Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +161 -221
- externalmod.py +28 -27
app.py
CHANGED
|
@@ -1,221 +1,161 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from all_models import models
|
| 6 |
-
from externalmod import gr_Interface_load
|
| 7 |
-
from prompt_extend import extend_prompt
|
| 8 |
-
from random import randint
|
| 9 |
-
import asyncio
|
| 10 |
-
from threading import RLock
|
| 11 |
-
lock = RLock()
|
| 12 |
-
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 13 |
-
|
| 14 |
-
inference_timeout =
|
| 15 |
-
MAX_SEED = 2**32-1
|
| 16 |
-
current_model = models[0]
|
| 17 |
-
text_gen1 = extend_prompt
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
kwargs =
|
| 42 |
-
|
| 43 |
-
if
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
.
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
:
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
.
|
| 108 |
-
""
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
<body>
|
| 163 |
-
<div class="center"><h1>Blitz Diffusion</h1>
|
| 164 |
-
</div>
|
| 165 |
-
</body>
|
| 166 |
-
</div>
|
| 167 |
-
<p style="margin-bottom: 1px; color: #ffaa66;">
|
| 168 |
-
<h3>{int(len(models))} Stable Diffusion models, but why? For your enjoyment!</h3></p>
|
| 169 |
-
<br><div class="wrapper">9.3 <img src="https://huggingface.co/Yntec/DucHaitenLofi/resolve/main/NEW.webp" alt="NEW!" style="width:32px;height:16px;">This has become a legacy backup copy of old <u><a href="https://huggingface.co/spaces/Yntec/ToyWorld">ToyWorld</a></u>'s UI! Newer models added dailty over there! 25 new models since last update!</div>
|
| 170 |
-
<p style="margin-bottom: 1px; font-size: 98%">
|
| 171 |
-
<br><h4>If a model is already loaded each new image takes less than <b>10</b> seconds to generate!</h4></p>
|
| 172 |
-
<p style="margin-bottom: 1px; color: #ffffff;">
|
| 173 |
-
<br><div class="wrapper">Generate 6 images from 1 prompt at the <u><a href="https://huggingface.co/spaces/Yntec/PrintingPress">PrintingPress</a></u>, and use 6 different models at <u><a href="https://huggingface.co/spaces/Yntec/diffusion80xx">Huggingface Diffusion!</a></u>!
|
| 174 |
-
</p></p>
|
| 175 |
-
</div>
|
| 176 |
-
""", elem_classes="gr-box")
|
| 177 |
-
with gr.Row():
|
| 178 |
-
with gr.Column(scale=100):
|
| 179 |
-
#Model selection dropdown
|
| 180 |
-
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index",
|
| 181 |
-
value=current_model, interactive=True, elem_classes=["gr-box", "gr-input"])
|
| 182 |
-
with gr.Row():
|
| 183 |
-
with gr.Column(scale=100):
|
| 184 |
-
with gr.Group():
|
| 185 |
-
magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes=["gr-box", "gr-input"]) #Positive
|
| 186 |
-
with gr.Accordion("Advanced", open=False, visible=True):
|
| 187 |
-
neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes=["gr-box", "gr-input"])
|
| 188 |
-
with gr.Row():
|
| 189 |
-
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
| 190 |
-
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
| 191 |
-
with gr.Row():
|
| 192 |
-
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes=["gr-box", "gr-input"])
|
| 193 |
-
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0, elem_classes=["gr-box", "gr-input"])
|
| 194 |
-
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
|
| 195 |
-
run = gr.Button("Generate Image", elem_classes="gr-button")
|
| 196 |
-
|
| 197 |
-
with gr.Row():
|
| 198 |
-
