Spaces:
Running
on
Zero
Running
on
Zero
🐣 born
Browse files- .gitignore +167 -0
- app.py +180 -0
- configs/reduction_16.json +33 -0
- configs/reduction_32.json +56 -0
- configs/reduction_8.json +129 -0
- models/__init__.py +49 -0
- models/clip/__init__.py +7 -0
- models/clip/_clip/__init__.py +273 -0
- models/clip/_clip/blocks.py +137 -0
- models/clip/_clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- models/clip/_clip/image_encoder.py +225 -0
- models/clip/_clip/model.py +214 -0
- models/clip/_clip/prepare.py +95 -0
- models/clip/_clip/simple_tokenizer.py +132 -0
- models/clip/_clip/text_encoder.py +53 -0
- models/clip/_clip/utils.py +249 -0
- models/clip/model.py +331 -0
- models/clip/utils.py +40 -0
- models/encoder/__init__.py +10 -0
- models/encoder/timm_models.py +54 -0
- models/encoder/vgg.py +69 -0
- models/encoder/vit.py +526 -0
- models/encoder_decoder/__init__.py +17 -0
- models/encoder_decoder/cannet.py +85 -0
- models/encoder_decoder/csrnet.py +54 -0
- models/encoder_decoder/resnet.py +95 -0
- models/encoder_decoder/vgg.py +85 -0
- models/model.py +112 -0
- models/utils.py +444 -0
.gitignore
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MacOS
|
| 2 |
+
**/.DS_Store
|
| 3 |
+
|
| 4 |
+
**/*.pth
|
| 5 |
+
models/clip/_clip/configs/*
|
| 6 |
+
models/clip/_clip/weights/*
|
| 7 |
+
|
| 8 |
+
# Byte-compiled / optimized / DLL files
|
| 9 |
+
__pycache__/
|
| 10 |
+
*.py[cod]
|
| 11 |
+
*$py.class
|
| 12 |
+
|
| 13 |
+
# C extensions
|
| 14 |
+
*.so
|
| 15 |
+
|
| 16 |
+
# Distribution / packaging
|
| 17 |
+
.Python
|
| 18 |
+
build/
|
| 19 |
+
develop-eggs/
|
| 20 |
+
dist/
|
| 21 |
+
downloads/
|
| 22 |
+
eggs/
|
| 23 |
+
.eggs/
|
| 24 |
+
lib/
|
| 25 |
+
lib64/
|
| 26 |
+
parts/
|
| 27 |
+
sdist/
|
| 28 |
+
var/
|
| 29 |
+
wheels/
|
| 30 |
+
share/python-wheels/
|
| 31 |
+
*.egg-info/
|
| 32 |
+
.installed.cfg
|
| 33 |
+
*.egg
|
| 34 |
+
MANIFEST
|
| 35 |
+
|
| 36 |
+
# PyInstaller
|
| 37 |
+
# Usually these files are written by a python script from a template
|
| 38 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 39 |
+
*.manifest
|
| 40 |
+
*.spec
|
| 41 |
+
|
| 42 |
+
# Installer logs
|
| 43 |
+
pip-log.txt
|
| 44 |
+
pip-delete-this-directory.txt
|
| 45 |
+
|
| 46 |
+
# Unit test / coverage reports
|
| 47 |
+
htmlcov/
|
| 48 |
+
.tox/
|
| 49 |
+
.nox/
|
| 50 |
+
.coverage
|
| 51 |
+
.coverage.*
|
| 52 |
+
.cache
|
| 53 |
+
nosetests.xml
|
| 54 |
+
coverage.xml
|
| 55 |
+
*.cover
|
| 56 |
+
*.py,cover
|
| 57 |
+
.hypothesis/
|
| 58 |
+
.pytest_cache/
|
| 59 |
+
cover/
|
| 60 |
+
|
| 61 |
+
# Translations
|
| 62 |
+
*.mo
|
| 63 |
+
*.pot
|
| 64 |
+
|
| 65 |
+
# Django stuff:
|
| 66 |
+
*.log
|
| 67 |
+
local_settings.py
|
| 68 |
+
db.sqlite3
|
| 69 |
+
db.sqlite3-journal
|
| 70 |
+
|
| 71 |
+
# Flask stuff:
|
| 72 |
+
instance/
|
| 73 |
+
.webassets-cache
|
| 74 |
+
|
| 75 |
+
# Scrapy stuff:
|
| 76 |
+
.scrapy
|
| 77 |
+
|
| 78 |
+
# Sphinx documentation
|
| 79 |
+
docs/_build/
|
| 80 |
+
|
| 81 |
+
# PyBuilder
|
| 82 |
+
.pybuilder/
|
| 83 |
+
target/
|
| 84 |
+
|
| 85 |
+
# Jupyter Notebook
|
| 86 |
+
.ipynb_checkpoints
|
| 87 |
+
|
| 88 |
+
# IPython
|
| 89 |
+
profile_default/
|
| 90 |
+
ipython_config.py
|
| 91 |
+
|
| 92 |
+
# pyenv
|
| 93 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 94 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 95 |
+
# .python-version
|
| 96 |
+
|
| 97 |
+
# pipenv
|
| 98 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 99 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 100 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 101 |
+
# install all needed dependencies.
|
| 102 |
+
#Pipfile.lock
|
| 103 |
+
|
| 104 |
+
# poetry
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 106 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 107 |
+
# commonly ignored for libraries.
|
| 108 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 109 |
+
#poetry.lock
|
| 110 |
+
|
| 111 |
+
# pdm
|
| 112 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 113 |
+
#pdm.lock
|
| 114 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 115 |
+
# in version control.
|
| 116 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 117 |
+
.pdm.toml
|
| 118 |
+
|
| 119 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 120 |
+
__pypackages__/
|
| 121 |
+
|
| 122 |
+
# Celery stuff
|
| 123 |
+
celerybeat-schedule
|
| 124 |
+
celerybeat.pid
|
| 125 |
+
|
| 126 |
+
# SageMath parsed files
|
| 127 |
+
*.sage.py
|
| 128 |
+
|
| 129 |
+
# Environments
|
| 130 |
+
.env
|
| 131 |
+
.venv
|
| 132 |
+
env/
|
| 133 |
+
venv/
|
| 134 |
+
ENV/
|
| 135 |
+
env.bak/
|
| 136 |
+
venv.bak/
|
| 137 |
+
|
| 138 |
+
# Spyder project settings
|
| 139 |
+
.spyderproject
|
| 140 |
+
.spyproject
|
| 141 |
+
|
| 142 |
+
# Rope project settings
|
| 143 |
+
.ropeproject
|
| 144 |
+
|
| 145 |
+
# mkdocs documentation
|
| 146 |
+
/site
|
| 147 |
+
|
| 148 |
+
# mypy
|
| 149 |
+
.mypy_cache/
|
| 150 |
+
.dmypy.json
|
| 151 |
+
dmypy.json
|
| 152 |
+
|
| 153 |
+
# Pyre type checker
|
| 154 |
+
.pyre/
|
| 155 |
+
|
| 156 |
+
# pytype static type analyzer
|
| 157 |
+
.pytype/
|
| 158 |
+
|
| 159 |
+
# Cython debug symbols
|
| 160 |
+
cython_debug/
|
| 161 |
+
|
| 162 |
+
# PyCharm
|
| 163 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 164 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 165 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 166 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 167 |
+
#.idea/
|
app.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torch import Tensor
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import json, os, random
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torchvision.transforms.functional as TF
|
| 9 |
+
from safetensors.torch import load_file # Import the load_file function from safetensors
|
| 10 |
+
from matplotlib import cm
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
|
| 13 |
+
from typing import Tuple
|
| 14 |
+
|
| 15 |
+
from models import get_model
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def resize_density_map(x: Tensor, size: Tuple[int, int]) -> Tensor:
|
| 19 |
+
x_sum = torch.sum(x, dim=(-1, -2))
|
| 20 |
+
x = F.interpolate(x, size=size, mode="bilinear")
|
| 21 |
+
scale_factor = torch.nan_to_num(torch.sum(x, dim=(-1, -2)) / x_sum, nan=0.0, posinf=0.0, neginf=0.0)
|
| 22 |
+
return x * scale_factor
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def init_seeds(seed: int) -> None:
|
| 26 |
+
random.seed(seed)
|
| 27 |
+
np.random.seed(seed)
|
| 28 |
+
torch.manual_seed(seed)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
mean = (0.485, 0.456, 0.406)
|
| 32 |
+
std = (0.229, 0.224, 0.225)
|
| 33 |
+
alpha = 0.8
|
| 34 |
+
init_seeds(42)
|
| 35 |
+
|
| 36 |
+
# -----------------------------
|
| 37 |
+
# Define the model architecture
|
| 38 |
+
# -----------------------------
|
| 39 |
+
truncation = 4
|
| 40 |
+
reduction = 8
|
| 41 |
+
granularity = "fine"
|
| 42 |
+
anchor_points = "average"
|
| 43 |
+
|
| 44 |
+
model_name = "clip_vit_l_14"
|
| 45 |
+
input_size = 224
|
| 46 |
+
|
| 47 |
+
# Comment the lines below to test non-CLIP models.
|
| 48 |
+
prompt_type = "word"
|
| 49 |
+
num_vpt = 32
|
| 50 |
+
vpt_drop = 0.
|
| 51 |
+
deep_vpt = True
|
| 52 |
+
|
| 53 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
if truncation is None: # regression, no truncation.
|
| 57 |
+
bins, anchor_points = None, None
|
| 58 |
+
else:
|
| 59 |
+
with open(os.path.join("configs", f"reduction_{reduction}.json"), "r") as f:
|
| 60 |
+
config = json.load(f)[str(truncation)]["nwpu"]
|
| 61 |
+
bins = config["bins"][granularity]
|
| 62 |
+
anchor_points = config["anchor_points"][granularity]["average"] if anchor_points == "average" else config["anchor_points"][granularity]["middle"]
|
| 63 |
+
bins = [(float(b[0]), float(b[1])) for b in bins]
|
| 64 |
+
anchor_points = [float(p) for p in anchor_points]
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
model = get_model(
|
| 68 |
+
backbone=model_name,
|
| 69 |
+
input_size=input_size,
|
| 70 |
+
reduction=reduction,
|
| 71 |
+
bins=bins,
|
| 72 |
+
anchor_points=anchor_points,
|
| 73 |
+
# CLIP parameters
|
| 74 |
+
prompt_type=prompt_type,
|
| 75 |
+
num_vpt=num_vpt,
|
| 76 |
+
vpt_drop=vpt_drop,
|
| 77 |
+
deep_vpt=deep_vpt
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
repo_id = "Yiming-M/CLIP-EBC"
|
| 81 |
+
filename = "nwpu_weights/CLIP_EBC_ViT_L_14/model.safetensors"
|
| 82 |
+
weights_path = hf_hub_download(repo_id, filename)
|
| 83 |
+
# weights_path = os.path.join("CLIP_EBC_ViT_L_14", "model.safetensors")
|
| 84 |
+
state_dict = load_file(weights_path)
|
| 85 |
+
new_state_dict = {}
|
| 86 |
+
for k, v in state_dict.items():
|
| 87 |
+
new_state_dict[k.replace("model.", "")] = v
|
| 88 |
+
model.load_state_dict(new_state_dict)
|
| 89 |
+
model.to(device)
|
| 90 |
+
model.eval()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# -----------------------------
|
| 94 |
+
# Preprocessing function
|
| 95 |
+
# -----------------------------
|
| 96 |
+
# Adjust the image transforms to match what your model expects.
|
| 97 |
+
def transform(image: Image.Image):
|
| 98 |
+
assert isinstance(image, Image.Image), "Input must be a PIL Image"
|
| 99 |
+
image_tensor = TF.to_tensor(image)
|
| 100 |
+
|
| 101 |
+
image_height, image_width = image_tensor.shape[-2:]
|
| 102 |
+
if image_height < input_size or image_width < input_size:
|
| 103 |
+
# Find the ratio to resize the image while maintaining the aspect ratio
|
| 104 |
+
ratio = max(input_size / image_height, input_size / image_width)
|
| 105 |
+
new_height = int(image_height * ratio) + 1
|
| 106 |
+
new_width = int(image_width * ratio) + 1
|
| 107 |
+
image_tensor = TF.resize(image_tensor, (new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)
|
| 108 |
+
|
| 109 |
+
image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
|
| 110 |
+
return image_tensor.unsqueeze(0) # Add batch dimension
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# -----------------------------
|
| 115 |
+
# Inference function
|
| 116 |
+
# -----------------------------
|
| 117 |
+
def predict(image: Image.Image):
|
| 118 |
+
"""
|
| 119 |
+
Given an input image, preprocess it, run the model to obtain a density map,
|
| 120 |
+
compute the total crowd count, and prepare the density map for display.
|
| 121 |
+
"""
|
| 122 |
+
# Preprocess the image
|
| 123 |
+
input_width, input_height = image.size
|
| 124 |
+
input_tensor = transform(image).to(device) # shape: (1, 3, H, W)
|
| 125 |
+
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
density_map = model(input_tensor) # expected shape: (1, 1, H, W)
|
| 128 |
+
total_count = density_map.sum().item()
|
| 129 |
+
resized_density_map = resize_density_map(density_map, (input_height, input_width)).cpu().squeeze().numpy()
|
| 130 |
+
|
| 131 |
+
# Normalize the density map for display purposes
|
| 132 |
+
eps = 1e-8
|
| 133 |
+
density_map_norm = (resized_density_map - resized_density_map.min()) / (resized_density_map.max() - resized_density_map.min() + eps)
|
| 134 |
+
|
| 135 |
+
# Apply a colormap (e.g., 'jet') to get an RGBA image
|
| 136 |
+
colormap = cm.get_cmap("jet")
|
| 137 |
+
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
|
| 138 |
+
density_map_color = (colormap(density_map_norm) * 255).astype(np.uint8)
|
| 139 |
+
density_map_color_img = Image.fromarray(density_map_color).convert("RGBA")
|
| 140 |
+
|
| 141 |
+
# Ensure the original image is in RGBA format.
|
| 142 |
+
image_rgba = image.convert("RGBA")
|
| 143 |
+
overlayed_image = Image.blend(image_rgba, density_map_color_img, alpha=alpha)
|
| 144 |
+
|
| 145 |
+
return image, overlayed_image, f"Predicted Count: {total_count:.2f}"
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# -----------------------------
|
| 149 |
+
# Build Gradio Interface using Blocks for a two-column layout
|
| 150 |
+
# -----------------------------
|
| 151 |
+
with gr.Blocks() as demo:
|
| 152 |
+
gr.Markdown("# Crowd Counting Demo")
|
| 153 |
+
gr.Markdown("Upload an image or select an example below to see the predicted crowd density map and total count.")
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column():
|
| 157 |
+
input_img = gr.Image(
|
| 158 |
+
label="Input Image",
|
| 159 |
+
sources=["upload", "clipboard"],
|
| 160 |
+
type="pil",
|
| 161 |
+
)
|
| 162 |
+
submit_btn = gr.Button("Predict")
|
| 163 |
+
with gr.Column():
|
| 164 |
+
output_img = gr.Image(label="Predicted Density Map", type="pil")
|
| 165 |
+
output_text = gr.Textbox(label="Total Count")
|
| 166 |
+
|
| 167 |
+
submit_btn.click(fn=predict, inputs=input_img, outputs=[input_img, output_img, output_text])
