Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
| # holder of all proprietary rights on this computer program. | |
| # You can only use this computer program if you have closed | |
| # a license agreement with MPG or you get the right to use the computer | |
| # program from someone who is authorized to grant you that right. | |
| # Any use of the computer program without a valid license is prohibited and | |
| # liable to prosecution. | |
| # | |
| # Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
| # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
| # for Intelligent Systems. All rights reserved. | |
| # | |
| # Contact: [email protected] | |
| import os | |
| from lib.common.seg3d_lossless import Seg3dLossless | |
| from lib.dataset.Evaluator import Evaluator | |
| from lib.net import HGPIFuNet | |
| from lib.common.train_util import * | |
| from lib.common.render import Render | |
| from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility | |
| import warnings | |
| import logging | |
| import torch | |
| import lib.smplx as smplx | |
| import numpy as np | |
| from torch import nn | |
| import os.path as osp | |
| from skimage.transform import resize | |
| import pytorch_lightning as pl | |
| from huggingface_hub import cached_download | |
| torch.backends.cudnn.benchmark = True | |
| logging.getLogger("lightning").setLevel(logging.ERROR) | |
| warnings.filterwarnings("ignore") | |
| class ICON(pl.LightningModule): | |
| def __init__(self, cfg): | |
| super(ICON, self).__init__() | |
| self.cfg = cfg | |
| self.batch_size = self.cfg.batch_size | |
| self.lr_G = self.cfg.lr_G | |
| self.use_sdf = cfg.sdf | |
| self.prior_type = cfg.net.prior_type | |
| self.mcube_res = cfg.mcube_res | |
| self.clean_mesh_flag = cfg.clean_mesh | |
| self.netG = HGPIFuNet( | |
| self.cfg, | |
| self.cfg.projection_mode, | |
| error_term=nn.SmoothL1Loss() if self.use_sdf else nn.MSELoss(), | |
| ) | |
| # TODO: replace the renderer from opengl to pytorch3d | |
| self.evaluator = Evaluator( | |
| device=torch.device(f"cuda:{self.cfg.gpus[0]}")) | |
| self.resolutions = ( | |
| np.logspace( | |
| start=5, | |
| stop=np.log2(self.mcube_res), | |
| base=2, | |
| num=int(np.log2(self.mcube_res) - 4), | |
| endpoint=True, | |
| ) | |
| + 1.0 | |
| ) | |
| self.resolutions = self.resolutions.astype(np.int16).tolist() | |
| self.icon_keys = ["smpl_verts", "smpl_faces", "smpl_vis", "smpl_cmap"] | |
| self.pamir_keys = ["voxel_verts", | |
| "voxel_faces", "pad_v_num", "pad_f_num"] | |
| self.reconEngine = Seg3dLossless( | |
| query_func=query_func, | |
| b_min=[[-1.0, 1.0, -1.0]], | |
| b_max=[[1.0, -1.0, 1.0]], | |
| resolutions=self.resolutions, | |
| align_corners=True, | |
| balance_value=0.50, | |
| device=torch.device(f"cuda:{self.cfg.test_gpus[0]}"), | |
| visualize=False, | |
| debug=False, | |
| use_cuda_impl=False, | |
| faster=True, | |
| ) | |
| self.render = Render( | |
| size=512, device=torch.device(f"cuda:{self.cfg.test_gpus[0]}") | |
| ) | |
| self.smpl_data = SMPLX() | |
| self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create( | |
| self.smpl_data.model_dir, | |
| kid_template_path=cached_download(osp.join(self.smpl_data.model_dir, | |