with gr.Column():
|
| 199 |
-
output1 = gr.Image(label=(f"{current_model}"), show_download_button=True,
|
| 200 |
-
interactive=False, show_share_button=False, format=".png", elem_classes="gr-box")
|
| 201 |
-
|
| 202 |
-
with gr.Row():
|
| 203 |
-
with gr.Column(scale=50):
|
| 204 |
-
input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes=["gr-box", "gr-input"])
|
| 205 |
-
see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", elem_classes="gr-button")
|
| 206 |
-
use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above", elem_classes="gr-button")
|
| 207 |
-
def short_prompt(inputs):
|
| 208 |
-
return (inputs)
|
| 209 |
-
|
| 210 |
-
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
|
| 211 |
-
gr.on(
|
| 212 |
-
triggers=[run.click, magic1.submit],
|
| 213 |
-
fn=send_it1,
|
| 214 |
-
inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
|
| 215 |
-
outputs=[output1],
|
| 216 |
-
)
|
| 217 |
-
use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
|
| 218 |
-
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
|
| 219 |
-
|
| 220 |
-
myface.queue(default_concurrency_limit=200, max_size=200)
|
| 221 |
-
myface.launch(show_api=False, max_threads=400)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from all_models import models
|
| 6 |
+
from externalmod import gr_Interface_load
|
| 7 |
+
from prompt_extend import extend_prompt
|
| 8 |
+
from random import randint
|
| 9 |
+
import asyncio
|
| 10 |
+
from threading import RLock
|
| 11 |
+
lock = RLock()
|
| 12 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 13 |
+
|
| 14 |
+
inference_timeout = 300
|
| 15 |
+
MAX_SEED = 2**32-1
|
| 16 |
+
current_model = models[0]
|
| 17 |
+
text_gen1 = extend_prompt
|
| 18 |
+
|
| 19 |
+
models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]
|
| 20 |
+
|
| 21 |
+
def text_it1(inputs, text_gen1=text_gen1):
|
| 22 |
+
go_t1 = text_gen1(inputs)
|
| 23 |
+
return(go_t1)
|
| 24 |
+
|
| 25 |
+
def set_model(current_model):
|
| 26 |
+
current_model = models[current_model]
|
| 27 |
+
return gr.update(label=(f"{current_model}"))
|
| 28 |
+
|
| 29 |
+
def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed):
|
| 30 |
+
output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
|
| 31 |
+
return (output1)
|
| 32 |
+
|
| 33 |
+
# https://huggingface.co/docs/api-inference/detailed_parameters
|
| 34 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
| 35 |
+
async def infer(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
|
| 36 |
+
from pathlib import Path
|
| 37 |
+
kwargs = {}
|
| 38 |
+
if height is not None and height >= 256: kwargs["height"] = height
|
| 39 |
+
if width is not None and width >= 256: kwargs["width"] = width
|
| 40 |
+
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
| 41 |
+
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
| 42 |
+
noise = ""
|
| 43 |
+
if seed >= 0: kwargs["seed"] = seed
|
| 44 |
+
else:
|
| 45 |
+
rand = randint(1, 500)
|
| 46 |
+
for i in range(rand):
|
| 47 |
+
noise += " "
|
| 48 |
+
task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
|
| 49 |
+
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
| 50 |
+
await asyncio.sleep(0)
|
| 51 |
+
try:
|
| 52 |
+
result = await asyncio.wait_for(task, timeout=timeout)
|
| 53 |
+
except asyncio.TimeoutError as e:
|
| 54 |
+
print(e)
|
| 55 |
+
print(f"Task timed out: {models2[model_index]}")
|
| 56 |
+
if not task.done(): task.cancel()