|
| 168 |
+
|
| 169 |
+
# Optional: add example images. Ensure these files are in your repo.
|
| 170 |
+
gr.Examples(
|
| 171 |
+
examples=[
|
| 172 |
+
["example1.jpg"],
|
| 173 |
+
["example2.jpg"]
|
| 174 |
+
],
|
| 175 |
+
inputs=input_img,
|
| 176 |
+
label="Try an example"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# Launch the app
|
| 180 |
+
demo.launch()
|
configs/reduction_16.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"8":{
|
| 3 |
+
"qnrf": {
|
| 4 |
+
"bins": {
|
| 5 |
+
"fine":[
|
| 6 |
+
[0, 0], [1, 1], [2, 2], [3, 3], [4, 4],
|
| 7 |
+
[5, 5], [6, 6], [7, 7], [8, "inf"]
|
| 8 |
+
],
|
| 9 |
+
"dynamic": [
|
| 10 |
+
[0, 0], [1, 1], [2, 2], [3, 3],
|
| 11 |
+
[4, 5], [6, 7], [8, "inf"]
|
| 12 |
+
],
|
| 13 |
+
"coarse": [
|
| 14 |
+
[0, 0], [1, 2], [3, 4], [5, 6], [7, "inf"]
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
"anchor_points": {
|
| 18 |
+
"fine": {
|
| 19 |
+
"middle": [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
| 20 |
+
"average": [0, 1, 2, 3, 4, 5, 6, 7, 9.23349]
|
| 21 |
+
},
|
| 22 |
+
"dynamic": {
|
| 23 |
+
"middle": [0, 1, 2, 3, 4.5, 6.5, 8],
|
| 24 |
+
"average": [0, 1, 2, 3, 4.29278, 6.31441, 9.23349]
|
| 25 |
+
},
|
| 26 |
+
"coarse": {
|
| 27 |
+
"middle": [0, 1.5, 3.5, 5.5, 7],
|
| 28 |
+
"average": [0, 1.14978, 3.27641, 5.30609, 8.11466]
|
| 29 |
+
}
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
}
|
| 33 |
+
}
|
configs/reduction_32.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"19": {
|
| 3 |
+
"qnrf": {
|
| 4 |
+
"bins": {
|
| 5 |
+
"fine": [
|
| 6 |
+
[0, 0], [1, 1], [2, 2], [3, 3], [4, 4],
|
| 7 |
+
[5, 5], [6, 6], [7, 7], [8, 8], [9, 9],
|
| 8 |
+
[10, 10], [11, 11], [12, 12], [13, 13], [14, 14],
|
| 9 |
+
[15, 15], [16, 16], [17, 17], [18, 18], [19, "inf"]
|
| 10 |
+
],
|
| 11 |
+
"dynamic": [
|
| 12 |
+
[0, 0], [1, 1], [2, 2], [3, 3], [4, 4],
|
| 13 |
+
[5, 5], [6, 6], [7, 7], [8, 8], [9, 9],
|
| 14 |
+
[10, 11], [12, 13], [14, 15], [16, 17], [18, "inf"]
|
| 15 |
+
],
|
| 16 |
+
"coarse": [
|
| 17 |
+
[0, 0], [1, 2], [3, 4], [5, 6], [7, 8],
|
| 18 |
+
[9, 10], [11, 12], [13, 14], [15, 16], [17, 18],
|
| 19 |
+
[19, "inf"]
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
"anchor_points": {
|
| 23 |
+
"fine": {
|
| 24 |
+
"middle": [
|
| 25 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
| 26 |
+
11, 12, 13, 14, 15, 16, 17, 18, 19
|
| 27 |
+
],
|
| 28 |
+
"average": [
|
| 29 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
| 30 |
+
11, 12, 13, 14, 15, 16, 17, 18, 23.01897
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
"dynamic": {
|
| 34 |
+
"middle": [
|
| 35 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.5,
|
| 36 |
+
12.5, 14.5, 16.5, 18
|
| 37 |
+
],
|
| 38 |
+
"average": [
|
| 39 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.42903,
|
| 40 |
+
12.43320, 14.43341, 16.43521, 21.93548
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
"coarse": {
|
| 44 |
+
"middle": [
|
| 45 |
+
0, 1.5, 3.5, 5.5, 7.5, 9.5,
|
| 46 |
+
11.5, 13.5, 15.5, 17.5, 19
|
| 47 |
+
],
|
| 48 |
+
"average": [
|
| 49 |
+
0, 1.23498, 3.36108, 5.40298, 7.41406, 9.42356,
|
| 50 |
+
11.43094, 13.43244, 15.43697, 17.43759, 23.01897
|
| 51 |
+
]
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
}
|
| 56 |
+
}
|
configs/reduction_8.json
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"2": {
|
| 3 |
+
"sha": {
|
| 4 |
+
"bins": {
|
| 5 |
+
"fine": [[0, 0], [1, 1], [2, "inf"]]
|
| 6 |
+
},
|
| 7 |
+
"anchor_points": {
|
| 8 |
+
"fine": {
|
| 9 |
+
"middle": [0, 1, 2],
|
| 10 |
+
"average": [0, 1, 2.24479]
|
| 11 |
+
}
|
| 12 |
+
}
|
| 13 |
+
},
|
| 14 |
+
"shb": {
|
| 15 |
+
"bins": {
|
| 16 |
+
"fine": [[0, 0], [1, 1], [2, "inf"]]
|
| 17 |
+
},
|
| 18 |
+
"anchor_points": {
|
| 19 |
+
"fine": {
|
| 20 |
+
"middle": [0, 1, 2],
|
| 21 |
+
"average": [0, 1, 2.15171]
|
| 22 |
+
}
|
| 23 |
+
}
|
| 24 |
+
},
|
| 25 |
+
"nwpu": {
|
| 26 |
+
"bins": {
|
| 27 |
+
"fine": [[0, 0], [1, 1], [2, "inf"]]
|
| 28 |
+
},
|
| 29 |
+
"anchor_points": {
|
| 30 |
+
"fine": {
|
| 31 |
+
"middle": [0, 1, 2],
|
| 32 |
+
"average": [0, 1, 2.10737]
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
},
|
| 36 |
+
"qnrf": {
|
| 37 |
+
"bins": {
|
| 38 |
+
"fine": [[0, 0], [1, 1], [2, "inf"]]
|
| 39 |
+
},
|
| 40 |
+
"anchor_points": {
|
| 41 |
+
"fine": {
|
| 42 |
+
"middle": [0, 1, 2],
|
| 43 |
+
"average": [0, 1, 2.09296]
|
| 44 |
+
}
|
| 45 |
+
}
|
| 46 |
+
},
|
| 47 |
+
"jhu": {
|
| 48 |
+
"bins": {
|
| 49 |
+
"fine": [[0, 0], [1, 1], [2, "inf"]]
|
| 50 |
+
},
|
| 51 |
+
"anchor_points": {
|
| 52 |
+
"fine": {
|
| 53 |
+
"middle": [0, 1, 2],
|
| 54 |
+
"average": [0, 1, 2.18589]
|
| 55 |
+
}
|
| 56 |
+
}
|
| 57 |
+
}
|
| 58 |
+
},
|
| 59 |
+
"4": {
|
| 60 |
+
"sha": {
|
| 61 |
+
"bins": {
|
| 62 |
+
"fine": [[0, 0], [1, 1], [2, 2], [3, 3], [4, "inf"]]
|
| 63 |
+
},
|
| 64 |
+
"anchor_points": {
|
| 65 |
+
"fine": {
|
| 66 |
+
"middle": [0, 1, 2, 3, 4],
|
| 67 |
+
"average": [0, 1, 2, 3, 4.29992]
|
| 68 |
+
}
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
"shb": {
|
| 72 |
+
"bins": {
|
| 73 |
+
"fine": [[0, 0], [1, 1], [2, 2], [3, 3], [4, "inf"]]
|
| 74 |
+
},
|
| 75 |
+
"anchor_points": {
|
| 76 |
+
"fine": {
|
| 77 |
+
"middle": [0, 1, 2, 3, 4],
|
| 78 |
+
"average": [0, 1, 2, 3, 4.41009]
|
| 79 |
+
}
|
| 80 |
+
}
|
| 81 |
+
},
|
| 82 |
+
"nwpu": {
|
| 83 |
+
"bins": {
|
| 84 |
+
"fine": [[0, 0], [1, 1], [2, 2], [3, 3], [4, "inf"]]
|
| 85 |
+
},
|
| 86 |
+
"anchor_points": {
|
| 87 |
+
"fine": {
|
| 88 |
+
"middle": [0, 1, 2, 3, 4],
|
| 89 |
+
"average": [0, 1, 2, 3, 4.21931]
|
| 90 |
+
}
|
| 91 |
+
}
|
| 92 |
+
},
|
| 93 |
+
"qnrf": {
|
| 94 |
+
"bins": {
|
| 95 |
+
"fine": [[0, 0], [1, 1], [2, 2], [3, 3], [4, "inf"]]
|
| 96 |
+
},
|
| 97 |
+
"anchor_points": {
|
| 98 |
+
"fine": {
|
| 99 |
+
"middle": [0, 1, 2, 3, 4],
|
| 100 |
+
"average": [0, 1, 2, 3, 4.21937]
|
| 101 |
+
}
|
| 102 |
+
}
|
| 103 |
+
},
|
| 104 |
+
"jhu": {
|
| 105 |
+
"bins": {
|
| 106 |
+
"fine": [[0, 0], [1, 1], [2, 2], [3, 3], [4, "inf"]]
|
| 107 |
+
},
|
| 108 |
+
"anchor_points": {
|
| 109 |
+
"fine": {
|
| 110 |
+
"middle": [0, 1, 2, 3, 4],
|
| 111 |
+
"average": [0, 1, 2, 3, 4.24058]
|
| 112 |
+
}
|
| 113 |
+
}
|
| 114 |
+
}
|
| 115 |
+
},
|
| 116 |
+
"11": {
|
| 117 |
+
"qnrf": {
|
| 118 |
+
"bins": {
|
| 119 |
+
"fine": [[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [10, 10], [11, "inf"]]
|
| 120 |
+
},
|
| 121 |
+
"anchor_points": {
|
| 122 |
+
"fine": {
|
| 123 |
+
"middle": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
|
| 124 |
+
"average": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
| 125 |
+
}
|
| 126 |
+
}
|
| 127 |
+
}
|
| 128 |
+
}
|
| 129 |
+
}
|
models/__init__.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Tuple, Optional, Any, Union
|
| 2 |
+
|
| 3 |
+
from .model import _classifier, _regressor, Classifier, Regressor
|
| 4 |
+
from .clip import _clip_ebc, CLIP_EBC
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
clip_names = ["resnet50", "resnet50x4", "resnet50x16", "resnet50x64", "resnet101", "vit_b_16", "vit_b_32", "vit_l_14"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_model(
|
| 11 |
+
backbone: str,
|
| 12 |
+
input_size: int,
|
| 13 |
+
reduction: int,
|
| 14 |
+
bins: Optional[List[Tuple[float, float]]] = None,
|
| 15 |
+
anchor_points: Optional[List[float]] = None,
|
| 16 |
+
**kwargs: Any,
|
| 17 |
+
) -> Union[Regressor, Classifier, CLIP_EBC]:
|
| 18 |
+
backbone = backbone.lower()
|
| 19 |
+
if "clip" in backbone:
|
| 20 |
+
backbone = backbone[5:]
|
| 21 |
+
assert backbone in clip_names, f"Expected backbone to be in {clip_names}, got {backbone}"
|
| 22 |
+
return _clip_ebc(
|
| 23 |
+
backbone=backbone,
|
| 24 |
+
input_size=input_size,
|
| 25 |
+
reduction=reduction,
|
| 26 |
+
bins=bins,
|
| 27 |
+
anchor_points=anchor_points,
|
| 28 |
+
**kwargs
|
| 29 |
+
)
|
| 30 |
+
elif bins is None and anchor_points is None:
|
| 31 |
+
return _regressor(
|
| 32 |
+
backbone=backbone,
|
| 33 |
+
input_size=input_size,
|
| 34 |
+
reduction=reduction,
|
| 35 |
+
)
|
| 36 |
+
else:
|
| 37 |
+
assert bins is not None and anchor_points is not None, f"Expected bins and anchor_points to be both None or not None, got {bins} and {anchor_points}"
|
| 38 |
+
return _classifier(
|
| 39 |
+
backbone=backbone,
|
| 40 |
+
input_size=input_size,
|
| 41 |
+
reduction=reduction,
|
| 42 |
+
bins=bins,
|
| 43 |
+
anchor_points=anchor_points,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
__all__ = [
|
| 48 |
+
"get_model",
|
| 49 |
+
]
|
models/clip/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .model import CLIP_EBC, _clip_ebc
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
"CLIP_EBC",
|
| 6 |
+
"_clip_ebc",
|
| 7 |
+
]
|
models/clip/_clip/__init__.py
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
from typing import Tuple, Optional, Any, Union
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
from .utils import tokenize, transform
|
| 7 |
+
from .prepare import prepare
|
| 8 |
+
from .text_encoder import CLIPTextEncoder
|
| 9 |
+
from .image_encoder import ModifiedResNet, VisionTransformer
|
| 10 |
+
from .model import CLIP
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
curr_dir = os.path.dirname(os.path.abspath(__file__))
|
| 14 |
+
|
| 15 |
+
clip_model_names = [
|
| 16 |
+
"clip_resnet50",
|
| 17 |
+
"clip_resnet101",
|
| 18 |
+
"clip_resnet50x4",
|
| 19 |
+
"clip_resnet50x16",
|
| 20 |
+
"clip_resnet50x64",
|
| 21 |
+
"clip_vit_b_32",
|
| 22 |
+
"clip_vit_b_16",
|
| 23 |
+
"clip_vit_l_14",
|
| 24 |
+
"clip_vit_l_14_336px",
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
clip_image_encoder_names = [f"clip_image_encoder_{name[5:]}" for name in clip_model_names]
|
| 28 |
+
clip_text_encoder_names = [f"clip_text_encoder_{name[5:]}" for name in clip_model_names]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
|
| 32 |
+
model_weights_path = os.path.join(curr_dir, "weights", f"{name}.pth")
|
| 33 |
+
model_config_path = os.path.join(curr_dir, "configs", f"{name}.json")
|
| 34 |
+
if not os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")) or not os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")):
|
| 35 |
+
prepare()
|
| 36 |
+
break
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
|
| 40 |
+
assert os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")), f"Missing {name}.pth in weights folder. Please run models/clip/prepare.py to download the weights."
|
| 41 |
+
assert os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")), f"Missing {name}.json in configs folder. Please run models/clip/prepare.py to download the configs."
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def _clip(name: str, input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 45 |
+
with open(os.path.join(curr_dir, "configs", f"clip_{name}.json"), "r") as f:
|
| 46 |
+
config = json.load(f)
|
| 47 |
+
|
| 48 |
+
model = CLIP(
|
| 49 |
+
embed_dim=config["embed_dim"],
|
| 50 |
+
# vision
|
| 51 |
+
image_resolution=config["image_resolution"],
|
| 52 |
+
vision_layers=config["vision_layers"],
|
| 53 |
+
vision_width=config["vision_width"],
|
| 54 |
+
vision_patch_size=config["vision_patch_size"],
|
| 55 |
+
# text
|
| 56 |
+
context_length=config["context_length"],
|
| 57 |
+
vocab_size=config["vocab_size"],
|
| 58 |
+
transformer_width=config["transformer_width"],
|
| 59 |
+
transformer_heads=config["transformer_heads"],
|
| 60 |
+
transformer_layers=config["transformer_layers"]
|
| 61 |
+
)
|
| 62 |
+
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_{name}.pth"), map_location="cpu")
|
| 63 |
+
model.load_state_dict(state_dict, strict=True)
|
| 64 |
+
|
| 65 |
+
if input_size is not None:
|
| 66 |
+
input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
|
| 67 |
+
if name.startswith("vit"):
|
| 68 |
+
model.visual.adjust_pos_embed(*input_size)
|
| 69 |
+
|
| 70 |
+
return model
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def _resnet(
|
| 74 |
+
name: str,
|
| 75 |
+
reduction: int = 32,
|
| 76 |
+
features_only: bool = False,
|
| 77 |
+
out_indices: Optional[Tuple[int, ...]] = None,
|
| 78 |
+
**kwargs: Any
|
| 79 |
+
) -> ModifiedResNet:
|
| 80 |
+
with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
|
| 81 |
+
config = json.load(f)
|
| 82 |
+
model = ModifiedResNet(
|
| 83 |
+
layers=config["vision_layers"],
|
| 84 |
+
output_dim=config["embed_dim"],
|
| 85 |
+
input_resolution=config["image_resolution"],
|
| 86 |
+
width=config["vision_width"],
|
| 87 |
+
heads=config["vision_heads"],
|
| 88 |
+
features_only=features_only,
|
| 89 |
+
out_indices=out_indices,
|
| 90 |
+
reduction=reduction
|
| 91 |
+
)
|
| 92 |
+
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
|
| 93 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 94 |
+
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
|
| 95 |
+
print(f"Missing keys: {missing_keys}")
|
| 96 |
+
print(f"Unexpected keys: {unexpected_keys}")
|
| 97 |
+
else:
|
| 98 |
+
print(f"All keys matched successfully.")
|
| 99 |
+
|
| 100 |
+
return model
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def _vit(name: str, features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
|
| 104 |
+
with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
|
| 105 |
+
config = json.load(f)
|
| 106 |
+
model = VisionTransformer(
|
| 107 |
+
input_resolution=config["image_resolution"],
|
| 108 |
+
patch_size=config["vision_patch_size"],
|
| 109 |
+
output_dim=config["embed_dim"],
|
| 110 |
+
width=config["vision_width"],
|
| 111 |
+
layers=config["vision_layers"],
|
| 112 |
+
heads=config["vision_heads"],
|
| 113 |
+
features_only=features_only
|
| 114 |
+
)
|
| 115 |
+
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
|
| 116 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 117 |
+
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
|
| 118 |
+
print(f"Missing keys: {missing_keys}")
|
| 119 |
+
print(f"Unexpected keys: {unexpected_keys}")
|
| 120 |
+
else:
|
| 121 |
+
print(f"All keys matched successfully.")
|
| 122 |
+
|
| 123 |
+
if input_size is not None:
|
| 124 |
+
input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
|
| 125 |
+
model.adjust_pos_embed(*input_size)
|
| 126 |
+
return model
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def _text_encoder(name: str) -> CLIPTextEncoder:
|
| 130 |
+
with open(os.path.join(curr_dir, "configs", f"clip_text_encoder_{name}.json"), "r") as f:
|
| 131 |
+
config = json.load(f)
|
| 132 |
+
model = CLIPTextEncoder(
|
| 133 |
+
embed_dim=config["embed_dim"],
|
| 134 |
+
context_length=config["context_length"],
|
| 135 |
+
vocab_size=config["vocab_size"],
|
| 136 |
+
transformer_width=config["transformer_width"],
|
| 137 |
+
transformer_heads=config["transformer_heads"],
|
| 138 |
+
transformer_layers=config["transformer_layers"]
|
| 139 |
+
)
|
| 140 |
+
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_text_encoder_{name}.pth"), map_location="cpu")
|
| 141 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 142 |
+
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
|
| 143 |
+
print(f"Missing keys: {missing_keys}")
|
| 144 |
+
print(f"Unexpected keys: {unexpected_keys}")
|
| 145 |
+
else:
|
| 146 |
+
print(f"All keys matched successfully.")
|
| 147 |
+
|
| 148 |
+
return model
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# CLIP models
|
| 153 |
+
def resnet50_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 154 |
+
return _clip("resnet50", input_size)
|
| 155 |
+
|
| 156 |
+
def resnet101_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 157 |
+
return _clip("resnet101", input_size)
|
| 158 |
+
|
| 159 |
+
def resnet50x4_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 160 |
+
return _clip("resnet50x4", input_size)
|
| 161 |
+
|
| 162 |
+
def resnet50x16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 163 |
+
return _clip("resnet50x16", input_size)
|
| 164 |
+
|
| 165 |
+
def resnet50x64_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 166 |
+
return _clip("resnet50x64", input_size)
|
| 167 |
+
|
| 168 |
+
def vit_b_32_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 169 |
+
return _clip("vit_b_32", input_size)
|
| 170 |
+
|
| 171 |
+
def vit_b_16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 172 |
+
return _clip("vit_b_16", input_size)
|
| 173 |
+
|
| 174 |
+
def vit_l_14_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 175 |
+
return _clip("vit_l_14", input_size)
|
| 176 |
+
|
| 177 |
+
def vit_l_14_336px_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
|
| 178 |
+
return _clip("vit_l_14_336px", input_size)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
# CLIP image encoders
|
| 182 |
+
def resnet50_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
|
| 183 |
+
return _resnet("resnet50", features_only=features_only, out_indices=out_indices, **kwargs)
|
| 184 |
+
|
| 185 |
+
def resnet101_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
|
| 186 |
+
return _resnet("resnet101", features_only=features_only, out_indices=out_indices, **kwargs)
|
| 187 |
+
|
| 188 |
+
def resnet50x4_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
|
| 189 |
+
return _resnet("resnet50x4", features_only=features_only, out_indices=out_indices, **kwargs)
|
| 190 |
+
|
| 191 |
+
def resnet50x16_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
|
| 192 |
+
return _resnet("resnet50x16", features_only=features_only, out_indices=out_indices, **kwargs)
|
| 193 |
+
|
| 194 |
+
def resnet50x64_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
|
| 195 |
+
return _resnet("resnet50x64", features_only=features_only, out_indices=out_indices, **kwargs)
|
| 196 |
+
|
| 197 |
+
def vit_b_32_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
|
| 198 |
+
return _vit("vit_b_32", features_only=features_only, input_size=input_size, **kwargs)
|
| 199 |
+
|
| 200 |
+
def vit_b_16_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
|
| 201 |
+
return _vit("vit_b_16", features_only=features_only, input_size=input_size, **kwargs)
|
| 202 |
+
|
| 203 |
+
def vit_l_14_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
|
| 204 |
+
return _vit("vit_l_14", features_only=features_only, input_size=input_size, **kwargs)
|
| 205 |
+
|
| 206 |
+
def vit_l_14_336px_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
|
| 207 |
+
return _vit("vit_l_14_336px", features_only=features_only, input_size=input_size, **kwargs)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
# CLIP text encoders
|
| 211 |
+
def resnet50_txt() -> CLIPTextEncoder:
|
| 212 |
+
return _text_encoder("resnet50")
|
| 213 |
+
|
| 214 |
+
def resnet101_txt() -> CLIPTextEncoder:
|
| 215 |
+
return _text_encoder("resnet101")
|
| 216 |
+
|
| 217 |
+
def resnet50x4_txt() -> CLIPTextEncoder:
|
| 218 |
+
return _text_encoder("resnet50x4")
|
| 219 |
+
|
| 220 |
+
def resnet50x16_txt() -> CLIPTextEncoder:
|
| 221 |
+
return _text_encoder("resnet50x16")
|
| 222 |
+
|
| 223 |
+
def resnet50x64_txt() -> CLIPTextEncoder:
|
| 224 |
+
return _text_encoder("resnet50x64")
|
| 225 |
+
|
| 226 |
+
def vit_b_32_txt() -> CLIPTextEncoder:
|
| 227 |
+
return _text_encoder("vit_b_32")
|
| 228 |
+
|
| 229 |
+
def vit_b_16_txt() -> CLIPTextEncoder:
|
| 230 |
+
return _text_encoder("vit_b_16")
|
| 231 |
+
|
| 232 |
+
def vit_l_14_txt() -> CLIPTextEncoder:
|
| 233 |
+
return _text_encoder("vit_l_14")
|
| 234 |
+
|
| 235 |
+
def vit_l_14_336px_txt() -> CLIPTextEncoder:
|
| 236 |
+
return _text_encoder("vit_l_14_336px")
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
__all__ = [
|
| 240 |
+
# utils
|
| 241 |
+
"tokenize",
|
| 242 |
+
"transform",
|
| 243 |
+
# clip models
|
| 244 |
+
"resnet50_clip",
|
| 245 |
+
"resnet101_clip",
|
| 246 |
+
"resnet50x4_clip",
|
| 247 |
+
"resnet50x16_clip",
|
| 248 |
+
"resnet50x64_clip",
|
| 249 |
+
"vit_b_32_clip",
|
| 250 |
+
"vit_b_16_clip",
|
| 251 |
+
"vit_l_14_clip",
|
| 252 |
+
"vit_l_14_336px_clip",
|
| 253 |
+
# clip image encoders
|
| 254 |
+
"resnet50_img",
|
| 255 |
+
"resnet101_img",
|
| 256 |
+
"resnet50x4_img",
|
| 257 |
+
"resnet50x16_img",
|
| 258 |
+
"resnet50x64_img",
|
| 259 |
+
"vit_b_32_img",
|
| 260 |
+
"vit_b_16_img",
|
| 261 |
+
"vit_l_14_img",
|
| 262 |
+
"vit_l_14_336px_img",
|
| 263 |
+
# clip text encoders
|
| 264 |
+
"resnet50_txt",
|
| 265 |
+
"resnet101_txt",
|
| 266 |
+
"resnet50x4_txt",
|
| 267 |
+
"resnet50x16_txt",
|
| 268 |
+
"resnet50x64_txt",
|
| 269 |
+
"vit_b_32_txt",
|
| 270 |
+
"vit_b_16_txt",
|
| 271 |
+
"vit_l_14_txt",
|
| 272 |
+
"vit_l_14_336px_txt",
|
| 273 |
+
]
|
models/clip/_clip/blocks.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from typing import Optional, Iterable
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class LayerNorm(nn.LayerNorm):
|
| 9 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
| 10 |
+
|
| 11 |
+
def forward(self, x: Tensor):
|
| 12 |
+
orig_type = x.dtype
|
| 13 |
+
ret = super().forward(x.type(torch.float32))
|
| 14 |
+
return ret.type(orig_type)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class QuickGELU(nn.Module):
|
| 18 |
+
def forward(self, x: Tensor):
|
| 19 |
+
return x * torch.sigmoid(1.702 * x)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ResidualAttentionBlock(nn.Module):
|
| 23 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: Tensor = None):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
| 26 |
+
self.ln_1 = LayerNorm(d_model)
|
| 27 |
+
self.mlp = nn.Sequential(OrderedDict([
|
| 28 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
| 29 |
+
("gelu", QuickGELU()),
|
| 30 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
| 31 |
+
]))
|
| 32 |
+
self.ln_2 = LayerNorm(d_model)
|
| 33 |
+
self.attn_mask = attn_mask
|
| 34 |
+
|
| 35 |
+
def attention(self, x: Tensor):
|
| 36 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
| 37 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
| 38 |
+
|
| 39 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 40 |
+
x = x + self.attention(self.ln_1(x))
|
| 41 |
+
x = x + self.mlp(self.ln_2(x))
|
| 42 |
+
return x
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class Transformer(nn.Module):
|
| 46 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: Tensor = None):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.width = width
|
| 49 |
+
self.layers = layers
|
| 50 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
| 51 |
+
|
| 52 |
+
def forward(self, x: Tensor):
|
| 53 |
+
return self.resblocks(x)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Bottleneck(nn.Module):
|
| 57 |
+
expansion = 4
|
| 58 |
+
|
| 59 |
+
def __init__(self, inplanes, planes, stride=1):
|
| 60 |
+
super().__init__()
|
| 61 |
+
|
| 62 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
| 63 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
| 64 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 65 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 66 |
+
|
| 67 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
| 68 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 69 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 70 |
+
|
| 71 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
| 72 |
+
|
| 73 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
| 74 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
| 75 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 76 |
+
|
| 77 |
+
self.downsample = None
|