| f"{smpl_type}/{smpl_type}_kid_template.npy"), use_auth_token=os.environ['ICON']), | |
| model_type=smpl_type, | |
| gender=gender, | |
| age=age, | |
| v_template=v_template, | |
| use_face_contour=False, | |
| ext="pkl", | |
| ) | |
| self.in_geo = [item[0] for item in cfg.net.in_geo] | |
| self.in_nml = [item[0] for item in cfg.net.in_nml] | |
| self.in_geo_dim = [item[1] for item in cfg.net.in_geo] | |
| self.in_total = self.in_geo + self.in_nml | |
| self.smpl_dim = cfg.net.smpl_dim | |
| self.export_dir = None | |
| self.result_eval = {} | |
| def get_progress_bar_dict(self): | |
| tqdm_dict = super().get_progress_bar_dict() | |
| if "v_num" in tqdm_dict: | |
| del tqdm_dict["v_num"] | |
| return tqdm_dict | |
| # Training related | |
| def configure_optimizers(self): | |
| # set optimizer | |
| weight_decay = self.cfg.weight_decay | |
| momentum = self.cfg.momentum | |
| optim_params_G = [ | |
| {"params": self.netG.if_regressor.parameters(), "lr": self.lr_G} | |
| ] | |
| if self.cfg.net.use_filter: | |
| optim_params_G.append( | |
| {"params": self.netG.F_filter.parameters(), "lr": self.lr_G} | |
| ) | |
| if self.cfg.net.prior_type == "pamir": | |
| optim_params_G.append( | |
| {"params": self.netG.ve.parameters(), "lr": self.lr_G} | |
| ) | |
| if self.cfg.optim == "Adadelta": | |
| optimizer_G = torch.optim.Adadelta( | |
| optim_params_G, lr=self.lr_G, weight_decay=weight_decay | |
| ) | |
| elif self.cfg.optim == "Adam": | |
| optimizer_G = torch.optim.Adam( | |
| optim_params_G, lr=self.lr_G, weight_decay=weight_decay | |
| ) | |
| elif self.cfg.optim == "RMSprop": | |
| optimizer_G = torch.optim.RMSprop( | |
| optim_params_G, | |
| lr=self.lr_G, | |
| weight_decay=weight_decay, | |
| momentum=momentum, | |
| ) | |
| else: | |
| raise NotImplementedError | |
| # set scheduler | |
| scheduler_G = torch.optim.lr_scheduler.MultiStepLR( | |
| optimizer_G, milestones=self.cfg.schedule, gamma=self.cfg.gamma | |
| ) | |
| return [optimizer_G], [scheduler_G] | |
| def training_step(self, batch, batch_idx): | |
| if not self.cfg.fast_dev: | |
| export_cfg(self.logger, self.cfg) | |
| self.netG.train() | |
| in_tensor_dict = { | |
| "sample": batch["samples_geo"].permute(0, 2, 1), | |
| "calib": batch["calib"], | |
| "label": batch["labels_geo"].unsqueeze(1), | |
| } | |
| for name in self.in_total: | |
| in_tensor_dict.update({name: batch[name]}) | |
| if self.prior_type == "icon": | |
| for key in self.icon_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| elif self.prior_type == "pamir": | |
| for key in self.pamir_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| else: | |
| pass | |
| preds_G, error_G = self.netG(in_tensor_dict) | |
| acc, iou, prec, recall = self.evaluator.calc_acc( | |
| preds_G.flatten(), | |
| in_tensor_dict["label"].flatten(), | |
| 0.5, | |
| use_sdf=self.cfg.sdf, | |
| ) | |
| # metrics processing | |
| metrics_log = { | |
| "train_loss": error_G.item(), | |
| "train_acc": acc.item(), | |
| "train_iou": iou.item(), | |
| "train_prec": prec.item(), | |
| "train_recall": recall.item(), | |
| } | |
| tf_log = tf_log_convert(metrics_log) | |
| bar_log = bar_log_convert(metrics_log) | |
