Spaces:
Runtime error
Runtime error
| """ | |
| A comprehensive toolkit for generating and translating subtitles from media files. | |
| This module provides functionalities to: | |
| 1. Download AI models from Hugging Face without requiring a token. | |
| 2. Transcribe audio from media files using a high-performance Whisper model. | |
| 3. Generate multiple formats of SRT subtitles (default, professional multi-line, word-level, and shorts-style). | |
| 4. Translate subtitles into different languages. | |
| 5. Orchestrate the entire process through a simple-to-use main function. | |
| """ | |
| # ============================================================================== | |
| # --- 1. IMPORTS | |
| # ============================================================================== | |
| import os | |
| import re | |
| import gc | |
| import uuid | |
| import math | |
| import shutil | |
| import string | |
| import requests | |
| import urllib.request | |
| import urllib.error | |
| import torch | |
| import pysrt | |
| from tqdm.auto import tqdm | |
| from faster_whisper import WhisperModel | |
| from deep_translator import GoogleTranslator | |
| # ============================================================================== | |
| # --- 2. CONSTANTS & CONFIGURATION | |
| # ============================================================================== | |
| # Folder paths for storing generated files and temporary audio | |
| SUBTITLE_FOLDER = "./generated_subtitle" | |
| TEMP_FOLDER = "./subtitle_audio" | |
| # Mapping of language names to their ISO 639-1 codes | |
| LANGUAGE_CODE = { | |
| 'Akan': 'aka', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy', | |
| 'Assamese': 'as', 'Azerbaijani': 'az', 'Basque': 'eu', 'Bashkir': 'ba', 'Bengali': 'bn', | |
| 'Bosnian': 'bs', 'Bulgarian': 'bg', 'Burmese': 'my', 'Catalan': 'ca', 'Chinese': 'zh', | |
| 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en', | |
| 'Estonian': 'et', 'Faroese': 'fo', 'Finnish': 'fi', 'French': 'fr', 'Galician': 'gl', | |
| 'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht', | |
| 'Hausa': 'ha', 'Hebrew': 'he', 'Hindi': 'hi', 'Hungarian': 'hu', 'Icelandic': 'is', | |
| 'Indonesian': 'id', 'Italian': 'it', 'Japanese': 'ja', 'Kannada': 'kn', 'Kazakh': 'kk', | |
| 'Korean': 'ko', 'Kurdish': 'ckb', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Lithuanian': 'lt', | |
| 'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt', | |
| 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nepali': 'ne', 'Norwegian': 'no', | |
| 'Norwegian Nynorsk': 'nn', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese': 'pt', | |
| 'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Serbian': 'sr', 'Sinhala': 'si', | |
| 'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su', | |
| 'Swahili': 'sw', 'Swedish': 'sv', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th', | |
| 'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi', | |
| 'Welsh': 'cy', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu' | |
| } | |
| # ============================================================================== | |
| # --- 3. FILE & MODEL DOWNLOADING UTILITIES | |
| # ============================================================================== | |
| def download_file(url, download_file_path, redownload=False): | |
| """Download a single file with urllib and a tqdm progress bar.""" | |
| base_path = os.path.dirname(download_file_path) | |
| os.makedirs(base_path, exist_ok=True) | |
| if os.path.exists(download_file_path): | |
| if redownload: | |
| os.remove(download_file_path) | |
| tqdm.write(f"♻️ Redownloading: {os.path.basename(download_file_path)}") | |
| elif os.path.getsize(download_file_path) > 0: | |
| tqdm.write(f"✔️ Skipped (already exists): {os.path.basename(download_file_path)}") | |
| return True | |
| try: | |
| request = urllib.request.urlopen(url) | |
| total = int(request.headers.get('Content-Length', 0)) | |
| except urllib.error.URLError as e: | |
| print(f"❌ Error: Unable to open URL: {url}") | |