| 78 |
+
self.stride = stride
|
| 79 |
+
|
| 80 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
| 81 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
| 82 |
+
self.downsample = nn.Sequential(OrderedDict([
|
| 83 |
+
("-1", nn.AvgPool2d(stride)),
|
| 84 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
| 85 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
| 86 |
+
]))
|
| 87 |
+
|
| 88 |
+
def forward(self, x: Tensor):
|
| 89 |
+
identity = x
|
| 90 |
+
|
| 91 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
| 92 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
| 93 |
+
out = self.avgpool(out)
|
| 94 |
+
out = self.bn3(self.conv3(out))
|
| 95 |
+
|
| 96 |
+
if self.downsample is not None:
|
| 97 |
+
identity = self.downsample(x)
|
| 98 |
+
|
| 99 |
+
out += identity
|
| 100 |
+
out = self.relu3(out)
|
| 101 |
+
return out
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class AttentionPool2d(nn.Module):
|
| 105 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim ** 0.5)
|
| 108 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 109 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 110 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 111 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 112 |
+
self.num_heads = num_heads
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
| 116 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
| 117 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
| 118 |
+
x, _ = F.multi_head_attention_forward(
|
| 119 |
+
query=x[:1], key=x, value=x,
|
| 120 |
+
embed_dim_to_check=x.shape[-1],
|
| 121 |
+
num_heads=self.num_heads,
|
| 122 |
+
q_proj_weight=self.q_proj.weight,
|
| 123 |
+
k_proj_weight=self.k_proj.weight,
|
| 124 |
+
v_proj_weight=self.v_proj.weight,
|
| 125 |
+
in_proj_weight=None,
|
| 126 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 127 |
+
bias_k=None,
|
| 128 |
+
bias_v=None,
|
| 129 |
+
add_zero_attn=False,
|
| 130 |
+
dropout_p=0,
|
| 131 |
+
out_proj_weight=self.c_proj.weight,
|
| 132 |
+
out_proj_bias=self.c_proj.bias,
|
| 133 |
+
use_separate_proj_weight=True,
|
| 134 |
+
training=self.training,
|
| 135 |
+
need_weights=False
|
| 136 |
+
)
|
| 137 |
+
return x.squeeze(0)
|
models/clip/_clip/bpe_simple_vocab_16e6.txt.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
| 3 |
+
size 1356917
|
models/clip/_clip/image_encoder.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
from typing import Tuple, Union, Any, List, Iterable, Optional
|
| 6 |
+
|
| 7 |
+
from .blocks import LayerNorm, Transformer, Bottleneck, AttentionPool2d
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ModifiedResNet(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
| 13 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
| 14 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
| 15 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
| 16 |
+
"""
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
layers: Tuple[int, int, int, int],
|
| 20 |
+
output_dim: int,
|
| 21 |
+
input_resolution: int = 224,
|
| 22 |
+
width: int = 64,
|
| 23 |
+
heads: int = 8,
|
| 24 |
+
features_only: bool = False,
|
| 25 |
+
out_indices: Optional[Iterable[int]] = None,
|
| 26 |
+
reduction: int = 32,
|
| 27 |
+
**kwargs: Any,
|
| 28 |
+
) -> None:
|
| 29 |
+
super().__init__()
|
| 30 |
+
input_resolution = (input_resolution, input_resolution) if isinstance(input_resolution, int) else input_resolution
|
| 31 |
+
assert isinstance(input_resolution, tuple) and len(input_resolution) == 2, f"input_resolution should be a tuple of length 2, but got {input_resolution}"
|
| 32 |
+
self.input_resolution = input_resolution
|
| 33 |
+
self.downsampling_rate = 32 # the rate at which the input is downsampled by the network
|
| 34 |
+
|
| 35 |
+
# the 3-layer stem
|
| 36 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
| 37 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
| 38 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 39 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
| 40 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
| 41 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 42 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
| 43 |
+
self.bn3 = nn.BatchNorm2d(width)
|
| 44 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 45 |
+
self.avgpool = nn.AvgPool2d(2)
|
| 46 |
+
|
| 47 |
+
# residual layers
|
| 48 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
| 49 |
+
self.layer1 = self._make_layer(width, layers[0])
|
| 50 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
| 51 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
| 52 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=1 if reduction <= 16 else 2)
|
| 53 |
+
|
| 54 |
+
self.features_only = features_only
|
| 55 |
+
if features_only:
|
| 56 |
+
self.out_indices = out_indices if out_indices is not None else range(5)
|
| 57 |
+
self.out_indices = [idx + 5 if idx < 0 else idx for idx in self.out_indices] # map negative indices to positive indices
|
| 58 |
+
self.out_indices = sorted(set(self.out_indices)) # remove duplicates and sort
|
| 59 |
+
assert min(self.out_indices) >= 0 and max(self.out_indices) <= 4, f"out_indices={self.out_indices} is invalid for a ResNet with 5 stages"
|
| 60 |
+
self.channels = width * 32 # the ResNet feature dimension
|
| 61 |
+
else:
|
| 62 |
+
self.out_indices = None
|
| 63 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
| 64 |
+
self.attnpool = AttentionPool2d((input_resolution[0] // 32) * (input_resolution[1] // 32), embed_dim, heads, output_dim)
|
| 65 |
+
self.channels = output_dim
|
| 66 |
+
|
| 67 |
+
self.reduction = self.downsampling_rate // 2 if reduction <= 16 else self.downsampling_rate
|
| 68 |
+
self.clip_embed_dim = output_dim
|
| 69 |
+
|
| 70 |
+
def _make_layer(self, planes, blocks, stride=1):
|
| 71 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
| 72 |
+
|
| 73 |
+
self._inplanes = planes * Bottleneck.expansion
|
| 74 |
+
for _ in range(1, blocks):
|
| 75 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
| 76 |
+
|
| 77 |
+
return nn.Sequential(*layers)
|
| 78 |
+
|
| 79 |
+
def _stem(self, x: Tensor) -> Tensor:
|
| 80 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
| 81 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
| 82 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
| 83 |
+
x = self.avgpool(x)
|
| 84 |
+
return x
|
| 85 |
+
|
| 86 |
+
def forward(self, x: Tensor) -> Union[Tensor, List[Tensor]]:
|
| 87 |
+
x = x.type(self.conv1.weight.dtype)
|
| 88 |
+
x = self._stem(x)
|
| 89 |
+
|
| 90 |
+
feats = [x] if self.features_only and 0 in self.out_indices else []
|
| 91 |
+
|
| 92 |
+
x = self.layer1(x)
|
| 93 |
+
if self.features_only and 1 in self.out_indices:
|
| 94 |
+
feats.append(x)
|
| 95 |
+
|
| 96 |
+
x = self.layer2(x)
|
| 97 |
+
if self.features_only and 2 in self.out_indices:
|
| 98 |
+
feats.append(x)
|
| 99 |
+
|
| 100 |
+
x = self.layer3(x)
|
| 101 |
+
if self.features_only and 3 in self.out_indices:
|
| 102 |
+
feats.append(x)
|
| 103 |
+
|
| 104 |
+
x = self.layer4(x)
|
| 105 |
+
if self.features_only and 4 in self.out_indices:
|
| 106 |
+
feats.append(x)
|
| 107 |
+
|
| 108 |
+
if self.features_only:
|
| 109 |
+
if len(self.out_indices) == 1:
|
| 110 |
+
return feats[0]
|
| 111 |
+
else:
|
| 112 |
+
return feats
|
| 113 |
+
else:
|
| 114 |
+
x = self.attnpool(x)
|
| 115 |
+
return x
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class VisionTransformer(nn.Module):
|
| 119 |
+
def __init__(
|
| 120 |
+
self,
|
| 121 |
+
input_resolution: Union[int, Tuple[int, int]],
|
| 122 |
+
patch_size: Union[int, Tuple[int, int]],
|
| 123 |
+
output_dim: int,
|
| 124 |
+
width: int,
|
| 125 |
+
layers: int,
|
| 126 |
+
heads: int,
|
| 127 |
+
features_only: bool = False,
|
| 128 |
+
**kwargs: Any,
|
| 129 |
+
) -> None:
|
| 130 |
+
super().__init__()
|
| 131 |
+
input_resolution = (input_resolution, input_resolution) if isinstance(input_resolution, int) else input_resolution
|
| 132 |
+
patch_size = (patch_size, patch_size) if isinstance(patch_size, int) else patch_size
|
| 133 |
+
assert isinstance(input_resolution, tuple) and len(input_resolution) == 2, f"input_resolution should be a tuple of length 2, but got {input_resolution}"
|
| 134 |
+
assert isinstance(patch_size, tuple) and len(patch_size) == 2, f"patch_size should be a tuple of length 2, but got {patch_size}"
|
| 135 |
+
assert patch_size[0] == patch_size[1], f"ViT only supports square patches, patch_size={patch_size} is invalid."
|
| 136 |
+
assert input_resolution[0] % patch_size[0] == 0 and input_resolution[1] % patch_size[1] == 0, f"input_resolution {input_resolution} should be divisible by patch_size {patch_size}"
|
| 137 |
+
self.input_resolution = input_resolution
|
| 138 |
+
self.patch_size = patch_size
|
| 139 |
+
self.downsampling_rate = patch_size[0]
|
| 140 |
+
|
| 141 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
| 142 |
+
|
| 143 |
+
scale = width ** -0.5
|
| 144 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
| 145 |
+
self.num_patches_h = int(input_resolution[0] // patch_size[0])
|
| 146 |
+
self.num_patches_w = int(input_resolution[1] // patch_size[1])
|
| 147 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(self.num_patches_h * self.num_patches_w + 1, width))
|
| 148 |
+
self.ln_pre = LayerNorm(width)
|
| 149 |
+
|
| 150 |
+
self.transformer = Transformer(width, layers, heads)
|
| 151 |
+
self.ln_post = LayerNorm(width)
|
| 152 |
+
|
| 153 |
+
self.features_only = features_only # if True, return the final patches instead of the CLS token
|
| 154 |
+
if features_only:
|
| 155 |
+
self.channels = width
|
| 156 |
+
else:
|
| 157 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
| 158 |
+
self.channels = output_dim
|
| 159 |
+
|
| 160 |
+
self.reduction = patch_size[0]
|
| 161 |
+
self.clip_embed_dim = output_dim
|
| 162 |
+
|
| 163 |
+
def adjust_pos_embed(self, h: int, w: int) -> None:
|
| 164 |
+
"""
|
| 165 |
+
Permanently adjust the size of the positional embedding matrix.
|
| 166 |
+
|
| 167 |
+
Args:
|
| 168 |
+
h: the height of the original input image.
|
| 169 |
+
w: the width of the original input image.
|
| 170 |
+
"""
|
| 171 |
+
assert h % self.patch_size[0] == 0 and w % self.patch_size[1] == 0, f"input_resolution {h, w} should be divisible by patch_size {self.patch_size}"
|
| 172 |
+
if self.input_resolution[0] != h or self.input_resolution[1] != w:
|
| 173 |
+
new_num_patches_h = int(h // self.patch_size[0])
|
| 174 |
+
new_num_patches_w = int(w // self.patch_size[1])
|
| 175 |
+
positional_embedding = rearrange(self.positional_embedding[1:, :], "(h w) c -> c h w", h=self.num_patches_h, w=self.num_patches_w).unsqueeze(0) # add batch dimension
|
| 176 |
+
positional_embedding = F.interpolate(positional_embedding, size=(new_num_patches_h, new_num_patches_w), mode="bicubic", ).squeeze(0) # remove batch dimension
|
| 177 |
+
positional_embedding = rearrange(positional_embedding, "c h w -> (h w) c")
|
| 178 |
+
self.positional_embedding = nn.Parameter(torch.cat([self.positional_embedding[:1, :], positional_embedding], dim=0))
|
| 179 |
+
self.input_resolution = (h, w)
|
| 180 |
+
self.num_patches_h = new_num_patches_h
|
| 181 |
+
self.num_patches_w = new_num_patches_w
|
| 182 |
+
|
| 183 |
+
def _interpolate_pos_embed(self, h: int, w: int) -> Tensor:
|
| 184 |
+
"""
|
| 185 |
+
Interpolate the positional embedding matrix to match the size of the input image.
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
h: the required number of patches along the height dimension.
|
| 189 |
+
w: the required number of patches along the width dimension.
|
| 190 |
+
"""
|
| 191 |
+
if h == self.num_patches_h and w == self.num_patches_w:
|
| 192 |
+
return self.positional_embedding
|
| 193 |
+
else:
|
| 194 |
+
positional_embedding = rearrange(self.positional_embedding[1:, :], "(h w) c -> c h w", h=self.num_patches_h, w=self.num_patches_w).unsqueeze(0) # add batch dimension
|
| 195 |
+
positional_embedding = F.interpolate(positional_embedding, size=(h, w), mode="bicubic").squeeze(0) # remove batch dimension
|
| 196 |
+
positional_embedding = rearrange(positional_embedding, "c h w -> (h w) c")
|
| 197 |
+
positional_embedding = torch.cat([self.positional_embedding[:1, :], positional_embedding], dim=0)
|
| 198 |
+
return positional_embedding
|
| 199 |
+
|
| 200 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 201 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
| 202 |
+
num_patches_h, num_patches_w = x.shape[-2:]
|
| 203 |
+
|
| 204 |
+
positional_embedding = self._interpolate_pos_embed(num_patches_h, num_patches_w).to(x.dtype)
|
| 205 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
| 206 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 207 |
+
x = torch.cat([
|
| 208 |
+
self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
| 209 |
+
x
|
| 210 |
+
], dim=1)
|
| 211 |
+
x = x + positional_embedding
|
| 212 |
+
x = self.ln_pre(x)
|
| 213 |
+
|
| 214 |
+
x = x.permute(1, 0, 2) # NLD -> LND. N: batch size, L: sequence length, D: feature dimension
|
| 215 |
+
x = self.transformer(x)
|
| 216 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 217 |
+
x = self.ln_post(x)
|
| 218 |
+
|
| 219 |
+
if self.features_only:
|
| 220 |
+
x = x[:, 1:, :] # remove the CLS token
|
| 221 |
+
x = rearrange(x, "n (h w) c -> n c h w", h=num_patches_h, w=num_patches_w)
|
| 222 |
+
else:
|
| 223 |
+
x = x[:, 0, :]
|
| 224 |
+
x = x @ self.proj
|
| 225 |
+
return x
|
models/clip/_clip/model.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from typing import Tuple, Union
|
| 6 |
+
|
| 7 |
+
from .image_encoder import ModifiedResNet, VisionTransformer
|
| 8 |
+
from .text_encoder import LayerNorm, Transformer
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class CLIP(nn.Module):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
embed_dim: int,
|
| 15 |
+
# vision
|
| 16 |
+
image_resolution: int,
|
| 17 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
| 18 |
+
vision_width: int,
|
| 19 |
+
vision_patch_size: int,
|
| 20 |
+
# text
|
| 21 |
+
context_length: int,
|
| 22 |
+
vocab_size: int,
|
| 23 |
+
transformer_width: int,
|
| 24 |
+
transformer_heads: int,
|
| 25 |
+
transformer_layers: int
|
| 26 |
+
) -> None:
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.embed_dim = embed_dim
|
| 29 |
+
self.image_resolution = image_resolution
|
| 30 |
+
self.vision_layers = vision_layers
|
| 31 |
+
self.vision_width = vision_width
|
| 32 |
+
self.vision_patch_size = vision_patch_size
|
| 33 |
+
self.context_length = context_length
|
| 34 |
+
self.vocab_size = vocab_size
|
| 35 |
+
self.transformer_width = transformer_width
|
| 36 |
+
self.transformer_heads = transformer_heads
|
| 37 |
+
self.transformer_layers = transformer_layers
|
| 38 |
+
|
| 39 |
+
if isinstance(vision_layers, (tuple, list)):
|
| 40 |
+
vision_heads = vision_width * 32 // 64
|
| 41 |
+
self.visual = ModifiedResNet(
|
| 42 |
+
layers=vision_layers,
|
| 43 |
+
output_dim=embed_dim,
|
| 44 |
+
heads=vision_heads,
|
| 45 |
+
input_resolution=image_resolution,
|
| 46 |
+
width=vision_width,
|
| 47 |
+
features_only=False,
|
| 48 |
+
)
|
| 49 |
+
else:
|
| 50 |
+
vision_heads = vision_width // 64
|
| 51 |
+
self.visual = VisionTransformer(
|
| 52 |
+
input_resolution=image_resolution,
|
| 53 |
+
patch_size=vision_patch_size,
|
| 54 |
+
width=vision_width,
|
| 55 |
+
layers=vision_layers,
|
| 56 |
+
heads=vision_heads,
|
| 57 |
+
output_dim=embed_dim,
|
| 58 |
+
features_only=False,
|
| 59 |
+
)
|
| 60 |
+
self.vision_heads = vision_heads
|
| 61 |
+
self.transformer = Transformer(
|
| 62 |
+
width=transformer_width,
|
| 63 |
+
layers=transformer_layers,
|
| 64 |
+
heads=transformer_heads,
|
| 65 |
+
attn_mask=self.build_attention_mask()
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
| 69 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
| 70 |
+
self.ln_final = LayerNorm(transformer_width)
|
| 71 |
+
|
| 72 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
| 73 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 74 |
+
|
| 75 |
+
self.initialize_parameters()
|
| 76 |
+
|
| 77 |
+
def initialize_parameters(self):
|
| 78 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
| 79 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
| 80 |
+
|
| 81 |
+
if isinstance(self.visual, ModifiedResNet):
|
| 82 |
+
if self.visual.attnpool is not None:
|
| 83 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
| 84 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
| 85 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
| 86 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
| 87 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
| 88 |
+
|
| 89 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
| 90 |
+
for name, param in resnet_block.named_parameters():
|
| 91 |
+
if name.endswith("bn3.weight"):
|
| 92 |
+
nn.init.zeros_(param)
|
| 93 |
+
|
| 94 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
| 95 |
+
attn_std = self.transformer.width ** -0.5
|
| 96 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
| 97 |
+
for block in self.transformer.resblocks:
|
| 98 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 99 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 100 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 101 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 102 |
+
|
| 103 |
+
if self.text_projection is not None:
|
| 104 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
| 105 |
+
|
| 106 |
+
def build_attention_mask(self):
|
| 107 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 108 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 109 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 110 |
+
mask.fill_(float("-inf"))
|
| 111 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 112 |
+
return mask
|
| 113 |
+
|
| 114 |
+
@property
|
| 115 |
+
def dtype(self):
|
| 116 |
+
return self.visual.conv1.weight.dtype
|
| 117 |
+
|
| 118 |
+
def encode_image(self, image):
|
| 119 |
+
return self.visual(image.type(self.dtype))
|
| 120 |
+
|
| 121 |
+
def encode_text(self, text):
|
| 122 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
| 123 |
+
|
| 124 |
+
x = x + self.positional_embedding.type(self.dtype)
|
| 125 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 126 |
+
x = self.transformer(x)
|
| 127 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 128 |
+
x = self.ln_final(x).type(self.dtype)
|
| 129 |
+
|
| 130 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 131 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 132 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
| 133 |
+
|
| 134 |
+
return x
|
| 135 |
+
|
| 136 |
+
def forward(self, image, text):
|
| 137 |
+
image_features = self.encode_image(image)
|
| 138 |
+
text_features = self.encode_text(text)
|
| 139 |
+
|
| 140 |
+
# normalized features
|
| 141 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
| 142 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
| 143 |
+
|
| 144 |
+
# cosine similarity as logits
|
| 145 |
+
logit_scale = self.logit_scale.exp()
|
| 146 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 147 |
+
logits_per_text = logits_per_image.t()
|
| 148 |
+
|
| 149 |
+
# shape = [global_batch_size, global_batch_size]
|
| 150 |
+
return logits_per_image, logits_per_text
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def convert_weights(model: nn.Module):
|
| 154 |
+
"""Convert applicable model parameters to fp16"""
|
| 155 |
+
|
| 156 |
+
def _convert_weights_to_fp16(l):
|
| 157 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
| 158 |
+
l.weight.data = l.weight.data.half()
|
| 159 |
+
if l.bias is not None:
|
| 160 |
+
l.bias.data = l.bias.data.half()
|
| 161 |
+
|
| 162 |
+
if isinstance(l, nn.MultiheadAttention):
|
| 163 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
| 164 |
+
tensor = getattr(l, attr)
|
| 165 |
+
if tensor is not None:
|
| 166 |
+
tensor.data = tensor.data.half()
|
| 167 |
+
|
| 168 |
+
for name in ["text_projection", "proj"]:
|
| 169 |
+
if hasattr(l, name):
|
| 170 |
+
attr = getattr(l, name)
|
| 171 |
+
if attr is not None:
|
| 172 |
+
attr.data = attr.data.half()
|
| 173 |
+
|
| 174 |
+
model.apply(_convert_weights_to_fp16)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def build_model(state_dict: dict):
|
| 178 |
+
vit = "visual.proj" in state_dict
|
| 179 |
+
|
| 180 |
+
if vit:
|
| 181 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
| 182 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
| 183 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
| 184 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 185 |
+
image_resolution = vision_patch_size * grid_size
|
| 186 |
+
else:
|
| 187 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
| 188 |
+
vision_layers = tuple(counts)
|
| 189 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
| 190 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 191 |
+
vision_patch_size = None
|
| 192 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
| 193 |
+
image_resolution = output_width * 32
|
| 194 |
+
|
| 195 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 196 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
| 197 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 198 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 199 |
+
transformer_heads = transformer_width // 64
|
| 200 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
| 201 |
+
|
| 202 |
+
model = CLIP(
|
| 203 |
+
embed_dim,
|
| 204 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
| 205 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
| 209 |
+
if key in state_dict:
|
| 210 |
+
del state_dict[key]
|
| 211 |
+
|
| 212 |
+
convert_weights(model)
|
| 213 |
+
model.load_state_dict(state_dict, strict=False)
|
| 214 |
+
return model.eval()
|
models/clip/_clip/prepare.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Prepare the models to speed up loading them later
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn, Tensor
|
| 4 |
+
import os
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
from .utils import load
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
model_name_map = {
|
| 12 |
+
"RN50": "resnet50",
|
| 13 |
+
"RN101": "resnet101",
|
| 14 |
+
"RN50x4": "resnet50x4",
|
| 15 |
+
"RN50x16": "resnet50x16",
|
| 16 |
+
"RN50x64": "resnet50x64",
|
| 17 |
+
"ViT-B/32": "vit_b_32",
|
| 18 |
+
"ViT-B/16": "vit_b_16",
|
| 19 |
+
"ViT-L/14": "vit_l_14",
|
| 20 |
+
"ViT-L/14@336px": "vit_l_14_336px",
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class CLIPTextEncoderTemp(nn.Module):
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
clip: nn.Module,
|
| 28 |
+
) -> None:
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.context_length = clip.context_length
|
| 31 |
+
self.vocab_size = clip.vocab_size
|
| 32 |
+
self.dtype = clip.dtype
|
| 33 |
+
self.token_embedding = clip.token_embedding
|
| 34 |
+
self.positional_embedding = clip.positional_embedding
|
| 35 |
+
self.transformer = clip.transformer
|
| 36 |
+
self.ln_final = clip.ln_final
|
| 37 |
+
self.text_projection = clip.text_projection
|
| 38 |
+
|
| 39 |
+
def forward(self, text: Tensor) -> None:
|
| 40 |
+
pass
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def prepare() -> None:
|
| 44 |
+
print("Preparing CLIP models...")