|
| 57 |
+
result = None
|
| 58 |
+
raise Exception(f"Task timed out: {models2[model_index]}")
|
| 59 |
+
except Exception as e:
|
| 60 |
+
print(e)
|
| 61 |
+
if not task.done(): task.cancel()
|
| 62 |
+
result = None
|
| 63 |
+
raise Exception(e)
|
| 64 |
+
if task.done() and result is not None and not isinstance(result, tuple):
|
| 65 |
+
with lock:
|
| 66 |
+
png_path = "image.png"
|
| 67 |
+
result.save(png_path)
|
| 68 |
+
image = str(Path(png_path).resolve())
|
| 69 |
+
return image
|
| 70 |
+
return None
|
| 71 |
+
|
| 72 |
+
def gen_fn(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
|
| 73 |
+
try:
|
| 74 |
+
loop = asyncio.new_event_loop()
|
| 75 |
+
result = loop.run_until_complete(infer(model_index, prompt, nprompt,
|
| 76 |
+
height, width, steps, cfg, seed, inference_timeout))
|
| 77 |
+
except (Exception, asyncio.CancelledError) as e:
|
| 78 |
+
print(e)
|
| 79 |
+
print(f"Task aborted: {models2[model_index]}")
|
| 80 |
+
result = None
|
| 81 |
+
raise gr.Error(f"Task aborted: {models2[model_index]}, Error: {e}")
|
| 82 |
+
finally:
|
| 83 |
+
loop.close()
|
| 84 |
+
return result
|
| 85 |
+
|
| 86 |
+
css="""
|
| 87 |
+
.gradio-container {background-image: linear-gradient(#254150, #1e2f40, #182634) !important;
|
| 88 |
+
color: #ffaa66 !important; font-family: 'IBM Plex Sans', sans-serif !important;}
|
| 89 |
+
h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px;
|
| 90 |
+
text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;}
|
| 91 |
+
h3 {color: #ffc99f; !important;}
|
| 92 |
+
h4 {display: inline-block; color: #ffffff !important;}
|
| 93 |
+
.wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important;
|
| 94 |
+
display: inline-block !important; color: #ffffff !important;}
|
| 95 |
+
.wrapper {color: #ffffff !important;}
|
| 96 |
+
.gr-box {background-image: linear-gradient(#182634, #1e2f40, #254150) !important;
|
| 97 |
+
border-top-color: #000000 !important; border-right-color: #ffffff !important;
|
| 98 |
+
border-bottom-color: #ffffff !important; border-left-color: #000000 !important;}
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
with gr.Blocks(theme='John6666/YntecDark', fill_width=True, css=css) as myface:
|
| 102 |
+
gr.HTML(f"""
|
| 103 |
+
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
| 104 |
+
<div class="center"><h1>Blitz Diffusion</h1></div>
|
| 105 |
+
<p style="margin-bottom: 1px; color: #ffaa66;">
|
| 106 |
+
<h3>{int(len(models))} Stable Diffusion models, but why? For your enjoyment!</h3></p>
|
| 107 |
+
<br><div class="wrapper">9.3 <img src="https://huggingface.co/Yntec/DucHaitenLofi/resolve/main/NEW.webp" alt="NEW!" style="width:32px;height:16px;">This has become a legacy backup copy of old <u><a href="https://huggingface.co/spaces/Yntec/ToyWorld">ToyWorld</a></u>'s UI! Newer models added dailty over there! 25 new models since last update!</div>
|
| 108 |
+
<p style="margin-bottom: 1px; font-size: 98%">
|
| 109 |
+
<br><h4>If a model is already loaded each new image takes less than <b>10</b> seconds to generate!</h4></p>
|
| 110 |
+
<p style="margin-bottom: 1px; color: #ffffff;">
|
| 111 |
+
<br><div class="wrapper">Generate 6 images from 1 prompt at the <u><a href="https://huggingface.co/spaces/Yntec/PrintingPress">PrintingPress</a></u>, and use 6 different models at <u><a href="https://huggingface.co/spaces/Yntec/diffusion80xx">Huggingface Diffusion!</a></u>!