| print(f"Reason: {e.reason}") | |
| return False | |
| with tqdm(total=total, desc=os.path.basename(download_file_path), unit='B', unit_scale=True, unit_divisor=1024) as progress: | |
| try: | |
| urllib.request.urlretrieve( | |
| url, | |
| download_file_path, | |
| reporthook=lambda count, block_size, total_size: progress.update(block_size) | |
| ) | |
| except urllib.error.URLError as e: | |
| print(f"❌ Error: Failed to download {url}") | |
| print(f"Reason: {e.reason}") | |
| return False | |
| tqdm.write(f"⬇️ Downloaded: {os.path.basename(download_file_path)}") | |
| return True | |
| def download_model(repo_id, download_folder="./", redownload=False): | |
| """ | |
| Downloads all files from a Hugging Face repository using the public API, | |
| avoiding the need for a Hugging Face token for public models. | |
| """ | |
| if not download_folder.strip(): | |
| download_folder = "." | |
| api_url = f"https://huggingface.co/api/models/{repo_id}" | |
| model_name = repo_id.split('/')[-1] | |
| download_dir = os.path.abspath(f"{download_folder.rstrip('/')}/{model_name}") | |
| os.makedirs(download_dir, exist_ok=True) | |
| print(f"📂 Download directory: {download_dir}") | |
| try: | |
| response = requests.get(api_url) | |
| response.raise_for_status() | |
| except requests.exceptions.RequestException as e: | |
| print(f"❌ Error fetching repo info: {e}") | |
| return None | |
| data = response.json() | |
| files_to_download = [f["rfilename"] for f in data.get("siblings", [])] | |
| if not files_to_download: | |
| print(f"⚠️ No files found in repo '{repo_id}'.") | |
| return None | |
| print(f"📦 Found {len(files_to_download)} files in repo '{repo_id}'. Checking cache...") | |
| for file in tqdm(files_to_download, desc="Processing files", unit="file"): | |
| file_url = f"https://huggingface.co/{repo_id}/resolve/main/{file}" | |
| file_path = os.path.join(download_dir, file) | |
| download_file(file_url, file_path, redownload=redownload) | |
| return download_dir | |
| # ============================================================================== | |
| # --- 4. CORE TRANSCRIPTION & PROCESSING LOGIC | |
| # ============================================================================== | |
| def get_language_name(code): | |
| """Retrieves the full language name from its code.""" | |
| for name, value in LANGUAGE_CODE.items(): | |
| if value == code: | |
| return name | |
| return None | |
| def clean_file_name(file_path): | |
| """Generates a clean, unique file name to avoid path issues.""" | |
| dir_name = os.path.dirname(file_path) | |
| base_name, extension = os.path.splitext(os.path.basename(file_path)) | |
| cleaned_base = re.sub(r'[^a-zA-Z\d]+', '_', base_name) | |
| cleaned_base = re.sub(r'_+', '_', cleaned_base).strip('_') | |
| random_uuid = uuid.uuid4().hex[:6] | |
| return os.path.join(dir_name, f"{cleaned_base}_{random_uuid}{extension}") | |
| def format_segments(segments): | |
| """Formats the raw segments from Whisper into structured lists.""" | |
| sentence_timestamp = [] | |
| words_timestamp = [] | |
| speech_to_text = "" | |
| for i in segments: | |
| text = i.text.strip() | |
| sentence_id = len(sentence_timestamp) | |
| sentence_timestamp.append({ | |
| "id": sentence_id, | |
| "text": text, | |
| "start": i.start, | |
| "end": i.end, | |
| "words": [] | |
| }) | |
| speech_to_text += text + " " | |
| for word in i.words: | |
| word_data = { | |
| "word": word.word.strip(), | |
| "start": word.start, | |
| "end": word.end | |
| } | |
| sentence_timestamp[sentence_id]["words"].append(word_data) | |
| words_timestamp.append(word_data) | |
| return sentence_timestamp, words_timestamp, speech_to_text.strip() | |
| def get_audio_file(uploaded_file): | |
| """Copies the uploaded media file to a temporary location for processing.""" | |
| temp_path = os.path.join(TEMP_FOLDER, os.path.basename(uploaded_file)) | |
| cleaned_path = clean_file_name(temp_path) | |
| shutil.copy(uploaded_file, cleaned_path) | |
| return cleaned_path | |
| def whisper_subtitle(uploaded_file, source_language): | |
