_extractor = LMKExtractor() | |
| vis = FaceMeshVisualizer() | |
| generator = torch.manual_seed(seed) | |
| width, height = size, size | |
| date_str = datetime.now().strftime("%Y%m%d") | |
| time_str = datetime.now().strftime("%H%M") | |
| save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}" | |
| save_dir = Path(f"output/{date_str}/{save_dir_name}") | |
| save_dir.mkdir(exist_ok=True, parents=True) | |
| ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR) | |
| ref_image_np = crop_face(ref_image_np, lmk_extractor) | |
| if ref_image_np is None: | |
| return None, Image.fromarray(ref_img) | |
| ref_image_np = cv2.resize(ref_image_np, (size, size)) | |
| ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB)) | |
| face_result = lmk_extractor(ref_image_np) | |
| if face_result is None: | |
| return None, ref_image_pil | |
| lmks = face_result['lmks'].astype(np.float32) | |
| ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True) | |
| source_images = read_frames(source_video) | |
| src_fps = get_fps(source_video) | |
| pose_transform = transforms.Compose( | |
| [transforms.Resize((height, width)), transforms.ToTensor()] | |
| ) | |
| step = 1 | |
| if src_fps == 60: | |
| src_fps = 30 | |
| step = 2 | |
| pose_trans_list = [] | |
| verts_list = [] | |
| bs_list = [] | |
| src_tensor_list = [] | |
| args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step | |
| args_L = min(args_L, 300*step) | |
| for src_image_pil in source_images[: args_L: step]: | |
| src_tensor_list.append(pose_transform(src_image_pil)) | |
| src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR) | |
| frame_height, frame_width, _ = src_img_np.shape | |
| src_img_result = lmk_extractor(src_img_np) | |
| if src_img_result is None: | |
| break | |
| pose_trans_list.append(src_img_result['trans_mat']) | |
| verts_list.append(src_img_result['lmks3d']) | |
| bs_list.append(src_img_result['bs']) | |
| trans_mat_arr = np.array(pose_trans_list) | |
| verts_arr = np.array(verts_list) | |
| bs_arr = np.array(bs_list) | |
| min_bs_idx = np.argmin(bs_arr.sum(1)) | |
| # compute delta pose | |
| pose_arr = np.zeros([trans_mat_arr.shape[0], 6]) | |
| for i in range(pose_arr.shape[0]): | |
| euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source | |
| pose_arr[i, :3] = euler_angles | |
| pose_arr[i, 3:6] = translation_vector | |
| init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt | |
| pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt) | |
| pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3) | |
| pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])] | |
| pose_mat_smooth = np.array(pose_mat_smooth) | |
| # face retarget | |
| verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d'] | |
| # project 3D mesh to 2D landmark | |
| projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width]) | |
| pose_list = [] | |
| for i, verts in enumerate(projected_vertices): | |
| lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False) | |
| pose_image_np = cv2.resize(lmk_img, (width, height)) | |
| pose_list.append(pose_image_np) | |
| pose_list = np.array(pose_list) | |
| video_length = len(pose_list) | |
| video = self.pipe( | |
| ref_image_pil, | |
| pose_list, | |
| ref_pose, | |
| width, | |
| height, | |
| video_length, | |
| steps, | |
| cfg, | |
| generator=generator, | |
| ).videos | |
| save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4" | |
| save_videos_grid( | |
| video, | |
| save_path, | |
| n_rows=1, | |
| fps=src_fps, | |
| ) | |
| audio_output = f'{save_dir}/audio_from_video.aac' | |
| # extract audio | |
| try: | |
| ffmpeg.input(source_video).output(audio_output, acodec='copy').run() | |
| # merge audio and video | |
| stream = ffmpeg.input(save_path) | |
| audio = ffmpeg.input(audio_output) | |
| ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run() | |
| os.remove(save_path) | |
| os.remove(audio_output) | |
| except: | |
| shutil.move( | |
| save_path, | |
| save_path.replace('_noaudio.mp4', '.mp4') | |
| ) | |
| return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil | |
| def matrix_to_euler_and_translation(matrix): | |
| rotation_matrix = matrix[:3, :3] | |
| translation_vector = matrix[:3, 3] | |
| rotation = R.from_matrix(rotation_matrix) | |
| euler_angles = rotation.as_euler('xyz', degrees=True) | |
| return euler_angles, translation_vector | |
| def smooth_pose_seq(pose_seq, window_size=5): | |
| smoothed_pose_seq = np.zeros_like(pose_seq) | |
| for i in range(len(pose_seq)): | |
| start = max(0, i - window_size // 2) | |
| end = min(len(pose_seq), i + window_size // 2 + 1) | |
| smoothed_pose_seq[i] = np.mean(pose_seq[start:end], axis=0) | |
| return smoothed_pose_seq | |
| def get_headpose_temp(input_video, lmk_extractor): | |
| cap = cv2.VideoCapture(input_video) | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| trans_mat_list = [] | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| result = lmk_extractor(frame) | |
| trans_mat_list.append(result['trans_mat'].astype(np.float32)) | |
| cap.release() | |
| trans_mat_arr = np.array(trans_mat_list) | |
| # compute delta pose | |
| trans_mat_inv_frame_0 = np.linalg.inv(trans_mat_arr[0]) | |
| pose_arr = np.zeros([trans_mat_arr.shape[0], 6]) | |
| for i in range(pose_arr.shape[0]): | |
| pose_mat = trans_mat_inv_frame_0 @ trans_mat_arr[i] | |
| euler_angles, translation_vector = matrix_to_euler_and_translation(pose_mat) | |
| pose_arr[i, :3] = euler_angles | |
| pose_arr[i, 3:6] = translation_vector | |
| # interpolate to 30 fps | |
| new_fps = 30 | |
| old_time = np.linspace(0, total_frames / fps, total_frames) | |
| new_time = np.linspace(0, total_frames / fps, int(total_frames * new_fps / fps)) | |
| pose_arr_interp = np.zeros((len(new_time), 6)) | |
| for i in range(6): | |
| interp_func = interp1d(old_time, pose_arr[:, i]) | |
| pose_arr_interp[:, i] = interp_func(new_time) | |
| pose_arr_smooth = smooth_pose_seq(pose_arr_interp) | |
| return pose_arr_smooth |