|
| 45 |
+
curr_dir = os.path.dirname(os.path.abspath(__file__))
|
| 46 |
+
weight_dir = os.path.join(curr_dir, "weights")
|
| 47 |
+
config_dir = os.path.join(curr_dir, "configs")
|
| 48 |
+
os.makedirs(weight_dir, exist_ok=True)
|
| 49 |
+
os.makedirs(config_dir, exist_ok=True)
|
| 50 |
+
device = torch.device("cpu")
|
| 51 |
+
|
| 52 |
+
for model_name in tqdm(["RN50", "RN101", "RN50x4", "RN50x16", "RN50x64", "ViT-B/32", "ViT-B/16", "ViT-L/14", "ViT-L/14@336px"]):
|
| 53 |
+
model = load(model_name, device=device).to(device)
|
| 54 |
+
image_encoder = model.visual.to(device)
|
| 55 |
+
text_encoder = CLIPTextEncoderTemp(model).to(device)
|
| 56 |
+
torch.save(model.state_dict(), os.path.join(weight_dir, f"clip_{model_name_map[model_name]}.pth"))
|
| 57 |
+
torch.save(image_encoder.state_dict(), os.path.join(weight_dir, f"clip_image_encoder_{model_name_map[model_name]}.pth"))
|
| 58 |
+
torch.save(text_encoder.state_dict(), os.path.join(weight_dir, f"clip_text_encoder_{model_name_map[model_name]}.pth"))
|
| 59 |
+
model_config = {
|
| 60 |
+
"embed_dim": model.embed_dim,
|
| 61 |
+
# vision
|
| 62 |
+
"image_resolution": model.image_resolution,
|
| 63 |
+
"vision_layers": model.vision_layers,
|
| 64 |
+
"vision_width": model.vision_width,
|
| 65 |
+
"vision_patch_size": model.vision_patch_size,
|
| 66 |
+
# text
|
| 67 |
+
"context_length": model.context_length,
|
| 68 |
+
"vocab_size": model.vocab_size,
|
| 69 |
+
"transformer_width": model.transformer_width,
|
| 70 |
+
"transformer_heads": model.transformer_heads,
|
| 71 |
+
"transformer_layers": model.transformer_layers,
|
| 72 |
+
}
|
| 73 |
+
image_encoder_config = {
|
| 74 |
+
"embed_dim": model.embed_dim,
|
| 75 |
+
"image_resolution": model.image_resolution,
|
| 76 |
+
"vision_layers": model.vision_layers,
|
| 77 |
+
"vision_width": model.vision_width,
|
| 78 |
+
"vision_patch_size": model.vision_patch_size,
|
| 79 |
+
"vision_heads": model.vision_heads,
|
| 80 |
+
}
|
| 81 |
+
text_encoder_config = {
|
| 82 |
+
"embed_dim": model.embed_dim,
|
| 83 |
+
"context_length": model.context_length,
|
| 84 |
+
"vocab_size": model.vocab_size,
|
| 85 |
+
"transformer_width": model.transformer_width,
|
| 86 |
+
"transformer_heads": model.transformer_heads,
|
| 87 |
+
"transformer_layers": model.transformer_layers,
|
| 88 |
+
}
|
| 89 |
+
with open(os.path.join(config_dir, f"clip_{model_name_map[model_name]}.json"), "w") as f:
|
| 90 |
+
json.dump(model_config, f, indent=4)
|
| 91 |
+
with open(os.path.join(config_dir, f"clip_image_encoder_{model_name_map[model_name]}.json"), "w") as f:
|
| 92 |
+
json.dump(image_encoder_config, f, indent=4)
|
| 93 |
+
with open(os.path.join(config_dir, f"clip_text_encoder_{model_name_map[model_name]}.json"), "w") as f:
|
| 94 |
+
json.dump(text_encoder_config, f, indent=4)
|
| 95 |
+
print("Done!")
|
models/clip/_clip/simple_tokenizer.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import html
|
| 3 |
+
import os
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
|
| 6 |
+
import ftfy
|
| 7 |
+
import regex as re
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@lru_cache()
|
| 11 |
+
def default_bpe():
|
| 12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@lru_cache()
|
| 16 |
+
def bytes_to_unicode():
|
| 17 |
+
"""
|
| 18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 19 |
+
The reversible bpe codes work on unicode strings.
|
| 20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 22 |
+
This is a significant percentage of your normal, say, 32K bpe vocab.
|
| 23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 25 |
+
"""
|
| 26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
| 27 |
+
cs = bs[:]
|
| 28 |
+
n = 0
|
| 29 |
+
for b in range(2**8):
|
| 30 |
+
if b not in bs:
|
| 31 |
+
bs.append(b)
|
| 32 |
+
cs.append(2**8+n)
|
| 33 |
+
n += 1
|
| 34 |
+
cs = [chr(n) for n in cs]
|
| 35 |
+
return dict(zip(bs, cs))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_pairs(word):
|
| 39 |
+
"""Return set of symbol pairs in a word.
|
| 40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 41 |
+
"""
|
| 42 |
+
pairs = set()
|
| 43 |
+
prev_char = word[0]
|
| 44 |
+
for char in word[1:]:
|
| 45 |
+
pairs.add((prev_char, char))
|
| 46 |
+
prev_char = char
|
| 47 |
+
return pairs
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def basic_clean(text):
|
| 51 |
+
text = ftfy.fix_text(text)
|
| 52 |
+
text = html.unescape(html.unescape(text))
|
| 53 |
+
return text.strip()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def whitespace_clean(text):
|
| 57 |
+
text = re.sub(r'\s+', ' ', text)
|
| 58 |
+
text = text.strip()
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SimpleTokenizer(object):
|
| 63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
| 64 |
+
self.byte_encoder = bytes_to_unicode()
|
| 65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
| 67 |
+
merges = merges[1:49152-256-2+1]
|
| 68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
| 69 |
+
vocab = list(bytes_to_unicode().values())
|
| 70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
| 71 |
+
for merge in merges:
|
| 72 |
+
vocab.append(''.join(merge))
|
| 73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
| 74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
| 75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
| 77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
| 78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
| 79 |
+
|
| 80 |
+
def bpe(self, token):
|
| 81 |
+
if token in self.cache:
|
| 82 |
+
return self.cache[token]
|
| 83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
| 84 |
+
pairs = get_pairs(word)
|
| 85 |
+
|
| 86 |
+
if not pairs:
|
| 87 |
+
return token+'</w>'
|
| 88 |
+
|
| 89 |
+
while True:
|
| 90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
| 91 |
+
if bigram not in self.bpe_ranks:
|
| 92 |
+
break
|
| 93 |
+
first, second = bigram
|
| 94 |
+
new_word = []
|
| 95 |
+
i = 0
|
| 96 |
+
while i < len(word):
|
| 97 |
+
try:
|
| 98 |
+
j = word.index(first, i)
|
| 99 |
+
new_word.extend(word[i:j])
|
| 100 |
+
i = j
|
| 101 |
+
except:
|
| 102 |
+
new_word.extend(word[i:])
|
| 103 |
+
break
|
| 104 |
+
|
| 105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
| 106 |
+
new_word.append(first+second)
|
| 107 |
+
i += 2
|
| 108 |
+
else:
|
| 109 |
+
new_word.append(word[i])
|
| 110 |
+
i += 1
|
| 111 |
+
new_word = tuple(new_word)
|
| 112 |
+
word = new_word
|
| 113 |
+
if len(word) == 1:
|
| 114 |
+
break
|
| 115 |
+
else:
|
| 116 |
+
pairs = get_pairs(word)
|
| 117 |
+
word = ' '.join(word)
|
| 118 |
+
self.cache[token] = word
|
| 119 |
+
return word
|
| 120 |
+
|
| 121 |
+
def encode(self, text):
|
| 122 |
+
bpe_tokens = []
|
| 123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
| 124 |
+
for token in re.findall(self.pat, text):
|
| 125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
| 126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
| 127 |
+
return bpe_tokens
|
| 128 |
+
|
| 129 |
+
def decode(self, tokens):
|
| 130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
| 131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
| 132 |
+
return text
|
models/clip/_clip/text_encoder.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
|
| 4 |
+
from .blocks import LayerNorm, Transformer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class CLIPTextEncoder(nn.Module):
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
embed_dim: int,
|
| 11 |
+
context_length: int,
|
| 12 |
+
vocab_size: int,
|
| 13 |
+
transformer_width: int,
|
| 14 |
+
transformer_heads: int,
|
| 15 |
+
transformer_layers: int,
|
| 16 |
+
) -> None:
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.context_length = context_length
|
| 19 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
| 20 |
+
self.transformer = Transformer(
|
| 21 |
+
width=transformer_width,
|
| 22 |
+
layers=transformer_layers,
|
| 23 |
+
heads=transformer_heads,
|
| 24 |
+
attn_mask=self.build_attention_mask(),
|
| 25 |
+
)
|
| 26 |
+
self.vocab_size = vocab_size
|
| 27 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
| 28 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
| 29 |
+
self.ln_final = LayerNorm(transformer_width)
|
| 30 |
+
|
| 31 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
| 32 |
+
|
| 33 |
+
def build_attention_mask(self):
|
| 34 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 35 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 36 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 37 |
+
mask.fill_(float("-inf"))
|
| 38 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 39 |
+
return mask
|
| 40 |
+
|
| 41 |
+
@property
|
| 42 |
+
def dtype(self):
|
| 43 |
+
return self.transformer.resblocks[0].attn.in_proj_weight.dtype
|
| 44 |
+
|
| 45 |
+
def forward(self, text: Tensor):
|
| 46 |
+
x = self.token_embedding(text).type(self.dtype)
|
| 47 |
+
x = x + self.positional_embedding.type(self.dtype)
|
| 48 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 49 |
+
x = self.transformer(x)
|
| 50 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 51 |
+
x = self.ln_final(x).type(self.dtype)
|
| 52 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
| 53 |
+
return x
|
models/clip/_clip/utils.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import os
|
| 3 |
+
import urllib
|
| 4 |
+
import warnings
|
| 5 |
+
from typing import Union, List
|
| 6 |
+
from pkg_resources import packaging
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from typing import List, Union
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
|
| 15 |
+
from .model import build_model
|
| 16 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
from torchvision.transforms import InterpolationMode
|
| 20 |
+
BICUBIC = InterpolationMode.BICUBIC
|
| 21 |
+
except ImportError:
|
| 22 |
+
BICUBIC = Image.BICUBIC
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
| 26 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
__all__ = ["available_models", "load", "tokenize"]
|
| 30 |
+
_tokenizer = _Tokenizer()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
_MODELS = {
|
| 35 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
| 36 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
| 37 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
| 38 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
| 39 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
| 40 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
| 41 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
| 42 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
| 43 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def _download(url: str, root: str):
|
| 48 |
+
os.makedirs(root, exist_ok=True)
|
| 49 |
+
filename = os.path.basename(url)
|
| 50 |
+
|
| 51 |
+
expected_sha256 = url.split("/")[-2]
|
| 52 |
+
download_target = os.path.join(root, filename)
|
| 53 |
+
|
| 54 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 55 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 56 |
+
|
| 57 |
+
if os.path.isfile(download_target):
|
| 58 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
| 59 |
+
return download_target
|
| 60 |
+
else:
|
| 61 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
| 62 |
+
|
| 63 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 64 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
| 65 |
+
while True:
|
| 66 |
+
buffer = source.read(8192)
|
| 67 |
+
if not buffer:
|
| 68 |
+
break
|
| 69 |
+
|
| 70 |
+
output.write(buffer)
|
| 71 |
+
loop.update(len(buffer))
|
| 72 |
+
|
| 73 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
| 74 |
+
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
|
| 75 |
+
|
| 76 |
+
return download_target
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def _convert_image_to_rgb(image):
|
| 80 |
+
return image.convert("RGB")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def transform(n_px):
|
| 84 |
+
return Compose([
|
| 85 |
+
Resize(n_px, interpolation=BICUBIC),
|
| 86 |
+
CenterCrop(n_px),
|
| 87 |
+
_convert_image_to_rgb,
|
| 88 |
+
ToTensor(),
|
| 89 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
| 90 |
+
])
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def available_models() -> List[str]:
|
| 94 |
+
"""Returns the names of available CLIP models"""
|
| 95 |
+
return list(_MODELS.keys())
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
| 99 |
+
"""Load a CLIP model
|
| 100 |
+
|
| 101 |
+
Parameters
|
| 102 |
+
----------
|
| 103 |
+
name : str
|
| 104 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
| 105 |
+
|
| 106 |
+
device : Union[str, torch.device]
|
| 107 |
+
The device to put the loaded model
|
| 108 |
+
|
| 109 |
+
jit : bool
|
| 110 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
| 111 |
+
|
| 112 |
+
download_root: str
|
| 113 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
| 114 |
+
|
| 115 |
+
Returns
|
| 116 |
+
-------
|
| 117 |
+
model : torch.nn.Module
|
| 118 |
+
The CLIP model
|
| 119 |
+
|
| 120 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
| 121 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
| 122 |
+
"""
|
| 123 |
+
if name in _MODELS:
|
| 124 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
| 125 |
+
elif os.path.isfile(name):
|
| 126 |
+
model_path = name
|
| 127 |
+
else:
|
| 128 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
| 129 |
+
|
| 130 |
+
with open(model_path, 'rb') as opened_file:
|
| 131 |
+
try:
|
| 132 |
+
# loading JIT archive
|
| 133 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
| 134 |
+
state_dict = None
|
| 135 |
+
except RuntimeError:
|
| 136 |
+
# loading saved state dict
|
| 137 |
+
if jit:
|
| 138 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
| 139 |
+
jit = False
|
| 140 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
| 141 |
+
|
| 142 |
+
if not jit:
|
| 143 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
| 144 |
+
if str(device) == "cpu":
|
| 145 |
+
model.float()
|
| 146 |
+
return model
|
| 147 |
+
|
| 148 |
+
# patch the device names
|
| 149 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
| 150 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
| 151 |
+
|
| 152 |
+
def _node_get(node: torch._C.Node, key: str):
|
| 153 |
+
"""Gets attributes of a node which is polymorphic over return type.
|
| 154 |
+
|
| 155 |
+
From https://github.com/pytorch/pytorch/pull/82628
|
| 156 |
+
"""
|
| 157 |
+
sel = node.kindOf(key)
|
| 158 |
+
return getattr(node, sel)(key)
|
| 159 |
+
|
| 160 |
+
def patch_device(module):
|
| 161 |
+
try:
|
| 162 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 163 |
+
except RuntimeError:
|
| 164 |
+
graphs = []
|
| 165 |
+
|
| 166 |
+
if hasattr(module, "forward1"):
|
| 167 |
+
graphs.append(module.forward1.graph)
|
| 168 |
+
|
| 169 |
+
for graph in graphs:
|
| 170 |
+
for node in graph.findAllNodes("prim::Constant"):
|
| 171 |
+
if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
|
| 172 |
+
node.copyAttributes(device_node)
|
| 173 |
+
|
| 174 |
+
model.apply(patch_device)
|
| 175 |
+
patch_device(model.encode_image)
|
| 176 |
+
patch_device(model.encode_text)
|
| 177 |
+
|
| 178 |
+
# patch dtype to float32 on CPU
|
| 179 |
+
if str(device) == "cpu":
|
| 180 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
| 181 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
| 182 |
+
float_node = float_input.node()
|
| 183 |
+
|
| 184 |
+
def patch_float(module):
|
| 185 |
+
try:
|
| 186 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 187 |
+
except RuntimeError:
|
| 188 |
+
graphs = []
|
| 189 |
+
|
| 190 |
+
if hasattr(module, "forward1"):
|
| 191 |
+
graphs.append(module.forward1.graph)
|
| 192 |
+
|
| 193 |
+
for graph in graphs:
|
| 194 |
+
for node in graph.findAllNodes("aten::to"):
|
| 195 |
+
inputs = list(node.inputs())
|
| 196 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
| 197 |
+
if _node_get(inputs[i].node(), "value") == 5:
|
| 198 |
+
inputs[i].node().copyAttributes(float_node)
|
| 199 |
+
|
| 200 |
+
model.apply(patch_float)
|
| 201 |
+
patch_float(model.encode_image)
|
| 202 |
+
patch_float(model.encode_text)
|
| 203 |
+
|
| 204 |
+
model.float()
|
| 205 |
+
|
| 206 |
+
return model
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
| 210 |
+
"""
|
| 211 |
+
Returns the tokenized representation of given input string(s)
|
| 212 |
+
|
| 213 |
+
Parameters
|
| 214 |
+
----------
|
| 215 |
+
texts : Union[str, List[str]]
|
| 216 |
+
An input string or a list of input strings to tokenize
|
| 217 |
+
|
| 218 |
+
context_length : int
|
| 219 |
+
The context length to use; all CLIP models use 77 as the context length
|
| 220 |
+
|
| 221 |
+
truncate: bool
|
| 222 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
| 223 |
+
|
| 224 |
+
Returns
|
| 225 |
+
-------
|
| 226 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
| 227 |
+
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
| 228 |
+
"""
|
| 229 |
+
if isinstance(texts, str):
|
| 230 |
+
texts = [texts]
|
| 231 |
+
|
| 232 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
| 233 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
| 234 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
| 235 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
| 236 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 237 |
+
else:
|
| 238 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
| 239 |
+
|
| 240 |
+
for i, tokens in enumerate(all_tokens):
|
| 241 |
+
if len(tokens) > context_length:
|
| 242 |
+
if truncate:
|
| 243 |
+
tokens = tokens[:context_length]
|
| 244 |
+
tokens[-1] = eot_token
|
| 245 |
+
else:
|
| 246 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
| 247 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 248 |
+
|
| 249 |
+
return result
|
models/clip/model.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
import math
|
| 7 |
+
from typing import List, Tuple, Union, Optional
|
| 8 |
+
|
| 9 |
+
from . import _clip
|
| 10 |
+
from ..utils import _init_weights, make_resnet_layers, Bottleneck, BasicBlock
|
| 11 |
+
from .utils import format_count
|
| 12 |
+
|
| 13 |
+
curr_dir = os.path.abspath(os.path.dirname(__file__))
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# resnet50: reduction, channels, embed_dim = 32, 2048, 1024
|
| 17 |
+
# resnet101: reduction, channels, embed_dim = 32, 2048, 512
|
| 18 |
+
# resnet50x4: reduction, channels, embed_dim = 32, 2560, 640
|
| 19 |
+
# resnet50x16: reduction, channels, embed_dim = 32, 3072, 768
|
| 20 |
+
# resnet50x64: reduction, channels, embed_dim = 32, 4096, 1024
|
| 21 |
+
# vit_b_32: reduction, channels, embed_dim = 32, 768, 512
|
| 22 |
+
# vit_b_16: reduction, channels, embed_dim = 16, 768, 512
|
| 23 |
+
# vit_l_14: reduction, channels, embed_dim = 14, 1024, 768
|
| 24 |
+
# vit_l_14_336px: reduction, channels, embed_dim = 14, 1024, 768
|
| 25 |
+
|
| 26 |
+
resnet_backbones = ["resnet50", "resnet101", "resnet50x4", "resnet50x16", "resnet50x64"]
|
| 27 |
+
vit_backbones = ["vit_b_16", "vit_b_32", "vit_l_14", "vit_l_14_336px"]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class CLIP_EBC(nn.Module):
|
| 31 |
+
def __init__(
|
| 32 |
+
self,
|
| 33 |
+
backbone: str,
|
| 34 |
+
bins: List[Tuple[float, float]],
|
| 35 |
+
anchor_points: List[float],
|
| 36 |
+
reduction: Optional[int] = None,
|
| 37 |
+
freeze_text_encoder: bool = True,
|
| 38 |
+
prompt_type: str = "number",
|
| 39 |
+
input_size: Optional[int] = None,
|
| 40 |
+
num_vpt: Optional[int] = None,
|
| 41 |
+
deep_vpt: Optional[bool] = None,
|
| 42 |
+
vpt_drop: Optional[float] = None,
|
| 43 |
+
decoder_block: Optional[nn.Module] = None,
|
| 44 |
+
decoder_cfg: Optional[List[Union[str, int]]] = None,
|
| 45 |
+
) -> None:
|
| 46 |
+
super().__init__()
|
| 47 |
+
assert backbone in resnet_backbones + vit_backbones, f"Backbone should be in {resnet_backbones + vit_backbones}, got {backbone}"
|
| 48 |
+
self.backbone = backbone
|
| 49 |
+
|
| 50 |
+
# Image encoder
|
| 51 |
+
if backbone in resnet_backbones:
|
| 52 |
+
self.image_encoder = getattr(_clip, f"{backbone}_img")(features_only=True, out_indices=(-1,), reduction=reduction)
|
| 53 |
+
|
| 54 |
+
else:
|
| 55 |
+
assert input_size is not None, "Expected input_size to be an integer, got None."