| """ | |
| Main transcription function. Loads the model, transcribes the audio, | |
| and generates subtitle files. | |
| """ | |
| # 1. Configure device and model | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| compute_type = "float16" if torch.cuda.is_available() else "int8" | |
| model_dir = download_model( | |
| "deepdml/faster-whisper-large-v3-turbo-ct2", | |
| download_folder="./", | |
| redownload=False | |
| ) | |
| model = WhisperModel(model_dir, device=device, compute_type=compute_type) | |
| # model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2",device=device, compute_type=compute_type) | |
| # 2. Process audio file | |
| audio_file_path = get_audio_file(uploaded_file) | |
| # 3. Transcribe | |
| detected_language = source_language | |
| if source_language == "Automatic": | |
| segments, info = model.transcribe(audio_file_path, word_timestamps=True) | |
| detected_lang_code = info.language | |
| detected_language = get_language_name(detected_lang_code) | |
| else: | |
| lang_code = LANGUAGE_CODE[source_language] | |
| segments, _ = model.transcribe(audio_file_path, word_timestamps=True, language=lang_code) | |
| sentence_timestamps, word_timestamps, transcript_text = format_segments(segments) | |
| # 4. Cleanup | |
| if os.path.exists(audio_file_path): | |
| os.remove(audio_file_path) | |
| del model | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| # 5. Prepare output file paths | |
| base_filename = os.path.splitext(os.path.basename(uploaded_file))[0][:30] | |
| srt_base = f"{SUBTITLE_FOLDER}/{base_filename}_{detected_language}.srt" | |
| clean_srt_path = clean_file_name(srt_base) | |
| txt_path = clean_srt_path.replace(".srt", ".txt") | |
| word_srt_path = clean_srt_path.replace(".srt", "_word_level.srt") | |
| custom_srt_path = clean_srt_path.replace(".srt", "_Multiline.srt") | |
| shorts_srt_path = clean_srt_path.replace(".srt", "_shorts.srt") | |
| # 6. Generate all subtitle files | |
| generate_srt_from_sentences(sentence_timestamps, srt_path=clean_srt_path) | |
| word_level_srt(word_timestamps, srt_path=word_srt_path) | |
| shorts_json=write_sentence_srt( | |
| word_timestamps, output_file=shorts_srt_path, max_lines=1, | |
| max_duration_s=2.0, max_chars_per_line=17 | |
| ) | |
| sentence_json=write_sentence_srt( | |
| word_timestamps, output_file=custom_srt_path, max_lines=2, | |
| max_duration_s=7.0, max_chars_per_line=38 | |
| ) | |
| with open(txt_path, 'w', encoding='utf-8') as f: | |
| f.write(transcript_text) | |
| return ( | |
| clean_srt_path, custom_srt_path, word_srt_path, shorts_srt_path, | |
| txt_path, transcript_text, sentence_json,shorts_json,detected_language | |
| ) | |
| # ============================================================================== | |
| # --- 5. SUBTITLE GENERATION & FORMATTING | |
| # ============================================================================== | |
| def convert_time_to_srt_format(seconds): | |
| """Converts seconds to the standard SRT time format (HH:MM:SS,ms).""" | |
| hours = int(seconds // 3600) | |
| minutes = int((seconds % 3600) // 60) | |
| secs = int(seconds % 60) | |
| milliseconds = round((seconds - int(seconds)) * 1000) | |
| if milliseconds == 1000: | |
| milliseconds = 0 | |
| secs += 1 | |
| if secs == 60: | |
| secs, minutes = 0, minutes + 1 | |
| if minutes == 60: | |
| minutes, hours = 0, hours + 1 | |
| return f"{hours:02}:{minutes:02}:{secs:02},{milliseconds:03}" | |
| def split_line_by_char_limit(text, max_chars_per_line=38): | |
| """Splits a string into multiple lines based on a character limit.""" | |
| words = text.split() | |
| lines = [] | |
| current_line = "" | |
| for word in words: | |
| if not current_line: | |
| current_line = word | |
| elif len(current_line + " " + word) <= max_chars_per_line: | |
| current_line += " " + word | |
| else: | |
| lines.append(current_line) | |
| current_line = word | |
| if current_line: | |
| lines.append(current_line) | |
| return lines | |
| def merge_punctuation_glitches(subtitles): | |