|
| 112 |
+
</p></p></div>
|
| 113 |
+
""", elem_classes="gr-box")
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column(scale=100):
|
| 116 |
+
# Model selection dropdown
|
| 117 |
+
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index",
|
| 118 |
+
value=current_model, interactive=True, elem_classes=["gr-box", "gr-input"])
|
| 119 |
+
with gr.Row():
|
| 120 |
+
with gr.Column(scale=100):
|
| 121 |
+
with gr.Group():
|
| 122 |
+
magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes=["gr-box", "gr-input"]) #Positive
|
| 123 |
+
with gr.Accordion("Advanced", open=False, visible=True):
|
| 124 |
+
neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes=["gr-box", "gr-input"])
|
| 125 |
+
with gr.Row():
|
| 126 |
+
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
| 127 |
+
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
| 128 |
+
with gr.Row():
|
| 129 |
+
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes=["gr-box", "gr-input"])
|
| 130 |
+
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0, elem_classes=["gr-box", "gr-input"])
|
| 131 |
+
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
|
| 132 |
+
run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button")
|
| 133 |
+
|
| 134 |
+
with gr.Row():
|
| 135 |
+
with gr.Column():
|
| 136 |
+
output1 = gr.Image(label=(f"{current_model}"), show_download_button=True,
|
| 137 |
+
interactive=False, show_share_button=False, format=".png", elem_classes="gr-box")
|
| 138 |
+
|
| 139 |
+
with gr.Row():
|
| 140 |
+
with gr.Column(scale=50):
|
| 141 |
+
input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes=["gr-box", "gr-input"])
|
| 142 |
+
see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
|
| 143 |
+
use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
|
| 144 |
+
def short_prompt(inputs):
|
| 145 |
+
return (inputs)
|
| 146 |
+
|
| 147 |
+
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
|
| 148 |
+
gr.on(
|
| 149 |
+
triggers=[run.click, magic1.submit],
|
| 150 |
+
fn=send_it1,
|
| 151 |
+
inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
|
| 152 |
+
outputs=[output1],
|
| 153 |
+
concurrency_limit=None,
|
| 154 |
+
queue=False,
|
| 155 |
+
)
|
| 156 |
+
use_short.click(short_prompt, inputs=[input_text], outputs=magic1, queue=False)
|
| 157 |
+
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1, queue=False)
|
| 158 |
+
|
| 159 |
+
myface.queue(default_concurrency_limit=200, max_size=200)
|
| 160 |
+
myface.launch(show_api=False, max_threads=400)
|
| 161 |
+
# https://github.com/gradio-app/gradio/issues/6339
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
externalmod.py
CHANGED
|
@@ -9,7 +9,7 @@ import re
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
-
from typing import TYPE_CHECKING, Callable
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
@@ -33,6 +33,7 @@ if TYPE_CHECKING:
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
|
|
|
| 36 |
server_timeout = 600
|
| 37 |
|
| 38 |
|
|
@@ -40,7 +41,7 @@ server_timeout = 600
|
|
| 40 |
def load(
|
| 41 |
name: str,
|
| 42 |
src: str | None = None,
|
| 43 |
-
hf_token: str | None = None,
|
| 44 |
alias: str | None = None,
|
| 45 |
**kwargs,
|
| 46 |
) -> Blocks:
|
|
@@ -51,7 +52,7 @@ def load(
|
|
| 51 |
Parameters:
|
| 52 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 53 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 54 |
-
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide
|
| 55 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 56 |
Returns:
|
| 57 |
a Gradio Blocks object for the given model
|
|
@@ -68,7 +69,7 @@ def load(
|
|
| 68 |
def load_blocks_from_repo(
|
| 69 |
name: str,
|
| 70 |
src: str | None = None,
|
| 71 |
-
hf_token: str | None = None,
|
| 72 |
alias: str | None = None,
|
| 73 |
**kwargs,
|
| 74 |
) -> Blocks:
|
|
@@ -92,7 +93,7 @@ def load_blocks_from_repo(
|
|
| 92 |
if src.lower() not in factory_methods:
|
| 93 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 94 |
|
| 95 |
-
if hf_token is not None:
|
| 96 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 97 |
warnings.warn(
|
| 98 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
@@ -103,12 +104,16 @@ def load_blocks_from_repo(
|
|
| 103 |
return blocks
|
| 104 |
|
| 105 |
|
| 106 |
-
def from_model(
|
|
|
|
|
|
|
| 107 |
model_url = f"https://huggingface.co/{model_name}"
|
| 108 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 109 |
