Spaces:
Build error
Build error
| import os | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.init as init | |
| from einops import rearrange | |
| import numpy as np | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from typing import Any, Dict, Optional | |
| from src.models.attention import BasicTransformerBlock | |
| class PoseGuider(ModelMixin): | |
| def __init__(self, noise_latent_channels=320, use_ca=True): | |
| super(PoseGuider, self).__init__() | |
| self.use_ca = use_ca | |
| self.conv_layers = nn.Sequential( | |
| nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(3), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=3, out_channels=16, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(16), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(16), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(32), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(32), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1), | |
| nn.BatchNorm2d(128), | |
| nn.ReLU() | |
| ) | |
| # Final projection layer | |
| self.final_proj = nn.Conv2d(in_channels=128, out_channels=noise_latent_channels, kernel_size=1) | |
| self.conv_layers_1 = nn.Sequential( | |
| nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(noise_latent_channels), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(noise_latent_channels), | |
| nn.ReLU(), | |
| ) | |
| self.conv_layers_2 = nn.Sequential( | |
| nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(noise_latent_channels), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels*2, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(noise_latent_channels*2), | |
| nn.ReLU(), | |
| ) | |
| self.conv_layers_3 = nn.Sequential( | |
| nn.Conv2d(in_channels=noise_latent_channels*2, out_channels=noise_latent_channels*2, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(noise_latent_channels*2), | |
| nn.ReLU(), | |
| nn.Conv2d(in_channels=noise_latent_channels*2, out_channels=noise_latent_channels*4, kernel_size=3, stride=2, padding=1), | |
| nn.BatchNorm2d(noise_latent_channels*4), | |
| nn.ReLU(), | |
| ) | |
| self.conv_layers_4 = nn.Sequential( | |
| nn.Conv2d(in_channels=noise_latent_channels*4, out_channels=noise_latent_channels*4, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(noise_latent_channels*4), | |
| nn.ReLU(), | |
| ) | |
| if self.use_ca: | |
| self.cross_attn1 = Transformer2DModel(in_channels=noise_latent_channels) | |
| self.cross_attn2 = Transformer2DModel(in_channels=noise_latent_channels*2) | |
| self.cross_attn3 = Transformer2DModel(in_channels=noise_latent_channels*4) | |
| self.cross_attn4 = Transformer2DModel(in_channels=noise_latent_channels*4) | |
| # Initialize layers | |
| self._initialize_weights() | |
| self.scale = nn.Parameter(torch.ones(1) * 2) | |
| # def _initialize_weights(self): | |
| # # Initialize weights with Gaussian distribution and zero out the final layer | |
| # for m in self.conv_layers: | |
| # if isinstance(m, nn.Conv2d): | |
| # init.normal_(m.weight, mean=0.0, std=0.02) | |
| # if m.bias is not None: | |
| # init.zeros_(m.bias) | |
| # init.zeros_(self.final_proj.weight) | |
| # if self.final_proj.bias is not None: | |
| # init.zeros_(self.final_proj.bias) | |
| def _initialize_weights(self): | |
| # Initialize weights with He initialization and zero out the biases | |
| conv_blocks = [self.conv_layers, self.conv_layers_1, self.conv_layers_2, self.conv_layers_3, self.conv_layers_4] | |
| for block_item in conv_blocks: | |
| for m in block_item: | |
| if isinstance(m, nn.Conv2d): | |
| n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels | |
| init.normal_(m.weight, mean=0.0, std=np.sqrt(2. / n)) | |
| if m.bias is not None: | |
| init.zeros_(m.bias) | |
| # For the final projection layer, initialize weights to zero (or you may choose to use He initialization here as well) | |
| init.zeros_(self.final_proj.weight) | |
| if self.final_proj.bias is not None: | |
| init.zeros_(self.final_proj.bias) | |
| def forward(self, x, ref_x): | |
| fea = [] | |
| b = x.shape[0] | |
| x = rearrange(x, "b c f h w -> (b f) c h w") | |