| """Cleans up punctuation artifacts at the boundaries of subtitle entries.""" | |
| if not subtitles: | |
| return [] | |
| cleaned = [subtitles[0]] | |
| for i in range(1, len(subtitles)): | |
| prev = cleaned[-1] | |
| curr = subtitles[i] | |
| prev_text = prev["text"].rstrip() | |
| curr_text = curr["text"].lstrip() | |
| match = re.match(r'^([,.:;!?]+)(\s*)(.+)', curr_text) | |
| if match: | |
| punct, _, rest = match.groups() | |
| if not prev_text.endswith(tuple(punct)): | |
| prev["text"] = prev_text + punct | |
| curr_text = rest.strip() | |
| unwanted_chars = ['"', '“', '”', ';', ':'] | |
| for ch in unwanted_chars: | |
| curr_text = curr_text.replace(ch, '') | |
| curr_text = curr_text.strip() | |
| if not curr_text or re.fullmatch(r'[.,!?]+', curr_text): | |
| prev["end"] = curr["end"] | |
| continue | |
| curr["text"] = curr_text | |
| prev["text"] = prev["text"].replace('"', '').replace('“', '').replace('”', '') | |
| cleaned.append(curr) | |
| return cleaned | |
| import json | |
| def write_sentence_srt( | |
| word_level_timestamps, output_file="subtitles_professional.srt", max_lines=2, | |
| max_duration_s=7.0, max_chars_per_line=38, hard_pause_threshold=0.5, | |
| merge_pause_threshold=0.4 | |
| ): | |
| """Creates professional-grade SRT files and a corresponding timestamp.json file.""" | |
| if not word_level_timestamps: | |
| return | |
| # Phase 1: Generate draft subtitles based on timing and length rules | |
| draft_subtitles = [] | |
| i = 0 | |
| while i < len(word_level_timestamps): | |
| start_time = word_level_timestamps[i]["start"] | |
| # We'll now store the full word objects, not just the text | |
| current_word_objects = [] | |
| j = i | |
| while j < len(word_level_timestamps): | |
| entry = word_level_timestamps[j] | |
| # Create potential text from the word objects | |
| potential_words = [w["word"] for w in current_word_objects] + [entry["word"]] | |
| potential_text = " ".join(potential_words) | |
| if len(split_line_by_char_limit(potential_text, max_chars_per_line)) > max_lines: break | |
| if (entry["end"] - start_time) > max_duration_s and current_word_objects: break | |
| if j > i: | |
| prev_entry = word_level_timestamps[j-1] | |
| pause = entry["start"] - prev_entry["end"] | |
| if pause >= hard_pause_threshold: break | |
| if prev_entry["word"].endswith(('.','!','?')): break | |
| # Append the full word object | |
| current_word_objects.append(entry) | |
| j += 1 | |
| if not current_word_objects: | |
| current_word_objects.append(word_level_timestamps[i]) | |
| j = i + 1 | |
| text = " ".join([w["word"] for w in current_word_objects]) | |
| end_time = word_level_timestamps[j - 1]["end"] | |
| # Include the list of word objects in our draft subtitle | |
| draft_subtitles.append({ | |
| "start": start_time, | |
| "end": end_time, | |
| "text": text, | |
| "words": current_word_objects | |
| }) | |
| i = j | |
| # Phase 2: Post-process to merge single-word "orphan" subtitles | |
| if not draft_subtitles: return | |
| final_subtitles = [draft_subtitles[0]] | |
| for k in range(1, len(draft_subtitles)): | |
| prev_sub = final_subtitles[-1] | |
| current_sub = draft_subtitles[k] | |
| is_orphan = len(current_sub["text"].split()) == 1 | |
| pause_from_prev = current_sub["start"] - prev_sub["end"] | |
| if is_orphan and pause_from_prev < merge_pause_threshold: | |
| merged_text = prev_sub["text"] + " " + current_sub["text"] | |
| if len(split_line_by_char_limit(merged_text, max_chars_per_line)) <= max_lines: | |
| prev_sub["text"] = merged_text | |
| prev_sub["end"] = current_sub["end"] | |
| # Merge the word-level data as well | |
| prev_sub["words"].extend(current_sub["words"]) | |
| continue | |
| final_subtitles.append(current_sub) | |
| final_subtitles = merge_punctuation_glitches(final_subtitles) | |
| print(final_subtitles) | |
| # ============================================================================== | |
| # NEW CODE BLOCK: Generate JSON data and write files | |
| # ============================================================================== | |