|
| 56 |
+
assert num_vpt is not None, "Expected num_vpt to be an integer, got None."
|
| 57 |
+
assert deep_vpt is not None, "Expected deep_vpt to be a boolean, got None."
|
| 58 |
+
assert vpt_drop is not None, "Expected vpt_drop to be a float, got None."
|
| 59 |
+
|
| 60 |
+
self.image_encoder = getattr(_clip, f"{backbone}_img")(features_only=True, input_size=input_size)
|
| 61 |
+
self.image_encoder_depth = len(self.image_encoder.transformer.resblocks)
|
| 62 |
+
|
| 63 |
+
# Use VPT. Freeze the image encoder.
|
| 64 |
+
for param in self.image_encoder.parameters():
|
| 65 |
+
param.requires_grad = False
|
| 66 |
+
|
| 67 |
+
self.num_vpt = num_vpt
|
| 68 |
+
self.deep_vpt = deep_vpt
|
| 69 |
+
|
| 70 |
+
patch_size = self.image_encoder.patch_size[0]
|
| 71 |
+
val = math.sqrt(6. / float(3 * patch_size + self.image_encoder.channels))
|
| 72 |
+
|
| 73 |
+
for idx in range(self.image_encoder_depth if self.deep_vpt else 1):
|
| 74 |
+
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.image_encoder.channels)))
|
| 75 |
+
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
|
| 76 |
+
setattr(self, f"vpt_drop_{idx}", nn.Dropout(vpt_drop) if vpt_drop > 0 else nn.Identity())
|
| 77 |
+
|
| 78 |
+
self.encoder_reduction = self.image_encoder.reduction
|
| 79 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 80 |
+
self.channels = self.image_encoder.channels
|
| 81 |
+
self.clip_embed_dim = self.image_encoder.clip_embed_dim
|
| 82 |
+
|
| 83 |
+
if decoder_cfg is not None:
|
| 84 |
+
assert decoder_block is not None, "Expected decoder_block to be a nn.Module, got None."
|
| 85 |
+
self.image_decoder = make_resnet_layers(decoder_block, decoder_cfg, in_channels=self.channels, expansion=1, dilation=1)
|
| 86 |
+
self.image_decoder.apply(_init_weights)
|
| 87 |
+
self.channels = decoder_cfg[-1]
|
| 88 |
+
else:
|
| 89 |
+
self.image_decoder = nn.Identity()
|
| 90 |
+
|
| 91 |
+
if self.channels != self.clip_embed_dim:
|
| 92 |
+
self.projection = nn.Conv2d(in_channels=self.channels, out_channels=self.clip_embed_dim, kernel_size=1)
|
| 93 |
+
self.projection.apply(_init_weights)
|
| 94 |
+
else:
|
| 95 |
+
self.projection = nn.Identity()
|
| 96 |
+
|
| 97 |
+
# Text encoder
|
| 98 |
+
assert prompt_type in ["number", "word"], f"Expected prompt_type to be 'number' or 'word', got {prompt_type}"
|
| 99 |
+
self.prompt_type = prompt_type
|
| 100 |
+
self.text_encoder = getattr(_clip, f"{backbone}_txt")()
|
| 101 |
+
self.freeze_text_encoder = freeze_text_encoder
|
| 102 |
+
if self.freeze_text_encoder:
|
| 103 |
+
for param in self.text_encoder.parameters():
|
| 104 |
+
param.requires_grad = False
|
| 105 |
+
|
| 106 |
+
self.bins = bins
|
| 107 |
+
self.anchor_points = torch.tensor(anchor_points, dtype=torch.float32, requires_grad=False).view(1, -1, 1, 1)
|
| 108 |
+
|
| 109 |
+
self._get_text_prompts()
|
| 110 |
+
self._tokenize_text_prompts()
|
| 111 |
+
|
| 112 |
+
if self.freeze_text_encoder:
|
| 113 |
+
self._extract_text_features()
|
| 114 |
+
else:
|
| 115 |
+
self.text_features = None
|
| 116 |
+
|
| 117 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07), requires_grad=True)
|
| 118 |
+
|
| 119 |
+
def _get_text_prompts(self) -> None:
|
| 120 |
+
bins = [b[0] if b[0] == b[1] else b for b in self.bins]
|
| 121 |
+
self.text_prompts = [format_count(b, self.prompt_type) for b in bins]
|
| 122 |
+
print(f"Initialized model with text prompts: {self.text_prompts}")
|
| 123 |
+
|
| 124 |
+
def _tokenize_text_prompts(self) -> None:
|
| 125 |
+
self.text_prompts = _clip.tokenize(self.text_prompts)
|
| 126 |
+
|
| 127 |
+
def _extract_text_features(self) -> None:
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
self.text_features = self.text_encoder(self.text_prompts)
|
| 130 |
+
|
| 131 |
+
def _prepare_vpt(self, layer: int, batch_size: int, device: torch.device) -> Tensor:
|
| 132 |
+
if not self.deep_vpt:
|
| 133 |
+
assert layer == 0, f"Expected layer to be 0 when using Shallow Visual Prompt Tuning, got {layer}"
|
| 134 |
+
|
| 135 |
+
vpt = getattr(self, f"vpt_{layer}").to(device)
|
| 136 |
+
vpt = vpt.unsqueeze(0).expand(batch_size, -1, -1)
|
| 137 |
+
vpt = getattr(self, f"vpt_drop_{layer}")(vpt)
|
| 138 |
+
vpt = vpt.permute(1, 0, 2) # (num_vpt, batch_size, hidden_dim)
|
| 139 |
+
assert vpt.shape[1] == batch_size, f"Expected the VPT to have the shape [L_vis B C], got {vpt.shape}."
|
| 140 |
+
return vpt
|
| 141 |
+
|
| 142 |
+
def _forward_vpt(self, x: Tensor) -> Tuple[Tensor]:
|
| 143 |
+
device = x.device
|
| 144 |
+
batch_size, _, height, width = x.shape
|
| 145 |
+
num_h_patches, num_w_patches = height // self.image_encoder.patch_size[0], width // self.image_encoder.patch_size[1]
|
| 146 |
+
|
| 147 |
+
image_features = self.image_encoder.conv1(x)
|
| 148 |
+
image_features = image_features.reshape(batch_size, image_features.shape[1], -1)
|
| 149 |
+
image_features = image_features.permute(0, 2, 1) # (B, num_patches, C)
|
| 150 |
+
image_features = torch.cat([
|
| 151 |
+
self.image_encoder.class_embedding + torch.zeros(batch_size, 1, image_features.shape[-1], dtype=image_features.dtype, device=device),
|
| 152 |
+
image_features,
|
| 153 |
+
], dim=1) # (B, num_patches + 1, C)
|
| 154 |
+
|
| 155 |
+
pos_embedding = self.image_encoder._interpolate_pos_embed(num_h_patches, num_w_patches)
|
| 156 |
+
image_features = image_features + pos_embedding
|
| 157 |
+
image_features = self.image_encoder.ln_pre(image_features)
|
| 158 |
+
image_features = image_features.permute(1, 0, 2) # (num_patches + 1, B, C)
|
| 159 |
+
assert image_features.shape[0] == num_h_patches * num_w_patches + 1 and image_features.shape[1] == batch_size, f"Expected image_features to have shape [num_patches + 1, B, C], got {image_features.shape}."
|
| 160 |
+
|
| 161 |
+
vpt = self._prepare_vpt(0, batch_size, device)
|
| 162 |
+
for idx in range(self.image_encoder_depth):
|
| 163 |
+
# assemble
|
| 164 |
+
image_features = torch.cat([
|
| 165 |
+
image_features[:1, :, :], # CLS token
|
| 166 |
+
vpt,
|
| 167 |
+
image_features[1:, :, :],
|
| 168 |
+
], dim=0)
|
| 169 |
+
|
| 170 |
+
# transformer
|
| 171 |
+
image_features = self.image_encoder.transformer.resblocks[idx](image_features)
|
| 172 |
+
|
| 173 |
+
# disassemble
|
| 174 |
+
if idx < self.image_encoder_depth - 1:
|
| 175 |
+
if self.deep_vpt:
|
| 176 |
+
vpt = self._prepare_vpt(idx + 1, batch_size, device)
|
| 177 |
+
else:
|
| 178 |
+
vpt = image_features[1: (self.num_vpt + 1), :, :]
|
| 179 |
+
|
| 180 |
+
image_features = torch.cat([
|
| 181 |
+
image_features[:1, :, :], # CLS token
|
| 182 |
+
image_features[(self.num_vpt + 1):, :, :],
|
| 183 |
+
], dim=0)
|
| 184 |
+
|
| 185 |
+
image_features = image_features.permute(1, 0, 2) # (B, num_patches + 1, C)
|
| 186 |
+
image_features = self.image_encoder.ln_post(image_features)
|
| 187 |
+
image_features = image_features[:, 1:, :].permute(0, 2, 1) # (B, C, num_patches)
|
| 188 |
+
image_features = image_features.reshape(batch_size, -1, num_h_patches, num_w_patches)
|
| 189 |
+
return image_features
|
| 190 |
+
|
| 191 |
+
def _forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
|
| 192 |
+
device = x.device
|
| 193 |
+
|
| 194 |
+
x = self.image_encoder(x) if self.backbone in resnet_backbones else self._forward_vpt(x)
|
| 195 |
+
if self.reduction != self.encoder_reduction:
|
| 196 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 197 |
+
x = self.image_decoder(x)
|
| 198 |
+
x = self.projection(x)
|
| 199 |
+
|
| 200 |
+
image_features = x.permute(0, 2, 3, 1) # shape (B, H, W, C)
|
| 201 |
+
text_features = self.text_encoder(self.text_prompts.to(device)) if self.text_features is None else self.text_features.to(device) # shape (N, C)
|
| 202 |
+
|
| 203 |
+
image_features = F.normalize(image_features, p=2, dim=-1)
|
| 204 |
+
text_features = F.normalize(text_features, p=2, dim=-1)
|
| 205 |
+
|
| 206 |
+
# cosine similarity as logits
|
| 207 |
+
logit_scale = self.logit_scale.exp()
|
| 208 |
+
logits = logit_scale * image_features @ text_features.t() # (B, H, W, N), logits per image
|
| 209 |
+
logits = logits.permute(0, 3, 1, 2) # (B, N, H, W)
|
| 210 |
+
|
| 211 |
+
probs = logits.softmax(dim=1)
|
| 212 |
+
exp = (probs * self.anchor_points.to(x.device)).sum(dim=1, keepdim=True) # (B, 1, H, W)
|
| 213 |
+
|
| 214 |
+
if self.training:
|
| 215 |
+
return logits, exp
|
| 216 |
+
else:
|
| 217 |
+
return exp
|
| 218 |
+
|
| 219 |
+
def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
|
| 220 |
+
assert len(x.shape) == 4, f"Expected input to have shape (B C H W), got {x.shape}."
|
| 221 |
+
if "vit" in self.backbone:
|
| 222 |
+
image_height, image_width = x.shape[2], x.shape[3]
|
| 223 |
+
window_height, window_width = self.image_encoder.input_resolution
|
| 224 |
+
|
| 225 |
+
if self.training:
|
| 226 |
+
assert (image_height, image_width) == (window_height, window_width), f"Expected input to have shape ({window_height} {window_width}), got ({image_height} {image_width})."
|
| 227 |
+
return self._forward(x)
|
| 228 |
+
|
| 229 |
+
elif (image_height, image_width) == (window_height, window_width): # evaluation, input size = training size
|
| 230 |
+
return self._forward(x)
|
| 231 |
+
|
| 232 |
+
else: # evaluation, input_size != training size, use sliding window prediction
|
| 233 |
+
stride_height, stride_width = window_height, window_width
|
| 234 |
+
reduction = self.reduction
|
| 235 |
+
|
| 236 |
+
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
|
| 237 |
+
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)
|
| 238 |
+
|
| 239 |
+
windows = []
|
| 240 |
+
for i in range(num_rows):
|
| 241 |
+
for j in range(num_cols):
|
| 242 |
+
x_start, y_start = i * stride_height, j * stride_width
|
| 243 |
+
x_end, y_end = x_start + window_height, y_start + window_width
|
| 244 |
+
if x_end > image_height:
|
| 245 |
+
x_start, x_end = image_height - window_height, image_height
|
| 246 |
+
if y_end > image_width:
|
| 247 |
+
y_start, y_end = image_width - window_width, image_width
|
| 248 |
+
|
| 249 |
+
window = x[:, :, x_start:x_end, y_start:y_end]
|
| 250 |
+
windows.append(window)
|
| 251 |
+
|
| 252 |
+
windows = torch.cat(windows, dim=0).to(x.device) # batched windows, shape: (num_windows, c, h, w)
|
| 253 |
+
|
| 254 |
+
preds = self._forward(windows)
|
| 255 |
+
preds = preds.cpu().detach().numpy()
|
| 256 |
+
|
| 257 |
+
# assemble the density map
|
| 258 |
+
pred_map = np.zeros((preds.shape[1], image_height // reduction, image_width // reduction), dtype=np.float32)
|
| 259 |
+
count_map = np.zeros((preds.shape[1], image_height // reduction, image_width // reduction), dtype=np.float32)
|
| 260 |
+
idx = 0
|
| 261 |
+
for i in range(num_rows):
|
| 262 |
+
for j in range(num_cols):
|
| 263 |
+
x_start, y_start = i * stride_height, j * stride_width
|
| 264 |
+
x_end, y_end = x_start + window_height, y_start + window_width
|
| 265 |
+
if x_end > image_height:
|
| 266 |
+
x_start, x_end = image_height - window_height, image_height
|
| 267 |
+
if y_end > image_width:
|
| 268 |
+
y_start, y_end = image_width - window_width, image_width
|
| 269 |
+
|
| 270 |
+
pred_map[:, (x_start // reduction): (x_end // reduction), (y_start // reduction): (y_end // reduction)] += preds[idx, :, :, :]
|
| 271 |
+
count_map[:, (x_start // reduction): (x_end // reduction), (y_start // reduction): (y_end // reduction)] += 1.
|
| 272 |
+
idx += 1
|
| 273 |
+
|
| 274 |
+
pred_map /= count_map # average the overlapping regions
|
| 275 |
+
return torch.tensor(pred_map).unsqueeze(0) # shape: (1, 1, h // reduction, w // reduction)
|
| 276 |
+
|
| 277 |
+
else:
|
| 278 |
+
return self._forward(x)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def _clip_ebc(
|
| 282 |
+
backbone: str,
|
| 283 |
+
bins: List[Tuple[float, float]],
|
| 284 |
+
anchor_points: List[float],
|
| 285 |
+
reduction: Optional[int] = None,
|
| 286 |
+
freeze_text_encoder: bool = True,
|
| 287 |
+
prompt_type: str = "number",
|
| 288 |
+
input_size: Optional[int] = None,
|
| 289 |
+
num_vpt: Optional[int] = None,
|
| 290 |
+
deep_vpt: Optional[bool] = None,
|
| 291 |
+
vpt_drop: Optional[float] = None,
|
| 292 |
+
decoder_block: Optional[nn.Module] = None,
|
| 293 |
+
decoder_cfg: Optional[List[Union[str, int]]] = None
|
| 294 |
+
) -> CLIP_EBC:
|
| 295 |
+
if backbone in resnet_backbones:
|
| 296 |
+
decoder_block = Bottleneck
|
| 297 |
+
if decoder_cfg is None:
|
| 298 |
+
if backbone == "resnet50":
|
| 299 |
+
decoder_cfg = [2048]
|
| 300 |
+
elif backbone == "resnet50x4":
|
| 301 |
+
decoder_cfg = [1280]
|
| 302 |
+
elif backbone == "resnet50x16":
|
| 303 |
+
decoder_cfg = [1536]
|
| 304 |
+
elif backbone == "resnet50x64":
|
| 305 |
+
decoder_cfg = [2048]
|
| 306 |
+
else: # backbone == "resnet101"
|
| 307 |
+
decoder_cfg = [2048, 1024]
|
| 308 |
+
else:
|
| 309 |
+
decoder_block = BasicBlock
|
| 310 |
+
if decoder_cfg is None:
|
| 311 |
+
if backbone == "vit_b_16":
|
| 312 |
+
decoder_cfg = [768]
|
| 313 |
+
elif backbone == "vit_b_32":
|
| 314 |
+
decoder_cfg = [768]
|
| 315 |
+
else: # backbone == "vit_l_14"
|
| 316 |
+
decoder_cfg = [1024]
|
| 317 |
+
|
| 318 |
+
return CLIP_EBC(
|
| 319 |
+
backbone=backbone,
|
| 320 |
+
bins=bins,
|
| 321 |
+
anchor_points=anchor_points,
|
| 322 |
+
reduction=reduction,
|
| 323 |
+
freeze_text_encoder=freeze_text_encoder,
|
| 324 |
+
prompt_type=prompt_type,
|
| 325 |
+
input_size=input_size,
|
| 326 |
+
num_vpt=num_vpt,
|
| 327 |
+
deep_vpt=deep_vpt,
|
| 328 |
+
vpt_drop=vpt_drop,
|
| 329 |
+
decoder_block=decoder_block,
|
| 330 |
+
decoder_cfg=decoder_cfg,
|
| 331 |
+
)
|
models/clip/utils.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Union, Tuple
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
num_to_word = {
|
| 5 |
+
"0": "zero", "1": "one", "2": "two", "3": "three", "4": "four", "5": "five", "6": "six", "7": "seven", "8": "eight", "9": "nine",
|
| 6 |
+
"10": "ten", "11": "eleven", "12": "twelve", "13": "thirteen", "14": "fourteen", "15": "fifteen", "16": "sixteen", "17": "seventeen", "18": "eighteen", "19": "nineteen",
|
| 7 |
+
"20": "twenty", "21": "twenty-one", "22": "twenty-two", "23": "twenty-three", "24": "twenty-four", "25": "twenty-five", "26": "twenty-six", "27": "twenty-seven", "28": "twenty-eight", "29": "twenty-nine",
|
| 8 |
+
"30": "thirty", "31": "thirty-one", "32": "thirty-two", "33": "thirty-three", "34": "thirty-four", "35": "thirty-five", "36": "thirty-six", "37": "thirty-seven", "38": "thirty-eight", "39": "thirty-nine",
|
| 9 |
+
"40": "forty", "41": "forty-one", "42": "forty-two", "43": "forty-three", "44": "forty-four", "45": "forty-five", "46": "forty-six", "47": "forty-seven", "48": "forty-eight", "49": "forty-nine",
|
| 10 |
+
"50": "fifty", "51": "fifty-one", "52": "fifty-two", "53": "fifty-three", "54": "fifty-four", "55": "fifty-five", "56": "fifty-six", "57": "fifty-seven", "58": "fifty-eight", "59": "fifty-nine",
|
| 11 |
+
"60": "sixty", "61": "sixty-one", "62": "sixty-two", "63": "sixty-three", "64": "sixty-four", "65": "sixty-five", "66": "sixty-six", "67": "sixty-seven", "68": "sixty-eight", "69": "sixty-nine",
|
| 12 |
+
"70": "seventy", "71": "seventy-one", "72": "seventy-two", "73": "seventy-three", "74": "seventy-four", "75": "seventy-five", "76": "seventy-six", "77": "seventy-seven", "78": "seventy-eight", "79": "seventy-nine",
|
| 13 |
+
"80": "eighty", "81": "eighty-one", "82": "eighty-two", "83": "eighty-three", "84": "eighty-four", "85": "eighty-five", "86": "eighty-six", "87": "eighty-seven", "88": "eighty-eight", "89": "eighty-nine",
|
| 14 |
+
"90": "ninety", "91": "ninety-one", "92": "ninety-two", "93": "ninety-three", "94": "ninety-four", "95": "ninety-five", "96": "ninety-six", "97": "ninety-seven", "98": "ninety-eight", "99": "ninety-nine",
|
| 15 |
+
"100": "one hundred", "200": "two hundred", "300": "three hundred", "400": "four hundred", "500": "five hundred", "600": "six hundred", "700": "seven hundred", "800": "eight hundred", "900": "nine hundred",
|
| 16 |
+
"1000": "one thousand"
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def num2word(num: Union[int, str]) -> str:
|
| 21 |
+
"""
|
| 22 |
+
Convert the input number to the corresponding English word. For example, 1 -> "one", 2 -> "two", etc.