print(f"Fetching model from: {model_url}")
|
| 110 |
|
| 111 |
-
headers =
|
|
|
|
|
|
|
| 112 |
response = httpx.request("GET", api_url, headers=headers)
|
| 113 |
if response.status_code != 200:
|
| 114 |
raise ModelNotFoundError(
|
|
@@ -371,7 +376,11 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 371 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
| 372 |
if preprocess is not None:
|
| 373 |
data = preprocess(*data)
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
if postprocess is not None:
|
| 376 |
data = postprocess(data) # type: ignore
|
| 377 |
return data
|
|
@@ -383,7 +392,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 383 |
"inputs": inputs,
|
| 384 |
"outputs": outputs,
|
| 385 |
"title": model_name,
|
| 386 |
-
|
| 387 |
}
|
| 388 |
|
| 389 |
kwargs = dict(interface_info, **kwargs)
|
|
@@ -394,19 +403,12 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 394 |
def from_spaces(
|
| 395 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 396 |
) -> Blocks:
|
| 397 |
-
client = Client(
|
| 398 |
-
space_name,
|
| 399 |
-
hf_token=hf_token,
|
| 400 |
-
download_files=False,
|
| 401 |
-
_skip_components=False,
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 405 |
|
| 406 |
print(f"Fetching Space from: {space_url}")
|
| 407 |
|
| 408 |
headers = {}
|
| 409 |
-
if hf_token
|
| 410 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 411 |
|
| 412 |
iframe_url = (
|
|
@@ -443,8 +445,7 @@ def from_spaces(
|
|
| 443 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 444 |
"https://gradio.app/using_blocks_like_functions/"
|
| 445 |
)
|
| 446 |
-
|
| 447 |
-
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
| 448 |
|
| 449 |
|
| 450 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
@@ -489,7 +490,7 @@ def from_spaces_interface(
|
|
| 489 |
config = external_utils.streamline_spaces_interface(config)
|
| 490 |
api_url = f"{iframe_url}/api/predict/"
|
| 491 |
headers = {"Content-Type": "application/json"}
|
| 492 |
-
if hf_token
|
| 493 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 494 |
|
| 495 |
# The function should call the API with preprocessed data
|
|
@@ -529,7 +530,7 @@ def gr_Interface_load(
|
|
| 529 |
src: str | None = None,
|
| 530 |
hf_token: str | None = None,
|
| 531 |
alias: str | None = None,
|
| 532 |
-
**kwargs,
|
| 533 |
) -> Blocks:
|
| 534 |
try:
|
| 535 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
|
@@ -543,8 +544,8 @@ def list_uniq(l):
|
|
| 543 |
|
| 544 |
|
| 545 |
def get_status(model_name: str):
|
| 546 |
-
from huggingface_hub import
|
| 547 |
-
client =
|
| 548 |
return client.get_model_status(model_name)
|
| 549 |
|
| 550 |
|
|
@@ -563,22 +564,22 @@ def is_loadable(model_name: str, force_gpu: bool = False):
|
|
| 563 |
|
| 564 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 565 |
from huggingface_hub import HfApi
|
| 566 |
-
api = HfApi()
|
| 567 |
default_tags = ["diffusers"]
|
| 568 |
if not sort: sort = "last_modified"
|
| 569 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
| 570 |
models = []
|
| 571 |
try:
|
| 572 |
-
model_infos = api.list_models(author=author, task="text-to-image",
|
| 573 |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
| 574 |
except Exception as e:
|
| 575 |
print(f"Error: Failed to list models.")
|
| 576 |
print(e)
|
| 577 |
return models
|
| 578 |
for model in model_infos:
|
| 579 |
-
if not model.private and not model.gated:
|
| 580 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 581 |
if not_tag and not_tag in model.tags or not loadable: continue
|
| 582 |
models.append(model.id)
|
| 583 |
if len(models) == limit: break
|
| 584 |
-
return models
|
|
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
+
from typing import TYPE_CHECKING, Callable, Literal
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
| 36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 37 |
server_timeout = 600
|
| 38 |
|
| 39 |
|
|
|
|
| 41 |
def load(
|
| 42 |
name: str,
|
| 43 |
src: str | None = None,
|
| 44 |
+
hf_token: str | Literal[False] | None = None,
|
| 45 |
alias: str | None = None,
|
| 46 |
**kwargs,
|
| 47 |
) -> Blocks:
|
|
|
|
| 52 |
Parameters:
|
| 53 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 54 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 55 |
+
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
|
| 56 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 57 |
