Spaces:
Runtime error
Runtime error
use mask_rcnn as detector
Browse files- app.py +0 -2
- lib/dataset/TestDataset.py +2 -9
- lib/pymaf/utils/imutils.py +16 -16
app.py
CHANGED
|
@@ -18,8 +18,6 @@ if os.getenv('SYSTEM') == 'spaces':
|
|
| 18 |
'pip install https://download.is.tue.mpg.de/icon/HF/kaolin-0.11.0-cp38-cp38-linux_x86_64.whl'.split())
|
| 19 |
subprocess.run(
|
| 20 |
'pip install https://download.is.tue.mpg.de/icon/HF/pytorch3d-0.7.0-cp38-cp38-linux_x86_64.whl'.split())
|
| 21 |
-
subprocess.run(
|
| 22 |
-
'pip install git+https://github.com/Project-Splinter/human_det.git'.split())
|
| 23 |
subprocess.run(
|
| 24 |
'pip install git+https://github.com/YuliangXiu/neural_voxelization_layer.git'.split())
|
| 25 |
|
|
|
|
| 18 |
'pip install https://download.is.tue.mpg.de/icon/HF/kaolin-0.11.0-cp38-cp38-linux_x86_64.whl'.split())
|
| 19 |
subprocess.run(
|
| 20 |
'pip install https://download.is.tue.mpg.de/icon/HF/pytorch3d-0.7.0-cp38-cp38-linux_x86_64.whl'.split())
|
|
|
|
|
|
|
| 21 |
subprocess.run(
|
| 22 |
'pip install git+https://github.com/YuliangXiu/neural_voxelization_layer.git'.split())
|
| 23 |
|
lib/dataset/TestDataset.py
CHANGED
|
@@ -30,7 +30,6 @@ import os.path as osp
|
|
| 30 |
import torch
|
| 31 |
import numpy as np
|
| 32 |
import random
|
| 33 |
-
import human_det
|
| 34 |
from termcolor import colored
|
| 35 |
from PIL import ImageFile
|
| 36 |
from huggingface_hub import cached_download
|
|
@@ -52,12 +51,6 @@ class TestDataset():
|
|
| 52 |
|
| 53 |
self.device = device
|
| 54 |
|
| 55 |
-
if self.has_det:
|
| 56 |
-
self.det = human_det.Detection()
|
| 57 |
-
else:
|
| 58 |
-
self.det = None
|
| 59 |
-
|
| 60 |
-
|
| 61 |
self.subject_list = [self.image_path]
|
| 62 |
|
| 63 |
# smpl related
|
|
@@ -155,7 +148,7 @@ class TestDataset():
|
|
| 155 |
|
| 156 |
if self.seg_dir is None:
|
| 157 |
img_icon, img_hps, img_ori, img_mask, uncrop_param = process_image(
|
| 158 |
-
img_path, self.
|
| 159 |
|
| 160 |
data_dict = {
|
| 161 |
'name': img_name,
|
|
@@ -167,7 +160,7 @@ class TestDataset():
|
|
| 167 |
|
| 168 |
else:
|
| 169 |
img_icon, img_hps, img_ori, img_mask, uncrop_param, segmentations = process_image(
|
| 170 |
-
img_path, self.