|
| 23 |
+
"""
|
| 24 |
+
num = str(int(num))
|
| 25 |
+
return num_to_word.get(num, num)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def format_count(count: Union[float, Tuple[float, float]], prompt_type: str = "word") -> str:
|
| 29 |
+
if count == 0:
|
| 30 |
+
return "There is no person." if prompt_type == "word" else "There is 0 person."
|
| 31 |
+
elif count == 1:
|
| 32 |
+
return "There is one person." if prompt_type == "word" else "There is 1 person."
|
| 33 |
+
elif isinstance(count, (int, float)):
|
| 34 |
+
return f"There are {num2word(int(count))} people." if prompt_type == "word" else f"There are {int(count)} people."
|
| 35 |
+
elif count[1] == float("inf"):
|
| 36 |
+
return f"There are more than {num2word(int(count[0]))} people." if prompt_type == "word" else f"There are more than {int(count[0])} people."
|
| 37 |
+
else: # count is a tuple of finite numbers
|
| 38 |
+
left, right = int(count[0]), int(count[1])
|
| 39 |
+
left, right = num2word(left), num2word(right) if prompt_type == "word" else left, right
|
| 40 |
+
return f"There are between {left} and {right} people."
|
models/encoder/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .vgg import vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn
|
| 2 |
+
from .vit import vit_b_16, vit_b_32, vit_l_16, vit_l_32, vit_h_14
|
| 3 |
+
from .timm_models import _timm_encoder
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"vgg11", "vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn", "vgg19", "vgg19_bn",
|
| 8 |
+
"vit_b_16", "vit_b_32", "vit_l_16", "vit_l_32", "vit_h_14",
|
| 9 |
+
"_timm_encoder",
|
| 10 |
+
]
|
models/encoder/timm_models.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from timm import create_model, list_models
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
from warnings import warn
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TIMMEncoder(nn.Module):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
backbone: str,
|
| 13 |
+
reduction: Optional[int] = None,
|
| 14 |
+
) -> None:
|
| 15 |
+
super().__init__()
|
| 16 |
+
assert backbone in list_models(), f"Backbone {backbone} not available in timm"
|
| 17 |
+
encoder = create_model(backbone, pretrained=True, features_only=True, out_indices=[-1])
|
| 18 |
+
encoder_reduction = encoder.feature_info.reduction()[-1]
|
| 19 |
+
|
| 20 |
+
if reduction <= 16:
|
| 21 |
+
if "resnet" in backbone:
|
| 22 |
+
if "resnet18" in backbone or "resnet34" in backbone:
|
| 23 |
+
encoder.layer4[0].conv1.stride = (1, 1)
|
| 24 |
+
encoder.layer4[0].downsample[0].stride = (1, 1)
|
| 25 |
+
else:
|
| 26 |
+
encoder.layer4[0].conv2.stride = (1, 1)
|
| 27 |
+
encoder.layer4[0].downsample[0].stride = (1, 1)
|
| 28 |
+
encoder_reduction = encoder_reduction // 2
|
| 29 |
+
|
| 30 |
+
elif "mobilenetv2" in backbone:
|
| 31 |
+
encoder.blocks[5][0].conv_dw.stride = (1, 1)
|
| 32 |
+
encoder_reduction = encoder_reduction // 2
|
| 33 |
+
|
| 34 |
+
elif "densenet" in backbone:
|
| 35 |
+
encoder.features_transition3.pool = nn.Identity()
|
| 36 |
+
encoder_reduction = encoder_reduction // 2
|
| 37 |
+
|
| 38 |
+
else:
|
| 39 |
+
warn(f"Reduction for {backbone} not handled. Using default reduction of {encoder_reduction}")
|
| 40 |
+
|
| 41 |
+
self.encoder = encoder
|
| 42 |
+
self.encoder_reduction = encoder_reduction
|
| 43 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 44 |
+
self.channels = self.encoder.feature_info.channels()[-1]
|
| 45 |
+
|
| 46 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 47 |
+
x = self.encoder(x)[-1]
|
| 48 |
+
if self.encoder_reduction != self.reduction:
|
| 49 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 50 |
+
return x
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def _timm_encoder(backbone: str, reduction: Optional[int] = None) -> TIMMEncoder:
|
| 54 |
+
return TIMMEncoder(backbone, reduction)
|
models/encoder/vgg.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn, Tensor
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torch.hub import load_state_dict_from_url
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
from ..utils import make_vgg_layers, vgg_cfgs, vgg_urls
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class VGG(nn.Module):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
features: nn.Module,
|
| 13 |
+
reduction: Optional[int] = None,
|
| 14 |
+
) -> None:
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.features = features
|
| 17 |
+
self.encoder_reduction = 16
|
| 18 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 19 |
+
self.channels = 512
|
| 20 |
+
|
| 21 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 22 |
+
x = self.features(x)
|
| 23 |
+
if self.encoder_reduction != self.reduction:
|
| 24 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 25 |
+
return x
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def _load_weights(model: VGG, url: str) -> VGG:
|
| 29 |
+
state_dict = load_state_dict_from_url(url)
|
| 30 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 31 |
+
print("Loading pre-trained weights")
|
| 32 |
+
if len(missing_keys) > 0:
|
| 33 |
+
print(f"Missing keys: {missing_keys}")
|
| 34 |
+
if len(unexpected_keys) > 0:
|
| 35 |
+
print(f"Unexpected keys: {unexpected_keys}")
|
| 36 |
+
return model
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def vgg11(reduction: int = 8) -> VGG:
|
| 40 |
+
model = VGG(make_vgg_layers(vgg_cfgs["A"]), reduction=reduction)
|
| 41 |
+
return _load_weights(model, vgg_urls["vgg11"])
|
| 42 |
+
|
| 43 |
+
def vgg11_bn(reduction: int = 8) -> VGG:
|
| 44 |
+
model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True), reduction=reduction)
|
| 45 |
+
return _load_weights(model, vgg_urls["vgg11_bn"])
|
| 46 |
+
|
| 47 |
+
def vgg13(reduction: int = 8) -> VGG:
|
| 48 |
+
model = VGG(make_vgg_layers(vgg_cfgs["B"]), reduction=reduction)
|
| 49 |
+
return _load_weights(model, vgg_urls["vgg13"])
|
| 50 |
+
|
| 51 |
+
def vgg13_bn(reduction: int = 8) -> VGG:
|
| 52 |
+
model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True), reduction=reduction)
|
| 53 |
+
return _load_weights(model, vgg_urls["vgg13_bn"])
|
| 54 |
+
|
| 55 |
+
def vgg16(reduction: int = 8) -> VGG:
|
| 56 |
+
model = VGG(make_vgg_layers(vgg_cfgs["D"]), reduction=reduction)
|
| 57 |
+
return _load_weights(model, vgg_urls["vgg16"])
|
| 58 |
+
|
| 59 |
+
def vgg16_bn(reduction: int = 8) -> VGG:
|
| 60 |
+
model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True), reduction=reduction)
|
| 61 |
+
return _load_weights(model, vgg_urls["vgg16_bn"])
|
| 62 |
+
|
| 63 |
+
def vgg19(reduction: int = 8) -> VGG:
|
| 64 |
+
model = VGG(make_vgg_layers(vgg_cfgs["E"]), reduction=reduction)
|
| 65 |
+
return _load_weights(model, vgg_urls["vgg19"])
|
| 66 |
+
|
| 67 |
+
def vgg19_bn(reduction: int = 8) -> VGG:
|
| 68 |
+
model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True), reduction=reduction)
|
| 69 |
+
return _load_weights(model, vgg_urls["vgg19_bn"])
|
models/encoder/vit.py
ADDED
|
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from functools import partial
|
| 4 |
+
from typing import Any, Callable, List, NamedTuple, Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn, Tensor
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch.hub import load_state_dict_from_url
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
|
| 12 |
+
from ..utils import Conv2dNormActivation, MLP
|
| 13 |
+
from ..utils import _log_api_usage_once
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
weights = {
|
| 17 |
+
"vit_b_16": "https://download.pytorch.org/models/vit_b_16-c867db91.pth",
|
| 18 |
+
"vit_b_32": "https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
|
| 19 |
+
"vit_l_16": "https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
|
| 20 |
+
"vit_l_32": "https://download.pytorch.org/models/vit_l_32-c7638314.pth",
|
| 21 |
+
"vit_h_14": "https://download.pytorch.org/models/vit_h_14-6kbcf7eb.pth",
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class ConvStemConfig(NamedTuple):
|
| 26 |
+
out_channels: int
|
| 27 |
+
kernel_size: int
|
| 28 |
+
stride: int
|
| 29 |
+
norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d
|
| 30 |
+
activation_layer: Callable[..., nn.Module] = nn.ReLU
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class MLPBlock(MLP):
|
| 34 |
+
"""Transformer MLP block."""
|
| 35 |
+
|
| 36 |
+
_version = 2
|
| 37 |
+
|
| 38 |
+
def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
|
| 39 |
+
super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout)
|
| 40 |
+
|
| 41 |
+
for m in self.modules():
|
| 42 |
+
if isinstance(m, nn.Linear):
|
| 43 |
+
nn.init.xavier_uniform_(m.weight)
|
| 44 |
+
if m.bias is not None:
|
| 45 |
+
nn.init.normal_(m.bias, std=1e-6)
|
| 46 |
+
|
| 47 |
+
def _load_from_state_dict(
|
| 48 |
+
self,
|
| 49 |
+
state_dict,
|
| 50 |
+
prefix,
|
| 51 |
+
local_metadata,
|
| 52 |
+
strict,
|
| 53 |
+
missing_keys,
|
| 54 |
+
unexpected_keys,
|
| 55 |
+
error_msgs,
|
| 56 |
+
):
|
| 57 |
+
version = local_metadata.get("version", None)
|
| 58 |
+
|
| 59 |
+
if version is None or version < 2:
|
| 60 |
+
# Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053
|
| 61 |
+
for i in range(2):
|
| 62 |
+
for type in ["weight", "bias"]:
|
| 63 |
+
old_key = f"{prefix}linear_{i+1}.{type}"
|
| 64 |
+
new_key = f"{prefix}{3*i}.{type}"
|
| 65 |
+
if old_key in state_dict:
|
| 66 |
+
state_dict[new_key] = state_dict.pop(old_key)
|
| 67 |
+
|
| 68 |
+
super()._load_from_state_dict(
|
| 69 |
+
state_dict,
|
| 70 |
+
prefix,
|
| 71 |
+
local_metadata,
|
| 72 |
+
strict,
|
| 73 |
+
missing_keys,
|
| 74 |
+
unexpected_keys,
|
| 75 |
+
error_msgs,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class EncoderBlock(nn.Module):
|
| 80 |
+
"""Transformer encoder block."""
|
| 81 |
+
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
num_heads: int,
|
| 85 |
+
hidden_dim: int,
|
| 86 |
+
mlp_dim: int,
|
| 87 |
+
dropout: float,
|
| 88 |
+
attention_dropout: float,
|
| 89 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
| 90 |
+
):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.num_heads = num_heads
|
| 93 |
+
|
| 94 |
+
# Attention block
|
| 95 |
+
self.ln_1 = norm_layer(hidden_dim)
|
| 96 |
+
self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
|
| 97 |
+
self.dropout = nn.Dropout(dropout)
|
| 98 |
+
|
| 99 |
+
# MLP block
|
| 100 |
+
self.ln_2 = norm_layer(hidden_dim)
|
| 101 |
+
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)
|
| 102 |
+
|
| 103 |
+
def forward(self, input: Tensor):
|
| 104 |
+
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
|
| 105 |
+
x = self.ln_1(input)
|
| 106 |
+
x, _ = self.self_attention(x, x, x, need_weights=False)
|
| 107 |
+
x = self.dropout(x)
|
| 108 |
+
x = x + input
|
| 109 |
+
|
| 110 |
+
y = self.ln_2(x)
|
| 111 |
+
y = self.mlp(y)
|
| 112 |
+
return x + y
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class Encoder(nn.Module):
|
| 116 |
+
"""Transformer Model Encoder for sequence to sequence translation."""
|
| 117 |
+
def __init__(
|
| 118 |
+
self,
|
| 119 |
+
num_h_patches: int,
|
| 120 |
+
num_w_patches: int,
|
| 121 |
+
num_layers: int,
|
| 122 |
+
num_heads: int,
|
| 123 |
+
hidden_dim: int,
|
| 124 |
+
mlp_dim: int,
|
| 125 |
+
dropout: float,
|
| 126 |
+
attention_dropout: float,
|
| 127 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
| 128 |
+
):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.num_h_patches = num_h_patches
|
| 131 |
+
self.num_w_patches = num_w_patches
|
| 132 |
+
|
| 133 |
+
# Note that batch_size is on the first dim because
|
| 134 |
+
# we have batch_first=True in nn.MultiAttention() by default
|
| 135 |
+
seq_length = num_h_patches * num_w_patches + 1 # +1 for the class token
|
| 136 |
+
self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT
|
| 137 |
+
self.dropout = nn.Dropout(dropout)
|
| 138 |
+
layers: OrderedDict[str, nn.Module] = OrderedDict()
|
| 139 |
+
for i in range(num_layers):
|
| 140 |
+
layers[f"encoder_layer_{i}"] = EncoderBlock(
|
| 141 |
+
num_heads,
|
| 142 |
+
hidden_dim,
|
| 143 |
+
mlp_dim,
|
| 144 |
+
dropout,
|
| 145 |
+
attention_dropout,
|
| 146 |
+
norm_layer,
|
| 147 |
+
)
|
| 148 |
+
self.layers = nn.Sequential(layers)
|
| 149 |
+
self.ln = norm_layer(hidden_dim)
|
| 150 |
+
|
| 151 |
+
def _get_pos_embedding(self, n_h: int, n_w: int) -> Tensor:
|
| 152 |
+
if n_h == self.num_h_patches and n_w == self.num_w_patches:
|
| 153 |
+
return self.pos_embedding
|
| 154 |
+
else:
|
| 155 |
+
pos_embedding = self.pos_embedding[:, 1:, :]
|
| 156 |
+
pos_embedding = rearrange(pos_embedding, "1 (h w) d -> 1 d h w", h=self.num_h_patches, w=self.num_w_patches)
|
| 157 |
+
pos_embedding = F.interpolate(pos_embedding, size=(n_h, n_w), mode="bicubic")
|
| 158 |
+
pos_embedding = rearrange(pos_embedding, "1 d h w -> 1 (h w) d")
|
| 159 |
+
return torch.cat([self.pos_embedding[:, :1, :], pos_embedding], dim=1)
|
| 160 |
+
|
| 161 |
+
def forward(self, input: Tensor, n_h: int, n_w: int) -> Tensor:
|
| 162 |
+
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
|
| 163 |
+
input = input + self._get_pos_embedding(n_h, n_w)
|
| 164 |
+
return self.ln(self.layers(self.dropout(input)))
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class VisionTransformer(nn.Module):
|
| 168 |
+
"""Vision Transformer as a feature extractor."""
|
| 169 |
+
|
| 170 |
+
def __init__(
|
| 171 |
+
self,
|
| 172 |
+
image_size: int,
|
| 173 |
+
patch_size: int,
|
| 174 |
+
num_layers: int,
|
| 175 |
+
num_heads: int,
|
| 176 |
+
hidden_dim: int,
|
| 177 |
+
mlp_dim: int,
|
| 178 |
+
dropout: float = 0.0,
|
| 179 |
+
attention_dropout: float = 0.0,
|
| 180 |
+
# num_classes: int = 1000, # No need for the classification head as we only need the features
|
| 181 |
+
reduction: Optional[int] = None,
|
| 182 |
+
representation_size: Optional[int] = None,
|
| 183 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
| 184 |
+
conv_stem_configs: Optional[List[ConvStemConfig]] = None,
|
| 185 |
+
):
|
| 186 |
+
super().__init__()
|
| 187 |
+
_log_api_usage_once(self)
|
| 188 |
+
torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")
|
| 189 |
+
self.image_size = image_size
|
| 190 |
+
self.patch_size = patch_size
|
| 191 |
+
self.hidden_dim = hidden_dim
|
| 192 |
+
self.mlp_dim = mlp_dim
|
| 193 |
+
self.attention_dropout = attention_dropout
|
| 194 |
+
self.dropout = dropout
|
| 195 |
+
# self.num_classes = num_classes
|
| 196 |
+
self.representation_size = representation_size
|
| 197 |
+
self.norm_layer = norm_layer
|
| 198 |
+
|
| 199 |
+
if conv_stem_configs is not None:
|
| 200 |
+
# As per https://arxiv.org/abs/2106.14881
|
| 201 |
+
seq_proj = nn.Sequential()
|
| 202 |
+
prev_channels = 3
|
| 203 |
+
for i, conv_stem_layer_config in enumerate(conv_stem_configs):
|
| 204 |
+
seq_proj.add_module(
|
| 205 |
+
f"conv_bn_relu_{i}",
|
| 206 |
+
Conv2dNormActivation(
|
| 207 |
+
in_channels=prev_channels,
|
| 208 |
+
out_channels=conv_stem_layer_config.out_channels,
|
| 209 |
+
kernel_size=conv_stem_layer_config.kernel_size,
|
| 210 |
+
stride=conv_stem_layer_config.stride,
|
| 211 |
+
norm_layer=conv_stem_layer_config.norm_layer,
|
| 212 |
+
activation_layer=conv_stem_layer_config.activation_layer,
|
| 213 |
+
),
|
| 214 |
+
)
|
| 215 |
+
prev_channels = conv_stem_layer_config.out_channels
|
| 216 |
+
seq_proj.add_module(
|
| 217 |
+
"conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)
|
| 218 |
+
)
|
| 219 |
+
self.conv_proj: nn.Module = seq_proj
|
| 220 |
+
else:
|
| 221 |
+
self.conv_proj = nn.Conv2d(
|
| 222 |
+
in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
seq_length = (image_size // patch_size) ** 2
|
| 226 |
+
|
| 227 |
+
# Add a class token
|
| 228 |
+
self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
|
| 229 |
+
seq_length += 1
|
| 230 |
+
|
| 231 |
+
self.encoder = Encoder(
|
| 232 |
+
image_size // patch_size,
|
| 233 |
+
image_size // patch_size,
|
| 234 |
+
num_layers,
|
| 235 |
+
num_heads,
|
| 236 |
+
hidden_dim,
|
| 237 |
+
mlp_dim,
|
| 238 |
+
dropout,
|
| 239 |
+
attention_dropout,
|
| 240 |
+
norm_layer,
|
| 241 |
+
)
|
| 242 |
+
self.seq_length = seq_length
|
| 243 |
+
|
| 244 |
+
# heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
|
| 245 |
+
# if representation_size is None:
|
| 246 |
+
# heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
|
| 247 |
+
# else:
|
| 248 |
+
# heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
|
| 249 |
+
# heads_layers["act"] = nn.Tanh()
|
| 250 |
+
# heads_layers["head"] = nn.Linear(representation_size, num_classes)
|
| 251 |
+
|
| 252 |
+
# self.heads = nn.Sequential(heads_layers)
|
| 253 |
+
|
| 254 |
+
if isinstance(self.conv_proj, nn.Conv2d):
|
| 255 |
+
# Init the patchify stem
|
| 256 |
+
fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]
|
| 257 |
+
nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))
|
| 258 |
+
if self.conv_proj.bias is not None:
|
| 259 |
+
nn.init.zeros_(self.conv_proj.bias)
|
| 260 |
+
elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):
|
| 261 |
+
# Init the last 1x1 conv of the conv stem
|
| 262 |
+
nn.init.normal_(
|
| 263 |
+
self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)
|
| 264 |
+
)
|
| 265 |
+
if self.conv_proj.conv_last.bias is not None:
|
| 266 |
+
nn.init.zeros_(self.conv_proj.conv_last.bias)
|
| 267 |
+
|
| 268 |
+
# if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
|
| 269 |
+
# fan_in = self.heads.pre_logits.in_features
|
| 270 |
+
# nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
|
| 271 |
+
# nn.init.zeros_(self.heads.pre_logits.bias)
|
| 272 |
+
|
| 273 |
+
# if isinstance(self.heads.head, nn.Linear):
|
| 274 |
+
# nn.init.zeros_(self.heads.head.weight)
|
| 275 |
+
# nn.init.zeros_(self.heads.head.bias)
|
| 276 |
+
|
| 277 |
+
self.encoder_reduction = self.patch_size
|
| 278 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 279 |
+
self.channels = hidden_dim
|
| 280 |
+
|
| 281 |
+
def _process_input(self, x: Tensor) -> Tuple[Tensor, int, int, int]:
|
| 282 |
+
# (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
|
| 283 |
+
x = self.conv_proj(x)
|
| 284 |
+
n, _, n_h, n_w = x.shape
|
| 285 |
+
# (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
|
| 286 |
+
x = x.reshape(n, self.hidden_dim, n_h * n_w)
|
| 287 |
+
|
| 288 |
+
# (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
|
| 289 |
+
# The self attention layer expects inputs in the format (N, S, E)
|
| 290 |
+
# where S is the source sequence length, N is the batch size, E is the
|
| 291 |
+
# embedding dimension
|
| 292 |
+
x = x.permute(0, 2, 1)
|
| 293 |
+
|
| 294 |
+
return x, n, n_h, n_w
|
| 295 |
+
|
| 296 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 297 |
+
# Reshape and permute the input tensor
|
| 298 |
+
x, n, n_h, n_w = self._process_input(x)
|
| 299 |
+
|
| 300 |
+
# Expand the class token to the full batch
|
| 301 |
+
batch_class_token = self.class_token.expand(n, -1, -1)
|
| 302 |
+
x = torch.cat([batch_class_token, x], dim=1)
|
| 303 |
+
|
| 304 |
+
x = self.encoder(x, n_h, n_w) # Allows input image to be of any size.