| if batch_idx % int(self.cfg.freq_show_train) == 0: | |
| with torch.no_grad(): | |
| self.render_func(in_tensor_dict, dataset="train") | |
| metrics_return = { | |
| k.replace("train_", ""): torch.tensor(v) for k, v in metrics_log.items() | |
| } | |
| metrics_return.update( | |
| {"loss": error_G, "log": tf_log, "progress_bar": bar_log}) | |
| return metrics_return | |
| def training_epoch_end(self, outputs): | |
| if [] in outputs: | |
| outputs = outputs[0] | |
| # metrics processing | |
| metrics_log = { | |
| "train_avgloss": batch_mean(outputs, "loss"), | |
| "train_avgiou": batch_mean(outputs, "iou"), | |
| "train_avgprec": batch_mean(outputs, "prec"), | |
| "train_avgrecall": batch_mean(outputs, "recall"), | |
| "train_avgacc": batch_mean(outputs, "acc"), | |
| } | |
| tf_log = tf_log_convert(metrics_log) | |
| return {"log": tf_log} | |
| def validation_step(self, batch, batch_idx): | |
| self.netG.eval() | |
| self.netG.training = False | |
| in_tensor_dict = { | |
| "sample": batch["samples_geo"].permute(0, 2, 1), | |
| "calib": batch["calib"], | |
| "label": batch["labels_geo"].unsqueeze(1), | |
| } | |
| for name in self.in_total: | |
| in_tensor_dict.update({name: batch[name]}) | |
| if self.prior_type == "icon": | |
| for key in self.icon_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| elif self.prior_type == "pamir": | |
| for key in self.pamir_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| else: | |
| pass | |
| preds_G, error_G = self.netG(in_tensor_dict) | |
| acc, iou, prec, recall = self.evaluator.calc_acc( | |
| preds_G.flatten(), | |
| in_tensor_dict["label"].flatten(), | |
| 0.5, | |
| use_sdf=self.cfg.sdf, | |
| ) | |
| if batch_idx % int(self.cfg.freq_show_val) == 0: | |
| with torch.no_grad(): | |
| self.render_func(in_tensor_dict, dataset="val", idx=batch_idx) | |
| metrics_return = { | |
| "val_loss": error_G, | |
| "val_acc": acc, | |
| "val_iou": iou, | |
| "val_prec": prec, | |
| "val_recall": recall, | |
| } | |
| return metrics_return | |
| def validation_epoch_end(self, outputs): | |
| # metrics processing | |
| metrics_log = { | |
| "val_avgloss": batch_mean(outputs, "val_loss"), | |
| "val_avgacc": batch_mean(outputs, "val_acc"), | |
| "val_avgiou": batch_mean(outputs, "val_iou"), | |
| "val_avgprec": batch_mean(outputs, "val_prec"), | |
| "val_avgrecall": batch_mean(outputs, "val_recall"), | |
| } | |
| tf_log = tf_log_convert(metrics_log) | |
| return {"log": tf_log} | |
| def compute_vis_cmap(self, smpl_type, smpl_verts, smpl_faces): | |
| (xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1) | |
| smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long()) | |
| if smpl_type == "smpl": | |
| smplx_ind = self.smpl_data.smpl2smplx(np.arange(smpl_vis.shape[0])) | |
| else: | |
| smplx_ind = np.arange(smpl_vis.shape[0]) | |
| smpl_cmap = self.smpl_data.get_smpl_mat(smplx_ind) | |
| return { | |
| "smpl_vis": smpl_vis.unsqueeze(0).to(self.device), | |
| "smpl_cmap": smpl_cmap.unsqueeze(0).to(self.device), | |
| "smpl_verts": smpl_verts.unsqueeze(0), | |
| } | |
| def optim_body(self, in_tensor_dict, batch): | |
| smpl_model = self.get_smpl_model( | |
| batch["type"][0], batch["gender"][0], batch["age"][0], None | |