| x = self.conv_layers(x) | |
| x = self.final_proj(x) | |
| x = x * self.scale | |
| # x = rearrange(x, "(b f) c h w -> b c f h w", b=b) | |
| fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) | |
| x = self.conv_layers_1(x) | |
| if self.use_ca: | |
| ref_x = self.conv_layers(ref_x) | |
| ref_x = self.final_proj(ref_x) | |
| ref_x = ref_x * self.scale | |
| ref_x = self.conv_layers_1(ref_x) | |
| x = self.cross_attn1(x, ref_x) | |
| fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) | |
| x = self.conv_layers_2(x) | |
| if self.use_ca: | |
| ref_x = self.conv_layers_2(ref_x) | |
| x = self.cross_attn2(x, ref_x) | |
| fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) | |
| x = self.conv_layers_3(x) | |
| if self.use_ca: | |
| ref_x = self.conv_layers_3(ref_x) | |
| x = self.cross_attn3(x, ref_x) | |
| fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) | |
| x = self.conv_layers_4(x) | |
| if self.use_ca: | |
| ref_x = self.conv_layers_4(ref_x) | |
| x = self.cross_attn4(x, ref_x) | |
| fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b)) | |
| return fea | |
| # @classmethod | |
| # def from_pretrained(cls,pretrained_model_path): | |
| # if not os.path.exists(pretrained_model_path): | |
| # print(f"There is no model file in {pretrained_model_path}") | |
| # print(f"loaded PoseGuider's pretrained weights from {pretrained_model_path} ...") | |
| # state_dict = torch.load(pretrained_model_path, map_location="cpu") | |
| # model = Hack_PoseGuider(noise_latent_channels=320) | |
| # m, u = model.load_state_dict(state_dict, strict=True) | |
| # # print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| # params = [p.numel() for n, p in model.named_parameters()] | |
| # print(f"### PoseGuider's Parameters: {sum(params) / 1e6} M") | |
| # return model | |
| class Transformer2DModel(ModelMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_type: str = "layer_norm", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| attention_type: str = "default", | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm( | |
| num_groups=norm_num_groups, | |
| num_channels=in_channels, | |
| eps=1e-6, | |
| affine=True, | |
| ) | |
| if use_linear_projection: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_in = nn.Conv2d( | |
| in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
| ) | |
| # 3. Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| if use_linear_projection: | |
| self.proj_out = nn.Linear(inner_dim, in_channels) | |
| else: | |
| self.proj_out = nn.Conv2d( | |
| inner_dim, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.gradient_checkpointing = False | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| ): | |
| batch, _, height, width = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
| batch, height * width, inner_dim | |
| ) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
| batch, height * width, inner_dim | |
| ) | |
| hidden_states = self.proj_in(hidden_states) | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep=timestep, | |
| ) | |
| if not self.use_linear_projection: | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, width, inner_dim) | |
| .permute(0, 3, 1, 2) | |
| .contiguous() | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, width, inner_dim) | |
| .permute(0, 3, 1, 2) | |
| .contiguous() | |
| ) | |
| output = hidden_states + residual | |
| return output | |
| if __name__ == '__main__': | |
| model = PoseGuider(noise_latent_channels=320).to(device="cuda") | |
| input_data = torch.randn(1,3,1,512,512).to(device="cuda") | |
| input_data1 = torch.randn(1,3,512,512).to(device="cuda") | |
| output = model(input_data, input_data1) | |
| for item in output: | |
| print(item.shape) | |
| # tf_model = Transformer2DModel( | |
| # in_channels=320 | |
| # ).to('cuda') | |
| # input_data = torch.randn(4,320,32,32).to(device="cuda") | |
| # # input_emb = torch.randn(4,1,768).to(device="cuda") | |
| # input_emb = torch.randn(4,320,32,32).to(device="cuda") | |
| # o1 = tf_model(input_data, input_emb) | |
| # print(o1.shape) | |