|
| 305 |
+
|
| 306 |
+
# Classifier "token" as used by standard language architectures
|
| 307 |
+
# x = x[:, 0]
|
| 308 |
+
|
| 309 |
+
# x = self.heads(x)
|
| 310 |
+
|
| 311 |
+
x = x[:, 1:, :]
|
| 312 |
+
x = rearrange(x, "n (h w) d -> n d h w", h=n_h, w=n_w)
|
| 313 |
+
if self.encoder_reduction != self.reduction:
|
| 314 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 315 |
+
return x # To be consistent with timm models
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def _vision_transformer(
|
| 319 |
+
patch_size: int,
|
| 320 |
+
num_layers: int,
|
| 321 |
+
num_heads: int,
|
| 322 |
+
hidden_dim: int,
|
| 323 |
+
mlp_dim: int,
|
| 324 |
+
weights: str,
|
| 325 |
+
**kwargs: Any,
|
| 326 |
+
) -> VisionTransformer:
|
| 327 |
+
image_size = kwargs.pop("image_size", 224)
|
| 328 |
+
|
| 329 |
+
model = VisionTransformer(
|
| 330 |
+
image_size=image_size,
|
| 331 |
+
patch_size=patch_size,
|
| 332 |
+
num_layers=num_layers,
|
| 333 |
+
num_heads=num_heads,
|
| 334 |
+
hidden_dim=hidden_dim,
|
| 335 |
+
mlp_dim=mlp_dim,
|
| 336 |
+
**kwargs,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
if weights is not None:
|
| 340 |
+
weights = load_state_dict_from_url(weights, progress=kwargs.get("progress", True))
|
| 341 |
+
missing_keys, unexpected_keys = model.load_state_dict(weights, strict=False)
|
| 342 |
+
if len(missing_keys) > 0:
|
| 343 |
+
print(f"Missing keys: {missing_keys}")
|
| 344 |
+
if len(unexpected_keys) > 0:
|
| 345 |
+
print(f"Unexpected keys: {unexpected_keys}")
|
| 346 |
+
|
| 347 |
+
return model
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def interpolate_embeddings(
|
| 351 |
+
image_size: int,
|
| 352 |
+
patch_size: int,
|
| 353 |
+
pos_embedding: Tensor,
|
| 354 |
+
interpolation_mode: str = "bicubic",
|
| 355 |
+
) -> Tensor:
|
| 356 |
+
"""This function helps interpolate positional embeddings during checkpoint loading,
|
| 357 |
+
especially when you want to apply a pre-trained model on images with different resolution.
|
| 358 |
+
|
| 359 |
+
Args:
|
| 360 |
+
image_size (int): Image size of the new model.
|
| 361 |
+
patch_size (int): Patch size of the new model.
|
| 362 |
+
model_state (OrderedDict[str, Tensor]): State dict of the pre-trained model.
|
| 363 |
+
interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
|
| 364 |
+
reset_heads (bool): If true, not copying the state of heads. Default: False.
|
| 365 |
+
|
| 366 |
+
Returns:
|
| 367 |
+
Tensor: The interpolated positional embedding.
|
| 368 |
+
"""
|
| 369 |
+
# Shape of pos_embedding is (1, seq_length, hidden_dim)
|
| 370 |
+
n, seq_length, hidden_dim = pos_embedding.shape
|
| 371 |
+
if n != 1:
|
| 372 |
+
raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")
|
| 373 |
+
|
| 374 |
+
new_seq_length = (image_size // patch_size) ** 2 + 1
|
| 375 |
+
|
| 376 |
+
# Need to interpolate the weights for the position embedding.
|
| 377 |
+
# We do this by reshaping the positions embeddings to a 2d grid, performing
|
| 378 |
+
# an interpolation in the (h, w) space and then reshaping back to a 1d grid.
|
| 379 |
+
if new_seq_length != seq_length:
|
| 380 |
+
# The class token embedding shouldn't be interpolated, so we split it up.
|
| 381 |
+
seq_length -= 1
|
| 382 |
+
new_seq_length -= 1
|
| 383 |
+
pos_embedding_token = pos_embedding[:, :1, :]
|
| 384 |
+
pos_embedding_img = pos_embedding[:, 1:, :]
|
| 385 |
+
|
| 386 |
+
# (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
|
| 387 |
+
pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
|
| 388 |
+
seq_length_1d = int(math.sqrt(seq_length))
|
| 389 |
+
if seq_length_1d * seq_length_1d != seq_length:
|
| 390 |
+
raise ValueError(
|
| 391 |
+
f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
# (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
|
| 395 |
+
pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
|
| 396 |
+
new_seq_length_1d = image_size // patch_size
|
| 397 |
+
|
| 398 |
+
# Perform interpolation.
|
| 399 |
+
# (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
|
| 400 |
+
new_pos_embedding_img = nn.functional.interpolate(
|
| 401 |
+
pos_embedding_img,
|
| 402 |
+
size=new_seq_length_1d,
|
| 403 |
+
mode=interpolation_mode,
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
# (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
|
| 407 |
+
new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)
|
| 408 |
+
|
| 409 |
+
# (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
|
| 410 |
+
new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
|
| 411 |
+
new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)
|
| 412 |
+
|
| 413 |
+
return new_pos_embedding
|
| 414 |
+
|
| 415 |
+
return pos_embedding
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def vit_b_16(
|
| 419 |
+
image_size: int = 224,
|
| 420 |
+
reduction: int = 16,
|
| 421 |
+
**kwargs: Any,
|
| 422 |
+
) -> VisionTransformer:
|
| 423 |
+
vit = _vision_transformer(
|
| 424 |
+
patch_size=16,
|
| 425 |
+
num_layers=12,
|
| 426 |
+
num_heads=12,
|
| 427 |
+
hidden_dim=768,
|
| 428 |
+
mlp_dim=3072,
|
| 429 |
+
weights=weights["vit_b_16"],
|
| 430 |
+
reduction=reduction,
|
| 431 |
+
**kwargs,
|
| 432 |
+
)
|
| 433 |
+
if image_size != 224:
|
| 434 |
+
vit.image_size = image_size
|
| 435 |
+
new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic")
|
| 436 |
+
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
|
| 437 |
+
return vit
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
def vit_b_32(
|
| 441 |
+
image_size: int = 224,
|
| 442 |
+
reduction: int = 32,
|
| 443 |
+
**kwargs: Any,
|
| 444 |
+
) -> VisionTransformer:
|
| 445 |
+
vit = _vision_transformer(
|
| 446 |
+
patch_size=32,
|
| 447 |
+
num_layers=12,
|
| 448 |
+
num_heads=12,
|
| 449 |
+
hidden_dim=768,
|
| 450 |
+
mlp_dim=3072,
|
| 451 |
+
weights=weights["vit_b_32"],
|
| 452 |
+
reduction=reduction,
|
| 453 |
+
**kwargs,
|
| 454 |
+
)
|
| 455 |
+
if image_size != 224:
|
| 456 |
+
vit.image_size = image_size
|
| 457 |
+
new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic")
|
| 458 |
+
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
|
| 459 |
+
return vit
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
def vit_l_16(
|
| 463 |
+
image_size: int = 224,
|
| 464 |
+
reduction: int = 16,
|
| 465 |
+
**kwargs: Any,
|
| 466 |
+
) -> VisionTransformer:
|
| 467 |
+
vit = _vision_transformer(
|
| 468 |
+
patch_size=16,
|
| 469 |
+
num_layers=24,
|
| 470 |
+
num_heads=16,
|
| 471 |
+
hidden_dim=1024,
|
| 472 |
+
mlp_dim=4096,
|
| 473 |
+
weights=weights["vit_l_16"],
|
| 474 |
+
reduction=reduction,
|
| 475 |
+
**kwargs,
|
| 476 |
+
)
|
| 477 |
+
if image_size != 224:
|
| 478 |
+
vit.image_size = image_size
|
| 479 |
+
new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic")
|
| 480 |
+
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
|
| 481 |
+
return vit
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def vit_l_32(
|
| 485 |
+
image_size: int = 224,
|
| 486 |
+
reduction: int = 32,
|
| 487 |
+
**kwargs: Any,
|
| 488 |
+
) -> VisionTransformer:
|
| 489 |
+
vit = _vision_transformer(
|
| 490 |
+
patch_size=32,
|
| 491 |
+
num_layers=24,
|
| 492 |
+
num_heads=16,
|
| 493 |
+
hidden_dim=1024,
|
| 494 |
+
mlp_dim=4096,
|
| 495 |
+
weights=weights["vit_l_32"],
|
| 496 |
+
reduction=reduction,
|
| 497 |
+
**kwargs,
|
| 498 |
+
)
|
| 499 |
+
if image_size != 224:
|
| 500 |
+
vit.image_size = image_size
|
| 501 |
+
new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic")
|
| 502 |
+
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
|
| 503 |
+
return vit
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
def vit_h_14(
|
| 507 |
+
image_size: int = 224,
|
| 508 |
+
reduction: int = 14,
|
| 509 |
+
**kwargs: Any,
|
| 510 |
+
) -> VisionTransformer:
|
| 511 |
+
vit = _vision_transformer(
|
| 512 |
+
patch_size=14,
|
| 513 |
+
num_layers=32,
|
| 514 |
+
num_heads=16,
|
| 515 |
+
hidden_dim=1280,
|
| 516 |
+
mlp_dim=5120,
|
| 517 |
+
weights=weights["vit_h_14"],
|
| 518 |
+
reduction=reduction,
|
| 519 |
+
**kwargs,
|
| 520 |
+
)
|
| 521 |
+
if image_size != 224:
|
| 522 |
+
vit.image_size = image_size
|
| 523 |
+
new_pos_embedding = interpolate_embeddings(image_size, 14, vit.state_dict()["encoder.pos_embedding"], "bicubic")
|
| 524 |
+
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
|
| 525 |
+
return vit
|
| 526 |
+
|
models/encoder_decoder/__init__.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .vgg import vgg11 as vgg11_ae, vgg11_bn as vgg11_bn_ae
|
| 2 |
+
from .vgg import vgg13 as vgg13_ae, vgg13_bn as vgg13_bn_ae
|
| 3 |
+
from .vgg import vgg16 as vgg16_ae, vgg16_bn as vgg16_bn_ae
|
| 4 |
+
from .vgg import vgg19 as vgg19_ae, vgg19_bn as vgg19_bn_ae
|
| 5 |
+
from .resnet import resnet18 as resnet18_ae, resnet34 as resnet34_ae
|
| 6 |
+
from .resnet import resnet50 as resnet50_ae, resnet101 as resnet101_ae, resnet152 as resnet152_ae
|
| 7 |
+
|
| 8 |
+
from .cannet import cannet, cannet_bn
|
| 9 |
+
from .csrnet import csrnet, csrnet_bn
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"vgg11_ae", "vgg11_bn_ae", "vgg13_ae", "vgg13_bn_ae", "vgg16_ae", "vgg16_bn_ae", "vgg19_ae", "vgg19_bn_ae",
|
| 14 |
+
"resnet18_ae", "resnet34_ae", "resnet50_ae", "resnet101_ae", "resnet152_ae",
|
| 15 |
+
"cannet", "cannet_bn",
|
| 16 |
+
"csrnet", "csrnet_bn",
|
| 17 |
+
]
|
models/encoder_decoder/cannet.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from typing import List, Optional
|
| 6 |
+
|
| 7 |
+
from ..utils import _init_weights
|
| 8 |
+
from .csrnet import CSRNet, csrnet, csrnet_bn
|
| 9 |
+
|
| 10 |
+
EPS = 1e-6
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ContextualModule(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
in_channels: int,
|
| 17 |
+
out_channels: int = 512,
|
| 18 |
+
sizes: List[int] = [1, 2, 3, 6],
|
| 19 |
+
) -> None:
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.scales = nn.ModuleList([self.__make_scale__(in_channels, size) for size in sizes])
|
| 22 |
+
self.bottleneck = nn.Conv2d(in_channels * 2, out_channels, kernel_size=1)
|
| 23 |
+
self.relu = nn.ReLU(inplace=True)
|
| 24 |
+
self.weight_net = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
| 25 |
+
|
| 26 |
+
def __make_weight__(self, feature: Tensor, scale_feature: Tensor) -> Tensor:
|
| 27 |
+
weight_feature = feature - scale_feature
|
| 28 |
+
weight_feature = self.weight_net(weight_feature)
|
| 29 |
+
return F.sigmoid(weight_feature)
|
| 30 |
+
|
| 31 |
+
def __make_scale__(self, channels: int, size: int) -> nn.Module:
|
| 32 |
+
return nn.Sequential(
|
| 33 |
+
nn.AdaptiveAvgPool2d(output_size=(size, size)),
|
| 34 |
+
nn.Conv2d(channels, channels, kernel_size=1, bias=False),
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def forward(self, feature: Tensor) -> Tensor:
|
| 38 |
+
h, w = feature.shape[-2:]
|
| 39 |
+
multi_scales = [F.interpolate(input=scale(feature), size=(h, w), mode="bilinear") for scale in self.scales]
|
| 40 |
+
weights = [self.__make_weight__(feature, scale_feature) for scale_feature in multi_scales]
|
| 41 |
+
multi_scales = sum([multi_scales[i] * weights[i] for i in range(len(weights))]) / (sum(weights) + EPS)
|
| 42 |
+
overall_features = torch.cat([multi_scales, feature], dim=1)
|
| 43 |
+
overall_features = self.bottleneck(overall_features)
|
| 44 |
+
overall_features = self.relu(overall_features)
|
| 45 |
+
return overall_features
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class CANNet(nn.Module):
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
csrnet: CSRNet,
|
| 52 |
+
sizes: List[int] = [1, 2, 3, 6],
|
| 53 |
+
reduction: Optional[int] = 8,
|
| 54 |
+
) -> None:
|
| 55 |
+
super().__init__()
|
| 56 |
+
assert isinstance(csrnet, CSRNet), f"csrnet should be an instance of CSRNet, got {type(csrnet)}."
|
| 57 |
+
assert isinstance(sizes, (tuple, list)), f"sizes should be a list or tuple, got {type(sizes)}."
|
| 58 |
+
assert len(sizes) > 0, f"Expected at least one size, got {len(sizes)}."
|
| 59 |
+
assert all([isinstance(size, int) for size in sizes]), f"Expected all size to be int, got {sizes}."