| ).to(self.device) | |
| in_tensor_dict["smpl_faces"] = ( | |
| torch.tensor(smpl_model.faces.astype(np.int)) | |
| .long() | |
| .unsqueeze(0) | |
| .to(self.device) | |
| ) | |
| # The optimizer and variables | |
| optimed_pose = torch.tensor( | |
| batch["body_pose"][0], device=self.device, requires_grad=True | |
| ) # [1,23,3,3] | |
| optimed_trans = torch.tensor( | |
| batch["transl"][0], device=self.device, requires_grad=True | |
| ) # [3] | |
| optimed_betas = torch.tensor( | |
| batch["betas"][0], device=self.device, requires_grad=True | |
| ) # [1,10] | |
| optimed_orient = torch.tensor( | |
| batch["global_orient"][0], device=self.device, requires_grad=True | |
| ) # [1,1,3,3] | |
| optimizer_smpl = torch.optim.SGD( | |
| [optimed_pose, optimed_trans, optimed_betas, optimed_orient], | |
| lr=1e-3, | |
| momentum=0.9, | |
| ) | |
| scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
| optimizer_smpl, mode="min", factor=0.5, verbose=0, min_lr=1e-5, patience=5 | |
| ) | |
| loop_smpl = range(50) | |
| for i in loop_smpl: | |
| optimizer_smpl.zero_grad() | |
| # prior_loss, optimed_pose = dataset.vposer_prior(optimed_pose) | |
| smpl_out = smpl_model( | |
| betas=optimed_betas, | |
| body_pose=optimed_pose, | |
| global_orient=optimed_orient, | |
| transl=optimed_trans, | |
| return_verts=True, | |
| ) | |
| smpl_verts = smpl_out.vertices[0] * 100.0 | |
| smpl_verts = projection( | |
| smpl_verts, batch["calib"][0], format="tensor") | |
| smpl_verts[:, 1] *= -1 | |
| # render optimized mesh (normal, T_normal, image [-1,1]) | |
| self.render.load_meshes( | |
| smpl_verts, in_tensor_dict["smpl_faces"]) | |
| ( | |
| in_tensor_dict["T_normal_F"], | |
| in_tensor_dict["T_normal_B"], | |
| ) = self.render.get_rgb_image() | |
| T_mask_F, T_mask_B = self.render.get_silhouette_image() | |
| with torch.no_grad(): | |
| ( | |
| in_tensor_dict["normal_F"], | |
| in_tensor_dict["normal_B"], | |
| ) = self.netG.normal_filter(in_tensor_dict) | |
| # mask = torch.abs(in_tensor['T_normal_F']).sum(dim=0, keepdims=True) > 0.0 | |
| diff_F_smpl = torch.abs( | |
| in_tensor_dict["T_normal_F"] - in_tensor_dict["normal_F"] | |
| ) | |
| diff_B_smpl = torch.abs( | |
| in_tensor_dict["T_normal_B"] - in_tensor_dict["normal_B"] | |
| ) | |
| loss = (diff_F_smpl + diff_B_smpl).mean() | |
| # silhouette loss | |
| smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0] | |
| gt_arr = torch.cat( | |
| [in_tensor_dict["normal_F"][0], in_tensor_dict["normal_B"][0]], dim=2 | |
| ).permute(1, 2, 0) | |
| gt_arr = ((gt_arr + 1.0) * 0.5).to(self.device) | |
| bg_color = ( | |
| torch.Tensor([0.5, 0.5, 0.5]).unsqueeze( | |
| 0).unsqueeze(0).to(self.device) | |
| ) | |
| gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float() | |
| loss += torch.abs(smpl_arr - gt_arr).mean() | |
| # Image.fromarray(((in_tensor_dict['T_normal_F'][0].permute(1,2,0)+1.0)*0.5*255.0).detach().cpu().numpy().astype(np.uint8)).show() | |
| # loop_smpl.set_description(f"smpl = {loss:.3f}") | |
| loss.backward(retain_graph=True) | |
| optimizer_smpl.step() | |
| scheduler_smpl.step(loss) | |
| in_tensor_dict["smpl_verts"] = smpl_verts.unsqueeze(0) | |
| in_tensor_dict.update( | |