|
| 171 |
seg_path=os.path.join(self.seg_dir, f'{img_name}.json'))
|
| 172 |
data_dict = {
|
| 173 |
'name': img_name,
|
|
|
|
| 30 |
import torch
|
| 31 |
import numpy as np
|
| 32 |
import random
|
|
|
|
| 33 |
from termcolor import colored
|
| 34 |
from PIL import ImageFile
|
| 35 |
from huggingface_hub import cached_download
|
|
|
|
| 51 |
|
| 52 |
self.device = device
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
self.subject_list = [self.image_path]
|
| 55 |
|
| 56 |
# smpl related
|
|
|
|
| 148 |
|
| 149 |
if self.seg_dir is None:
|
| 150 |
img_icon, img_hps, img_ori, img_mask, uncrop_param = process_image(
|
| 151 |
+
img_path, self.hps_type, 512, self.device)
|
| 152 |
|
| 153 |
data_dict = {
|
| 154 |
'name': img_name,
|
|
|
|
| 160 |
|
| 161 |
else:
|
| 162 |
img_icon, img_hps, img_ori, img_mask, uncrop_param, segmentations = process_image(
|
| 163 |
+
img_path, self.hps_type, 512, self.device,
|
| 164 |
seg_path=os.path.join(self.seg_dir, f'{img_name}.json'))
|
| 165 |
data_dict = {
|
| 166 |
'name': img_name,
|
lib/pymaf/utils/imutils.py
CHANGED
|
@@ -7,6 +7,7 @@ import torch
|
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
from rembg.bg import remove
|
|
|
|
| 10 |
|
| 11 |
from lib.pymaf.core import constants
|
| 12 |
from lib.pymaf.utils.streamer import aug_matrix
|
|
@@ -83,7 +84,7 @@ def get_transformer(input_res):
|
|
| 83 |
return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor]
|
| 84 |
|
| 85 |
|
| 86 |
-
def process_image(img_file,
|
| 87 |
"""Read image, do preprocessing and possibly crop it according to the bounding box.
|
| 88 |
If there are bounding box annotations, use them to crop the image.
|
| 89 |
If no bounding box is specified but openpose detections are available, use them to get the bounding box.
|
|
@@ -101,21 +102,20 @@ def process_image(img_file, det, hps_type, input_res=512, device=None, seg_path=
|
|
| 101 |
img_for_crop = cv2.warpAffine(img_ori, M[0:2, :],
|
| 102 |
(input_res*2, input_res*2), flags=cv2.INTER_CUBIC)
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
center = np.array([width // 2, height // 2])
|
| 119 |
|
| 120 |
scale = max(height, width) / 180
|
| 121 |
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
from rembg.bg import remove
|
| 10 |
+
from torchvision.models import detection
|
| 11 |
|
| 12 |
from lib.pymaf.core import constants
|
| 13 |
from lib.pymaf.utils.streamer import aug_matrix
|
|
|
|
| 84 |
return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor]
|
| 85 |
|
| 86 |
|
| 87 |
+
def process_image(img_file, hps_type, input_res=512, device=None, seg_path=None):
|
| 88 |
"""Read image, do preprocessing and possibly crop it according to the bounding box.
|
| 89 |
If there are bounding box annotations, use them to crop the image.
|
| 90 |
If no bounding box is specified but openpose detections are available, use them to get the bounding box.
|
|
|
|
| 102 |
img_for_crop = cv2.warpAffine(img_ori, M[0:2, :],
|
| 103 |
(input_res*2, input_res*2), flags=cv2.INTER_CUBIC)
|
| 104 |
|
| 105 |
+
# detection for bbox
|
| 106 |
+
detector = detection.maskrcnn_resnet50_fpn(pretrained=True)
|
| 107 |
+
detector.eval()
|
| 108 |
+
predictions = detector(
|
| 109 |
+
[torch.from_numpy(img_for_crop).permute(2, 0, 1) / 255.])[0]
|
| 110 |
+
human_ids = torch.logical_and(
|
| 111 |
+
predictions["labels"] == 1,
|
| 112 |
+
predictions["scores"] == predictions["scores"].max()).nonzero().squeeze(1)
|
| 113 |
+
bbox = predictions["boxes"][human_ids, :].flatten().detach().cpu().numpy()
|
| 114 |
+
|
| 115 |
+
width = bbox[2] - bbox[0]
|
| 116 |
+
height = bbox[3] - bbox[1]
|
| 117 |
+
center = np.array([(bbox[0] + bbox[2]) / 2.0,
|
| 118 |
+
(bbox[1] + bbox[3]) / 2.0])
|
|
|
|
| 119 |
|
| 120 |
scale = max(height, width) / 180
|
| 121 |
|