Returns:
|
| 58 |
a Gradio Blocks object for the given model
|
|
|
|
| 69 |
def load_blocks_from_repo(
|
| 70 |
name: str,
|
| 71 |
src: str | None = None,
|
| 72 |
+
hf_token: str | Literal[False] | None = None,
|
| 73 |
alias: str | None = None,
|
| 74 |
**kwargs,
|
| 75 |
) -> Blocks:
|
|
|
|
| 93 |
if src.lower() not in factory_methods:
|
| 94 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 95 |
|
| 96 |
+
if hf_token is not None and hf_token is not False:
|
| 97 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 98 |
warnings.warn(
|
| 99 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
|
|
| 104 |
return blocks
|
| 105 |
|
| 106 |
|
| 107 |
+
def from_model(
|
| 108 |
+
model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
|
| 109 |
+
):
|
| 110 |
model_url = f"https://huggingface.co/{model_name}"
|
| 111 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 112 |
print(f"Fetching model from: {model_url}")
|
| 113 |
|
| 114 |
+
headers = (
|
| 115 |
+
{} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
|
| 116 |
+
)
|
| 117 |
response = httpx.request("GET", api_url, headers=headers)
|
| 118 |
if response.status_code != 200:
|
| 119 |
raise ModelNotFoundError(
|
|
|
|
| 376 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
| 377 |
if preprocess is not None:
|
| 378 |
data = preprocess(*data)
|
| 379 |
+
try:
|
| 380 |
+
data = fn(*data, **kwargs) # type: ignore
|
| 381 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
| 382 |
+
if "429" in str(e):
|
| 383 |
+
raise TooManyRequestsError() from e
|
| 384 |
if postprocess is not None:
|
| 385 |
data = postprocess(data) # type: ignore
|
| 386 |
return data
|
|
|
|
| 392 |
"inputs": inputs,
|
| 393 |
"outputs": outputs,
|
| 394 |
"title": model_name,
|
| 395 |
+
#"examples": examples,
|
| 396 |
}
|
| 397 |
|
| 398 |
kwargs = dict(interface_info, **kwargs)
|
|
|
|
| 403 |
def from_spaces(
|
| 404 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 405 |
) -> Blocks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 407 |
|
| 408 |
print(f"Fetching Space from: {space_url}")
|
| 409 |
|
| 410 |
headers = {}
|
| 411 |
+
if hf_token not in [False, None]:
|
| 412 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 413 |
|
| 414 |
iframe_url = (
|
|
|
|
| 445 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 446 |
"https://gradio.app/using_blocks_like_functions/"
|
| 447 |
)
|
| 448 |
+
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
|
|
|
| 449 |
|
| 450 |
|
| 451 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
|
|
| 490 |
config = external_utils.streamline_spaces_interface(config)
|
| 491 |
api_url = f"{iframe_url}/api/predict/"
|
| 492 |
headers = {"Content-Type": "application/json"}
|
| 493 |
+
if hf_token not in [False, None]:
|
| 494 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 495 |
|
| 496 |
# The function should call the API with preprocessed data
|
|
|
|
| 530 |
src: str | None = None,
|
| 531 |
hf_token: str | None = None,
|
| 532 |
alias: str | None = None,
|
| 533 |
+
**kwargs, # ignore
|
| 534 |
) -> Blocks:
|
| 535 |
try:
|
| 536 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
|
|
|
| 544 |
|
| 545 |
|
| 546 |
def get_status(model_name: str):
|
| 547 |
+
from huggingface_hub import AsyncInferenceClient
|
| 548 |
+
client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
|
| 549 |
return client.get_model_status(model_name)
|
| 550 |
|
| 551 |
|
|
|
|
| 564 |
|
| 565 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 566 |
from huggingface_hub import HfApi
|
| 567 |
+
api = HfApi(token=HF_TOKEN)
|
| 568 |
default_tags = ["diffusers"]
|
| 569 |
if not sort: sort = "last_modified"
|
| 570 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
| 571 |
models = []
|
| 572 |
try:
|
| 573 |
+
model_infos = api.list_models(author=author, #task="text-to-image",
|
| 574 |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
| 575 |
except Exception as e:
|
| 576 |
print(f"Error: Failed to list models.")
|
| 577 |
print(e)
|
| 578 |
return models
|
| 579 |
for model in model_infos:
|
| 580 |
+
if not model.private and not model.gated or HF_TOKEN is not None:
|
| 581 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 582 |
if not_tag and not_tag in model.tags or not loadable: continue
|
| 583 |
models.append(model.id)
|
| 584 |
if len(models) == limit: break
|
| 585 |
+
return models
|