| self.compute_vis_cmap( | |
| batch["type"][0], | |
| in_tensor_dict["smpl_verts"][0], | |
| in_tensor_dict["smpl_faces"][0], | |
| ) | |
| ) | |
| features, inter = self.netG.filter(in_tensor_dict, return_inter=True) | |
| return features, inter, in_tensor_dict | |
| def optim_cloth(self, verts_pr, faces_pr, inter): | |
| # convert from GT to SDF | |
| verts_pr -= (self.resolutions[-1] - 1) / 2.0 | |
| verts_pr /= (self.resolutions[-1] - 1) / 2.0 | |
| losses = { | |
| "cloth": {"weight": 5.0, "value": 0.0}, | |
| "edge": {"weight": 100.0, "value": 0.0}, | |
| "normal": {"weight": 0.2, "value": 0.0}, | |
| "laplacian": {"weight": 100.0, "value": 0.0}, | |
| "smpl": {"weight": 1.0, "value": 0.0}, | |
| "deform": {"weight": 20.0, "value": 0.0}, | |
| } | |
| deform_verts = torch.full( | |
| verts_pr.shape, 0.0, device=self.device, requires_grad=True | |
| ) | |
| optimizer_cloth = torch.optim.SGD( | |
| [deform_verts], lr=1e-1, momentum=0.9) | |
| scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
| optimizer_cloth, mode="min", factor=0.1, verbose=0, min_lr=1e-3, patience=5 | |
| ) | |
| # cloth optimization | |
| loop_cloth = range(100) | |
| for i in loop_cloth: | |
| optimizer_cloth.zero_grad() | |
| self.render.load_meshes( | |
| verts_pr.unsqueeze(0).to(self.device), | |
| faces_pr.unsqueeze(0).to(self.device).long(), | |
| deform_verts, | |
| ) | |
| P_normal_F, P_normal_B = self.render.get_rgb_image() | |
| update_mesh_shape_prior_losses(self.render.mesh, losses) | |
| diff_F_cloth = torch.abs(P_normal_F[0] - inter[:3]) | |
| diff_B_cloth = torch.abs(P_normal_B[0] - inter[3:]) | |
| losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean() | |
| losses["deform"]["value"] = torch.topk( | |
| torch.abs(deform_verts.flatten()), 30 | |
| )[0].mean() | |
| # Weighted sum of the losses | |
| cloth_loss = torch.tensor(0.0, device=self.device) | |
| pbar_desc = "" | |
| for k in losses.keys(): | |
| if k != "smpl": | |
| cloth_loss_per_cls = losses[k]["value"] * \ | |
| losses[k]["weight"] | |
| pbar_desc += f"{k}: {cloth_loss_per_cls:.3f} | " | |
| cloth_loss += cloth_loss_per_cls | |
| # loop_cloth.set_description(pbar_desc) | |
| cloth_loss.backward(retain_graph=True) | |
| optimizer_cloth.step() | |
| scheduler_cloth.step(cloth_loss) | |
| # convert from GT to SDF | |
| deform_verts = deform_verts.flatten().detach() | |
| deform_verts[torch.topk(torch.abs(deform_verts), 30)[ | |
| 1]] = deform_verts.mean() | |
| deform_verts = deform_verts.view(-1, 3).cpu() | |
| verts_pr += deform_verts | |
| verts_pr *= (self.resolutions[-1] - 1) / 2.0 | |
| verts_pr += (self.resolutions[-1] - 1) / 2.0 | |
| return verts_pr | |
| def test_step(self, batch, batch_idx): | |
| # dict_keys(['dataset', 'subject', 'rotation', 'scale', 'calib', | |
| # 'normal_F', 'normal_B', 'image', 'T_normal_F', 'T_normal_B', | |
| # 'z-trans', 'verts', 'faces', 'samples_geo', 'labels_geo', | |
| # 'smpl_verts', 'smpl_faces', 'smpl_vis', 'smpl_cmap', 'pts_signs', | |
| # 'type', 'gender', 'age', 'body_pose', 'global_orient', 'betas', 'transl']) | |
| if self.evaluator._normal_render is None: | |
| self.evaluator.init_gl() | |
| self.netG.eval() | |
| self.netG.training = False | |