| # This dictionary will hold the data for our JSON file | |
| timestamps_data = {} | |
| # Phase 3: Write the final SRT file (and prepare JSON data) | |
| with open(output_file, "w", encoding="utf-8") as f: | |
| for idx, sub in enumerate(final_subtitles, start=1): | |
| # --- SRT Writing (Unchanged) --- | |
| text = sub["text"].replace(" ,", ",").replace(" .", ".") | |
| formatted_lines = split_line_by_char_limit(text, max_chars_per_line) | |
| start_time_str = convert_time_to_srt_format(sub['start']) | |
| end_time_str = convert_time_to_srt_format(sub['end']) | |
| f.write(f"{idx}\n") | |
| f.write(f"{start_time_str} --> {end_time_str}\n") | |
| f.write("\n".join(formatted_lines) + "\n\n") | |
| # --- JSON Data Population (New) --- | |
| # Create the list of word dictionaries for the current subtitle | |
| word_data = [] | |
| for word_obj in sub["words"]: | |
| word_data.append({ | |
| "word": word_obj["word"], | |
| "start": convert_time_to_srt_format(word_obj["start"]), | |
| "end": convert_time_to_srt_format(word_obj["end"]) | |
| }) | |
| # Add the complete entry to our main dictionary | |
| timestamps_data[str(idx)] = { | |
| "text": "\n".join(formatted_lines), | |
| "start": start_time_str, | |
| "end": end_time_str, | |
| "words": word_data | |
| } | |
| # Write the collected data to the JSON file | |
| json_output_file = output_file.replace(".srt",".json") | |
| with open(json_output_file, "w", encoding="utf-8") as f_json: | |
| json.dump(timestamps_data, f_json, indent=4, ensure_ascii=False) | |
| print(f"Successfully generated SRT file: {output_file}") | |
| print(f"Successfully generated JSON file: {json_output_file}") | |
| return json_output_file | |
| def write_subtitles_to_file(subtitles, filename="subtitles.srt"): | |
| """Writes a dictionary of subtitles to a standard SRT file.""" | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| for id, entry in subtitles.items(): | |
| if entry['start'] is None or entry['end'] is None: | |
| print(f"Skipping subtitle ID {id} due to missing timestamps.") | |
| continue | |
| start_time = convert_time_to_srt_format(entry['start']) | |
| end_time = convert_time_to_srt_format(entry['end']) | |
| f.write(f"{id}\n") | |
| f.write(f"{start_time} --> {end_time}\n") | |
| f.write(f"{entry['text']}\n\n") | |
| def word_level_srt(words_timestamp, srt_path="word_level_subtitle.srt", shorts=False): | |
| """Generates an SRT file with one word per subtitle entry.""" | |
| punctuation = re.compile(r'[.,!?;:"\–—_~^+*|]') | |
| with open(srt_path, 'w', encoding='utf-8') as srt_file: | |
| for i, word_info in enumerate(words_timestamp, start=1): | |
| start = convert_time_to_srt_format(word_info['start']) | |
| end = convert_time_to_srt_format(word_info['end']) | |
| word = re.sub(punctuation, '', word_info['word']) | |
| if word.strip().lower() == 'i': word = "I" | |
| if not shorts: word = word.replace("-", "") | |
| srt_file.write(f"{i}\n{start} --> {end}\n{word}\n\n") | |
| def generate_srt_from_sentences(sentence_timestamp, srt_path="default_subtitle.srt"): | |
| """Generates a standard SRT file from sentence-level timestamps.""" | |
| with open(srt_path, 'w', encoding='utf-8') as srt_file: | |
| for index, sentence in enumerate(sentence_timestamp, start=1): | |
| start = convert_time_to_srt_format(sentence['start']) | |
| end = convert_time_to_srt_format(sentence['end']) | |
| srt_file.write(f"{index}\n{start} --> {end}\n{sentence['text']}\n\n") | |
| # ============================================================================== | |
| # --- 6. TRANSLATION UTILITIES | |
| # ============================================================================== | |
| def translate_text(text, source_language, destination_language): | |
| """Translates a single block of text using GoogleTranslator.""" | |
| source_code = LANGUAGE_CODE[source_language] | |
| target_code = LANGUAGE_CODE[destination_language] | |
| if destination_language == "Chinese": | |
| target_code = 'zh-CN' | |
| translator = GoogleTranslator(source=source_code, target=target_code) | |