| in_tensor_dict = {} | |
| # export paths | |
| mesh_name = batch["subject"][0] | |
| mesh_rot = batch["rotation"][0].item() | |
| ckpt_dir = self.cfg.name | |
| for kid, key in enumerate(self.cfg.dataset.noise_type): | |
| ckpt_dir += f"_{key}_{self.cfg.dataset.noise_scale[kid]}" | |
| if self.cfg.optim_cloth: | |
| ckpt_dir += "_optim_cloth" | |
| if self.cfg.optim_body: | |
| ckpt_dir += "_optim_body" | |
| self.export_dir = osp.join(self.cfg.results_path, ckpt_dir, mesh_name) | |
| os.makedirs(self.export_dir, exist_ok=True) | |
| for name in self.in_total: | |
| if name in batch.keys(): | |
| in_tensor_dict.update({name: batch[name]}) | |
| # update the new T_normal_F/B | |
| in_tensor_dict.update( | |
| self.evaluator.render_normal( | |
| batch["smpl_verts"], batch["smpl_faces"]) | |
| ) | |
| # update the new smpl_vis | |
| (xy, z) = batch["smpl_verts"][0].split([2, 1], dim=1) | |
| smpl_vis = get_visibility( | |
| xy, | |
| z, | |
| torch.as_tensor(self.smpl_data.faces).type_as( | |
| batch["smpl_verts"]).long(), | |
| ) | |
| in_tensor_dict.update({"smpl_vis": smpl_vis.unsqueeze(0)}) | |
| if self.prior_type == "icon": | |
| for key in self.icon_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| elif self.prior_type == "pamir": | |
| for key in self.pamir_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| else: | |
| pass | |
| with torch.no_grad(): | |
| if self.cfg.optim_body: | |
| features, inter, in_tensor_dict = self.optim_body( | |
| in_tensor_dict, batch) | |
| else: | |
| features, inter = self.netG.filter( | |
| in_tensor_dict, return_inter=True) | |
| sdf = self.reconEngine( | |
| opt=self.cfg, netG=self.netG, features=features, proj_matrix=None | |
| ) | |
| # save inter results | |
| image = ( | |
| in_tensor_dict["image"][0].permute( | |
| 1, 2, 0).detach().cpu().numpy() + 1.0 | |
| ) * 0.5 | |
| smpl_F = ( | |
| in_tensor_dict["T_normal_F"][0].permute( | |
| 1, 2, 0).detach().cpu().numpy() | |
| + 1.0 | |
| ) * 0.5 | |
| smpl_B = ( | |
| in_tensor_dict["T_normal_B"][0].permute( | |
| 1, 2, 0).detach().cpu().numpy() | |
| + 1.0 | |
| ) * 0.5 | |
| image_inter = np.concatenate( | |
| self.tensor2image(512, inter[0]) + [smpl_F, smpl_B, image], axis=1 | |
| ) | |
| Image.fromarray((image_inter * 255.0).astype(np.uint8)).save( | |
| osp.join(self.export_dir, f"{mesh_rot}_inter.png") | |
| ) | |
| verts_pr, faces_pr = self.reconEngine.export_mesh(sdf) | |
| if self.clean_mesh_flag: | |
| verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr) | |
| if self.cfg.optim_cloth: | |
| verts_pr = self.optim_cloth(verts_pr, faces_pr, inter[0].detach()) | |
| verts_gt = batch["verts"][0] | |
| faces_gt = batch["faces"][0] | |
| self.result_eval.update( | |
| { | |
| "verts_gt": verts_gt, | |
| "faces_gt": faces_gt, | |
| "verts_pr": verts_pr, | |
| "faces_pr": faces_pr, | |
| "recon_size": (self.resolutions[-1] - 1.0), | |
| "calib": batch["calib"][0], | |
| } | |
| ) | |
| self.evaluator.set_mesh(self.result_eval, scale_factor=1.0) | |
| self.evaluator.space_transfer() | |
| chamfer, p2s = self.evaluator.calculate_chamfer_p2s( | |
| sampled_points=1000) | |
| normal_consist = self.evaluator.calculate_normal_consist( | |
| save_demo_img=osp.join(self.export_dir, f"{mesh_rot}_nc.png") | |
| ) | |
| test_log = {"chamfer": chamfer, "p2s": p2s, "NC": normal_consist} | |
| return test_log | |
| def test_epoch_end(self, outputs): | |
| # make_test_gif("/".join(self.export_dir.split("/")[:-2])) | |
| accu_outputs = accumulate( | |
| outputs, | |
| rot_num=3, | |
| split={ | |
| "thuman2": (0, 5), | |
| }, | |
| ) | |
| print(colored(self.cfg.name, "green")) | |
| print(colored(self.cfg.dataset.noise_scale, "green")) | |
| self.logger.experiment.add_hparams( | |
| hparam_dict={"lr_G": self.lr_G, "bsize": self.batch_size}, | |
| metric_dict=accu_outputs, | |
| ) | |
| np.save( | |
| osp.join(self.export_dir, "../test_results.npy"), | |
| accu_outputs, | |
| allow_pickle=True, | |
| ) | |
| return accu_outputs | |
| def tensor2image(self, height, inter): | |
| all = [] | |
| for dim in self.in_geo_dim: | |
| img = resize( | |
| np.tile( | |
| ((inter[:dim].cpu().numpy() + 1.0) / | |
| 2.0).transpose(1, 2, 0), | |
| (1, 1, int(3 / dim)), | |
| ), | |
| (height, height), | |
| anti_aliasing=True, | |
| ) | |
| all.append(img) | |
| inter = inter[dim:] | |
| return all | |
| def render_func(self, in_tensor_dict, dataset="title", idx=0): | |
| for name in in_tensor_dict.keys(): | |
| in_tensor_dict[name] = in_tensor_dict[name][0:1] | |
| self.netG.eval() | |
| features, inter = self.netG.filter(in_tensor_dict, return_inter=True) | |
| sdf = self.reconEngine( | |
| opt=self.cfg, netG=self.netG, features=features, proj_matrix=None | |
| ) | |
| if sdf is not None: | |
| render = self.reconEngine.display(sdf) | |
| image_pred = np.flip(render[:, :, ::-1], axis=0) | |
| height = image_pred.shape[0] | |
| image_gt = resize( | |
| ((in_tensor_dict["image"].cpu().numpy()[0] + 1.0) / 2.0).transpose( | |
| 1, 2, 0 | |
| ), | |
| (height, height), | |
| anti_aliasing=True, | |
| ) | |
| image_inter = self.tensor2image(height, inter[0]) | |
| image = np.concatenate( | |
| [image_pred, image_gt] + image_inter, axis=1) | |
| step_id = self.global_step if dataset == "train" else self.global_step + idx | |
| self.logger.experiment.add_image( | |
| tag=f"Occupancy-{dataset}/{step_id}", | |
| img_tensor=image.transpose(2, 0, 1), | |
| global_step=step_id, | |
| ) | |
| def test_single(self, batch): | |
| self.netG.eval() | |
| self.netG.training = False | |
| in_tensor_dict = {} | |
| for name in self.in_total: | |
| if name in batch.keys(): | |
| in_tensor_dict.update({name: batch[name]}) | |
| if self.prior_type == "icon": | |
| for key in self.icon_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| elif self.prior_type == "pamir": | |
| for key in self.pamir_keys: | |
| in_tensor_dict.update({key: batch[key]}) | |
| else: | |
| pass | |
| features, inter = self.netG.filter(in_tensor_dict, return_inter=True) | |
| sdf = self.reconEngine( | |
| opt=self.cfg, netG=self.netG, features=features, proj_matrix=None | |
| ) | |
| verts_pr, faces_pr = self.reconEngine.export_mesh(sdf) | |
| if self.clean_mesh_flag: | |
| verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr) | |
| verts_pr -= (self.resolutions[-1] - 1) / 2.0 | |
| verts_pr /= (self.resolutions[-1] - 1) / 2.0 | |
| return verts_pr, faces_pr, inter | |