| return str(translator.translate(text.strip())) | |
| def translate_subtitle(subtitles, source_language, destination_language): | |
| """Translates the text content of a pysrt Subtitle object.""" | |
| translated_text_dump = "" | |
| for sub in subtitles: | |
| translated_text = translate_text(sub.text, source_language, destination_language) | |
| sub.text = translated_text | |
| translated_text_dump += translated_text.strip() + " " | |
| return subtitles, translated_text_dump.strip() | |
| # ============================================================================== | |
| # --- 7. MAIN ORCHESTRATOR FUNCTION | |
| # ============================================================================== | |
| def subtitle_maker(media_file, source_lang, target_lang): | |
| """ | |
| The main entry point to generate and optionally translate subtitles. | |
| Args: | |
| media_file (str): Path to the input media file. | |
| source_lang (str): The source language ('Automatic' for detection). | |
| target_lang (str): The target language for translation. | |
| Returns: | |
| A tuple containing paths to all generated files and the transcript text. | |
| """ | |
| try: | |
| ( | |
| default_srt, custom_srt, word_srt, shorts_srt, | |
| txt_path, transcript, sentence_json,word_json,detected_lang | |
| ) = whisper_subtitle(media_file, source_lang) | |
| except Exception as e: | |
| print(f"❌ An error occurred during transcription: {e}") | |
| return (None, None, None, None, None, None,None,None, f"Error: {e}") | |
| translated_srt_path = None | |
| if detected_lang and detected_lang != target_lang: | |
| print(f"TRANSLATING from {detected_lang} to {target_lang}") | |
| original_subs = pysrt.open(default_srt, encoding='utf-8') | |
| translated_subs, _ = translate_subtitle(original_subs, detected_lang, target_lang) | |
| base_name, ext = os.path.splitext(os.path.basename(default_srt)) | |
| translated_filename = f"{base_name}_to_{target_lang}{ext}" | |
| translated_srt_path = os.path.join(SUBTITLE_FOLDER, translated_filename) | |
| translated_subs.save(translated_srt_path, encoding='utf-8') | |
| return ( | |
| default_srt, translated_srt_path, custom_srt, word_srt, | |
| shorts_srt, txt_path,sentence_json,word_json, transcript | |
| ) | |
| # ============================================================================== | |
| # --- 8. INITIALIZATION | |
| # ============================================================================== | |
| os.makedirs(SUBTITLE_FOLDER, exist_ok=True) | |
| os.makedirs(TEMP_FOLDER, exist_ok=True) | |
| # from subtitle import subtitle_maker | |
| # media_file = "video.mp4" | |
| # source_lang = "English" | |
| # target_lang = "English" | |
| # default_srt, translated_srt_path, custom_srt, word_srt, shorts_srt, txt_path,sentence_json,word_json, transcript= subtitle_maker( | |
| # media_file, source_lang, target_lang | |
| # ) | |
| # If source_lang and target_lang are the same, translation will be skipped. | |
| # default_srt -> Original subtitles generated directly by Whisper-Large-V3-Turbo-CT2 | |
| # translated_srt -> Translated subtitles (only generated if source_lang ≠ target_lang, | |
| # e.g., English → Hindi) | |
| # custom_srt -> Modified version of default subtitles with shorter segments | |
| # (better readability for horizontal videos, Maximum 38 characters per segment. ) | |
| # word_srt -> Word-level timestamps (useful for creating YouTube Shorts/Reels) | |
| # shorts_srt -> Optimized subtitles for vertical videos (displays 3–4 words at a time , Maximum 17 characters per segment.) | |
| # txt_path -> Full transcript as plain text (useful for video summarization or for asking questions about the video or audio data with other LLM tools) | |
| # sentence_json,word_json --> To Generate .ass file later | |
| # transcript -> Transcript text directly returned by the function, if you just need the transcript | |
| # All functionality is contained in a single file, making it portable | |
| # and reusable across multiple projects for different purposes. |