|
| 60 |
+
self.sizes = sizes
|
| 61 |
+
self.encoder_reduction = csrnet.encoder_reduction
|
| 62 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 63 |
+
|
| 64 |
+
self.features = csrnet.features
|
| 65 |
+
self.decoder = csrnet.decoder
|
| 66 |
+
self.decoder.apply(_init_weights)
|
| 67 |
+
self.context = ContextualModule(512, 512, self.sizes)
|
| 68 |
+
self.context.apply(_init_weights)
|
| 69 |
+
|
| 70 |
+
self.channels = csrnet.channels
|
| 71 |
+
|
| 72 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 73 |
+
x = self.features(x)
|
| 74 |
+
x = self.context(x)
|
| 75 |
+
if self.encoder_reduction != self.reduction:
|
| 76 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 77 |
+
x = self.decoder(x)
|
| 78 |
+
return x
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def cannet(sizes=[1, 2, 3, 6], reduction: int = 8) -> CANNet:
|
| 82 |
+
return CANNet(csrnet(), sizes=sizes, reduction=reduction)
|
| 83 |
+
|
| 84 |
+
def cannet_bn(sizes=[1, 2, 3, 6], reduction: int = 8) -> CANNet:
|
| 85 |
+
return CANNet(csrnet_bn(), sizes=sizes, reduction=reduction)
|
models/encoder_decoder/csrnet.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn, Tensor
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
from ..utils import _init_weights, make_vgg_layers, vgg_urls
|
| 6 |
+
from .vgg import _load_weights
|
| 7 |
+
|
| 8 |
+
EPS = 1e-6
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
encoder_cfg = [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512]
|
| 12 |
+
decoder_cfg = [512, 512, 512, 256, 128, 64]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class CSRNet(nn.Module):
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
features: nn.Module,
|
| 19 |
+
decoder: nn.Module,
|
| 20 |
+
reduction: Optional[int] = None,
|
| 21 |
+
) -> None:
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.features = features
|
| 24 |
+
self.features.apply(_init_weights)
|
| 25 |
+
self.decoder = decoder
|
| 26 |
+
self.decoder.apply(_init_weights)
|
| 27 |
+
|
| 28 |
+
self.encoder_reduction = 8
|
| 29 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 30 |
+
self.channels = 64
|
| 31 |
+
|
| 32 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 33 |
+
x = self.features(x)
|
| 34 |
+
if self.encoder_reduction != self.reduction:
|
| 35 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 36 |
+
x = self.decoder(x)
|
| 37 |
+
return x
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def csrnet(reduction: int = 8) -> CSRNet:
|
| 41 |
+
model = CSRNet(
|
| 42 |
+
make_vgg_layers(encoder_cfg, in_channels=3, batch_norm=False, dilation=1),
|
| 43 |
+
make_vgg_layers(decoder_cfg, in_channels=512, batch_norm=False, dilation=2),
|
| 44 |
+
reduction=reduction
|
| 45 |
+
)
|
| 46 |
+
return _load_weights(model, vgg_urls["vgg16"])
|
| 47 |
+
|
| 48 |
+
def csrnet_bn(reduction: int = 8) -> CSRNet:
|
| 49 |
+
model = CSRNet(
|
| 50 |
+
make_vgg_layers(encoder_cfg, in_channels=3, batch_norm=True, dilation=1),
|
| 51 |
+
make_vgg_layers(decoder_cfg, in_channels=512, batch_norm=True, dilation=2),
|
| 52 |
+
reduction=reduction
|
| 53 |
+
)
|
| 54 |
+
return _load_weights(model, vgg_urls["vgg16"])
|
models/encoder_decoder/resnet.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn, Tensor
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import timm
|
| 4 |
+
from typing import Union, Optional
|
| 5 |
+
|
| 6 |
+
from ..utils import BasicBlock, Bottleneck, make_resnet_layers
|
| 7 |
+
from ..utils import _init_weights
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
model_configs = {
|
| 11 |
+
"resnet18.tv_in1k": {
|
| 12 |
+
"decoder_channels": [512, 256, 128],
|
| 13 |
+
},
|
| 14 |
+
"resnet34.tv_in1k": {
|
| 15 |
+
"decoder_channels": [512, 256, 128],
|
| 16 |
+
},
|
| 17 |
+
"resnet50.tv_in1k": {
|
| 18 |
+
"decoder_channels": [512, 256, 256, 128],
|
| 19 |
+
},
|
| 20 |
+
"resnet101.tv_in1k": {
|
| 21 |
+
"decoder_channels": [512, 512, 256, 256, 128],
|
| 22 |
+
},
|
| 23 |
+
"resnet152.tv_in1k": {
|
| 24 |
+
"decoder_channels": [512, 512, 512, 256, 256, 128],
|
| 25 |
+
},
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ResNet(nn.Module):
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
decoder_block: Union[BasicBlock, Bottleneck],
|
| 33 |
+
backbone: str = "resnet34.tv_in1k",
|
| 34 |
+
reduction: Optional[int] = None,
|
| 35 |
+
) -> None:
|
| 36 |
+
super().__init__()
|
| 37 |
+
assert backbone in model_configs.keys(), f"Backbone should be in {model_configs.keys()}"
|
| 38 |
+
config = model_configs[backbone]
|
| 39 |
+
encoder = timm.create_model(backbone, pretrained=True, features_only=True, out_indices=(-1,))
|
| 40 |
+
encoder_reduction = encoder.feature_info.reduction()[-1]
|
| 41 |
+
|
| 42 |
+
if reduction <= 16:
|
| 43 |
+
if "resnet18" in backbone or "resnet34" in backbone:
|
| 44 |
+
encoder.layer4[0].conv1.stride = (1, 1)
|
| 45 |
+
encoder.layer4[0].downsample[0].stride = (1, 1)
|
| 46 |
+
else:
|
| 47 |
+
encoder.layer4[0].conv2.stride = (1, 1)
|
| 48 |
+
encoder.layer4[0].downsample[0].stride = (1, 1)
|
| 49 |
+
encoder_reduction = encoder_reduction // 2
|
| 50 |
+
|
| 51 |
+
self.encoder = encoder
|
| 52 |
+
self.encoder_reduction = encoder_reduction
|
| 53 |
+
|
| 54 |
+
encoder_out_channels = self.encoder.feature_info.channels()[-1]
|
| 55 |
+
|
| 56 |
+
decoder_channels = config["decoder_channels"]
|
| 57 |
+
self.decoder = make_resnet_layers(
|
| 58 |
+
block=decoder_block,
|
| 59 |
+
cfg=decoder_channels,
|
| 60 |
+
in_channels=encoder_out_channels,
|
| 61 |
+
dilation=1,
|
| 62 |
+
expansion=1,
|
| 63 |
+
)
|
| 64 |
+
self.decoder.apply(_init_weights)
|
| 65 |
+
|
| 66 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 67 |
+
self.channels = decoder_channels[-1]
|
| 68 |
+
|
| 69 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 70 |
+
x = self.encoder(x)[-1]
|
| 71 |
+
if self.encoder_reduction != self.reduction:
|
| 72 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 73 |
+
x = self.decoder(x)
|
| 74 |
+
|
| 75 |
+
return x
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def resnet18(reduction: int = 32) -> ResNet:
|
| 79 |
+
return ResNet(decoder_block=BasicBlock, backbone="resnet18.tv_in1k", reduction=reduction)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def resnet34(reduction: int = 32) -> ResNet:
|
| 83 |
+
return ResNet(decoder_block=BasicBlock, backbone="resnet34.tv_in1k", reduction=reduction)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def resnet50(reduction: int = 32) -> ResNet:
|
| 87 |
+
return ResNet(decoder_block=Bottleneck, backbone="resnet50.tv_in1k", reduction=reduction)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def resnet101(reduction: int = 32) -> ResNet:
|
| 91 |
+
return ResNet(decoder_block=Bottleneck, backbone="resnet101.tv_in1k", reduction=reduction)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def resnet152(reduction: int = 32) -> ResNet:
|
| 95 |
+
return ResNet(decoder_block=Bottleneck, backbone="resnet152.tv_in1k", reduction=reduction)
|
models/encoder_decoder/vgg.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# The model used in the paper Distribution Matching for Crowd Counting.
|
| 2 |
+
# Code adapted from https://github.com/cvlab-stonybrook/DM-Count/blob/master/models.py
|
| 3 |
+
from torch import nn, Tensor
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.hub import load_state_dict_from_url
|
| 6 |
+
from typing import Optional
|
| 7 |
+
|
| 8 |
+
from ..utils import make_vgg_layers, vgg_cfgs, vgg_urls
|
| 9 |
+
from ..utils import _init_weights
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class VGG(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
features: nn.Module,
|
| 17 |
+
reduction: Optional[int] = None,
|
| 18 |
+
) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.features = features
|
| 21 |
+
self.reg_layer = nn.Sequential(
|
| 22 |
+
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
| 23 |
+
nn.ReLU(inplace=True),
|
| 24 |
+
nn.Conv2d(256, 128, kernel_size=3, padding=1),
|
| 25 |
+
nn.ReLU(inplace=True),
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
self.reg_layer.apply(_init_weights)
|
| 29 |
+
# Remove the density layer, as the output from this model is not final and will be further processed.
|
| 30 |
+
# self.density_layer = nn.Sequential(nn.Conv2d(128, 1, 1), nn.ReLU())
|
| 31 |
+
self.encoder_reduction = 16
|
| 32 |
+
self.reduction = self.encoder_reduction if reduction is None else reduction
|
| 33 |
+
self.channels = 128
|
| 34 |
+
|
| 35 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 36 |
+
x = self.features(x)
|
| 37 |
+
if self.encoder_reduction != self.reduction:
|
| 38 |
+
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
|
| 39 |
+
x = self.reg_layer(x)
|
| 40 |
+
# x = self.density_layer(x)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def _load_weights(model: VGG, url: str) -> VGG:
|
| 45 |
+
state_dict = load_state_dict_from_url(url)
|
| 46 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 47 |
+
print("Loading pre-trained weights")
|
| 48 |
+
if len(missing_keys) > 0:
|
| 49 |
+
print(f"Missing keys: {missing_keys}")
|
| 50 |
+
if len(unexpected_keys) > 0:
|
| 51 |
+
print(f"Unexpected keys: {unexpected_keys}")
|
| 52 |
+
return model
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def vgg11(reduction: int = 8) -> VGG:
|
| 56 |
+
model = VGG(make_vgg_layers(vgg_cfgs["A"]), reduction=reduction)
|
| 57 |
+
return _load_weights(model, vgg_urls["vgg11"])
|
| 58 |
+
|
| 59 |
+
def vgg11_bn(reduction: int = 8) -> VGG:
|
| 60 |
+
model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True), reduction=reduction)
|
| 61 |
+
return _load_weights(model, vgg_urls["vgg11_bn"])
|
| 62 |
+
|
| 63 |
+
def vgg13(reduction: int = 8) -> VGG:
|
| 64 |
+
model = VGG(make_vgg_layers(vgg_cfgs["B"]), reduction=reduction)
|
| 65 |
+
return _load_weights(model, vgg_urls["vgg13"])
|
| 66 |
+
|
| 67 |
+
def vgg13_bn(reduction: int = 8) -> VGG:
|
| 68 |
+
model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True), reduction=reduction)
|
| 69 |
+
return _load_weights(model, vgg_urls["vgg13_bn"])
|
| 70 |
+
|
| 71 |
+
def vgg16(reduction: int = 8) -> VGG:
|
| 72 |
+
model = VGG(make_vgg_layers(vgg_cfgs["D"]), reduction=reduction)
|
| 73 |
+
return _load_weights(model, vgg_urls["vgg16"])
|
| 74 |
+
|
| 75 |
+
def vgg16_bn(reduction: int = 8) -> VGG:
|
| 76 |
+
model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True), reduction=reduction)
|
| 77 |
+
return _load_weights(model, vgg_urls["vgg16_bn"])
|
| 78 |
+
|
| 79 |
+
def vgg19(reduction: int = 8) -> VGG:
|
| 80 |
+
model = VGG(make_vgg_layers(vgg_cfgs["E"]), reduction=reduction)
|
| 81 |
+
return _load_weights(model, vgg_urls["vgg19"])
|
| 82 |
+
|
| 83 |
+
def vgg19_bn(reduction: int = 8) -> VGG:
|
| 84 |
+
model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True), reduction=reduction)
|
| 85 |
+
return _load_weights(model, vgg_urls["vgg19_bn"])
|
models/model.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
import os
|
| 4 |
+
from typing import List, Tuple, Union, Callable
|
| 5 |
+
from functools import partial
|
| 6 |
+
|
| 7 |
+
from .utils import _init_weights
|
| 8 |
+
|
| 9 |
+
from . import encoder
|
| 10 |
+
from . import encoder_decoder
|
| 11 |
+
from .encoder import _timm_encoder
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
curr_dir = os.path.abspath(os.path.dirname(__file__))
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Regressor(nn.Module):
|
| 18 |
+
def __init__(self, backbone: nn.Module) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.backbone = backbone
|
| 21 |
+
self.reduction = backbone.reduction
|
| 22 |
+
|
| 23 |
+
self.regressor = nn.Sequential(
|
| 24 |
+
nn.Conv2d(backbone.channels, 1, kernel_size=1),
|
| 25 |
+
nn.ReLU(inplace=True),
|
| 26 |
+
)
|
| 27 |
+
self.regressor.apply(_init_weights)
|
| 28 |
+
self.bins = None
|
| 29 |
+
self.anchor_points = None
|
| 30 |
+
|
| 31 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 32 |
+
x = self.backbone(x)
|
| 33 |
+
x = self.regressor(x)
|
| 34 |
+
return x
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class Classifier(nn.Module):
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
backbone: nn.Module,
|
| 41 |
+
bins: List[Tuple[float, float]],
|
| 42 |
+
anchor_points: List[float],
|
| 43 |
+
) -> None:
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.backbone = backbone
|
| 46 |
+
self.reduction = backbone.reduction
|
| 47 |
+
|
| 48 |
+
assert len(bins) == len(anchor_points), f"Expected bins and anchor_points to have the same length, got {len(bins)} and {len(anchor_points)}"
|
| 49 |
+
assert all(len(b) == 2 for b in bins), f"Expected bins to be a list of tuples of length 2, got {bins}"
|
| 50 |
+
assert all(bin[0] <= p <= bin[1] for bin, p in zip(bins, anchor_points)), f"Expected anchor_points to be within the range of the corresponding bin, got {bins} and {anchor_points}"
|
| 51 |
+
|
| 52 |
+
self.bins = bins
|
| 53 |
+
self.anchor_points = torch.tensor(anchor_points, dtype=torch.float32, requires_grad=False).view(1, -1, 1, 1)
|
| 54 |
+
|
| 55 |
+
if backbone.channels > 512:
|
| 56 |
+
self.classifier = nn.Sequential(
|
| 57 |
+
nn.Conv2d(backbone.channels, 512, kernel_size=1), # serves as a linear layer for feature vectors at each pixel
|
| 58 |
+
nn.ReLU(inplace=True),
|
| 59 |
+
nn.Conv2d(512, len(self.bins), kernel_size=1),
|
| 60 |
+
)
|
| 61 |
+
else:
|
| 62 |
+
self.classifier = nn.Conv2d(backbone.channels, len(self.bins), kernel_size=1)
|
| 63 |
+
|
| 64 |
+
self.classifier.apply(_init_weights)
|
| 65 |
+
|
| 66 |
+
def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
|
| 67 |
+
x = self.backbone(x)
|
| 68 |
+
x = self.classifier(x) # shape (B, C, H, W), where C = len(bins), x is the logits
|
| 69 |
+
|
| 70 |
+
probs = x.softmax(dim=1) # shape (B, C, H, W)
|
| 71 |
+
exp = (probs * self.anchor_points.to(x.device)).sum(dim=1, keepdim=True) # shape (B, 1, H, W)
|
| 72 |
+
if self.training:
|
| 73 |
+
return x, exp
|
| 74 |
+
else:
|
| 75 |
+
return exp
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _get_backbone(backbone: str, input_size: int, reduction: int) -> Callable:
|
| 79 |
+
assert "clip" not in backbone, f"This function does not support CLIP model, got {backbone}"
|
| 80 |
+
|
| 81 |
+
if backbone in ["vit_b_16", "vit_b_32", "vit_l_16", "vit_l_32", "vit_h_14"]:
|
| 82 |
+
return partial(getattr(encoder, backbone), image_size=input_size, reduction=reduction)
|
| 83 |
+
elif backbone in ["vgg11", "vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn", "vgg19", "vgg19_bn"]:
|
| 84 |
+
return partial(getattr(encoder, backbone), reduction=reduction)
|
| 85 |
+
elif backbone in ["vgg11_ae", "vgg11_bn_ae", "vgg13_ae", "vgg13_bn_ae", "vgg16_ae", "vgg16_bn_ae", "vgg19_ae", "vgg19_bn_ae"]:
|
| 86 |
+
return partial(getattr(encoder_decoder, backbone), reduction=reduction)
|
| 87 |
+
elif backbone in ["resnet18_ae", "resnet34_ae", "resnet50_ae", "resnet101_ae", "resnet152_ae"]:
|
| 88 |
+
return partial(getattr(encoder_decoder, backbone), reduction=reduction)
|
| 89 |
+
elif backbone in ["cannet", "cannet_bn", "csrnet", "csrnet_bn"]:
|
| 90 |
+
return partial(getattr(encoder_decoder, backbone), reduction=reduction)
|
| 91 |
+
else:
|
| 92 |
+
return partial(_timm_encoder, backbone=backbone, reduction=reduction)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def _regressor(
|
| 96 |
+
backbone: str,
|
| 97 |
+
input_size: int,
|
| 98 |
+
reduction: int,
|
| 99 |
+
) -> Regressor:
|
| 100 |
+
backbone = _get_backbone(backbone.lower(), input_size, reduction)
|
| 101 |
+
return Regressor(backbone())
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def _classifier(
|
| 105 |
+
backbone: nn.Module,
|
| 106 |
+
input_size: int,
|
| 107 |
+
reduction: int,
|
| 108 |
+
bins: List[Tuple[float, float]],
|
| 109 |
+
anchor_points: List[float],
|
| 110 |
+
) -> Classifier:
|
| 111 |
+
backbone = _get_backbone(backbone.lower(), input_size, reduction)
|
| 112 |
+
return Classifier(backbone(), bins, anchor_points)
|
models/utils.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from functools import partial
|
| 5 |
+
from typing import Callable, Optional, Sequence, Tuple, Union, Any, List, TypeVar, List
|
| 6 |
+
from types import FunctionType
|
| 7 |
+
from itertools import repeat
|
| 8 |
+
import warnings
|
| 9 |
+
import os
|
| 10 |
+
from collections.abc import Iterable
|
| 11 |
+
|
| 12 |
+
V = TypeVar("V")
|
| 13 |
+
curr_dir = os.path.dirname(os.path.abspath(__file__))
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
vgg_urls = {
|
| 17 |
+
"vgg11": "https://download.pytorch.org/models/vgg11-8a719046.pth",
|
| 18 |
+
"vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth",
|
| 19 |
+
"vgg13": "https://download.pytorch.org/models/vgg13-19584684.pth",
|
| 20 |
+
"vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth",
|
| 21 |
+
"vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth",
|
| 22 |
+
"vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth",
|
| 23 |
+
"vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth",
|
| 24 |
+
"vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth",
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
vgg_cfgs = {
|
| 28 |
+
"A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512],
|
| 29 |
+
"B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512],
|
| 30 |
+
"D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512],
|
| 31 |
+
"E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512]
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def _log_api_usage_once(obj: Any) -> None:
|
| 36 |
+
|
| 37 |
+
"""
|
| 38 |
+
Logs API usage(module and name) within an organization.
|
| 39 |
+
In a large ecosystem, it's often useful to track the PyTorch and
|
| 40 |
+
TorchVision APIs usage. This API provides the similar functionality to the
|
| 41 |
+
logging module in the Python stdlib. It can be used for debugging purpose
|
| 42 |
+
to log which methods are used and by default it is inactive, unless the user
|
| 43 |
+
manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
|
| 44 |
+
Please note it is triggered only once for the same API call within a process.
|
| 45 |
+
It does not collect any data from open-source users since it is no-op by default.
|
| 46 |
+
For more information, please refer to
|
| 47 |
+
* PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
|
| 48 |
+
* Logging policy: https://github.com/pytorch/vision/issues/5052;
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
obj (class instance or method): an object to extract info from.
|
| 52 |
+
"""
|
| 53 |
+
module = obj.__module__
|
| 54 |
+
if not module.startswith("torchvision"):
|
| 55 |
+
module = f"torchvision.internal.{module}"
|
| 56 |
+
name = obj.__class__.__name__
|
| 57 |
+
if isinstance(obj, FunctionType):
|
| 58 |
+
name = obj.__name__
|
| 59 |
+
torch._C._log_api_usage_once(f"{module}.{name}")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]:
|
| 63 |
+
"""
|
| 64 |
+
Make n-tuple from input x. If x is an iterable, then we just convert it to tuple.
|
| 65 |
+
Otherwise, we will make a tuple of length n, all with value of x.
|
| 66 |
+
reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
x (Any): input value
|
| 70 |
+
n (int): length of the resulting tuple
|
| 71 |
+
"""
|
| 72 |
+
if isinstance(x, Iterable):
|
| 73 |
+
return tuple(x)
|
| 74 |
+
return tuple(repeat(x, n))
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class ConvNormActivation(torch.nn.Sequential):
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
in_channels: int,
|
| 81 |
+
out_channels: int,
|
| 82 |
+
kernel_size: Union[int, Tuple[int, ...]] = 3,
|
| 83 |
+
stride: Union[int, Tuple[int, ...]] = 1,
|
| 84 |
+
padding: Optional[Union[int, Tuple[int, ...], str]] = None,
|
| 85 |
+
groups: int = 1,
|
| 86 |
+
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
|
| 87 |
+
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
| 88 |
+
dilation: Union[int, Tuple[int, ...]] = 1,
|
| 89 |
+
inplace: Optional[bool] = True,
|
| 90 |
+
bias: Optional[bool] = None,
|
| 91 |
+
conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d,
|
| 92 |
+
) -> None:
|
| 93 |
+
|
| 94 |
+
if padding is None:
|
| 95 |
+
if isinstance(kernel_size, int) and isinstance(dilation, int):
|
| 96 |
+
padding = (kernel_size - 1) // 2 * dilation
|
| 97 |
+
else:
|
| 98 |
+
_conv_dim = len(kernel_size) if isinstance(kernel_size, Sequence) else len(dilation)
|
| 99 |
+
kernel_size = _make_ntuple(kernel_size, _conv_dim)
|
| 100 |
+
dilation = _make_ntuple(dilation, _conv_dim)
|
| 101 |
+
padding = tuple((kernel_size[i] - 1) // 2 * dilation[i] for i in range(_conv_dim))
|
| 102 |
+
if bias is None:
|
| 103 |
+
bias = norm_layer is None
|
| 104 |
+
|
| 105 |
+
layers = [
|
| 106 |
+
conv_layer(
|
| 107 |
+
in_channels,
|
| 108 |
+
out_channels,
|
| 109 |
+
kernel_size,
|
| 110 |
+
stride,
|
| 111 |
+
padding,
|
| 112 |
+
dilation=dilation,
|
| 113 |
+
groups=groups,
|
| 114 |
+
bias=bias,
|
| 115 |
+
)
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
if norm_layer is not None:
|
| 119 |
+
layers.append(norm_layer(out_channels))
|
| 120 |
+
|
| 121 |
+
if activation_layer is not None:
|
| 122 |
+
params = {} if inplace is None else {"inplace": inplace}
|
| 123 |
+
layers.append(activation_layer(**params))
|
| 124 |
+
super().__init__(*layers)
|
| 125 |
+
_log_api_usage_once(self)
|
| 126 |
+
self.out_channels = out_channels
|
| 127 |
+
|
| 128 |
+
if self.__class__ == ConvNormActivation:
|
| 129 |
+
warnings.warn(
|
| 130 |
+
"Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead."
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class Conv2dNormActivation(ConvNormActivation):
|
| 135 |
+
"""
|
| 136 |
+
Configurable block used for Convolution2d-Normalization-Activation blocks.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
in_channels (int): Number of channels in the input image
|
| 140 |
+
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
|
| 141 |
+
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
|
| 142 |
+
stride (int, optional): Stride of the convolution. Default: 1
|
| 143 |
+
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
|
| 144 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
| 145 |
+
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
|
| 146 |
+
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
|
| 147 |
+
dilation (int): Spacing between kernel elements. Default: 1
|
| 148 |
+
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
|
| 149 |
+
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
|
| 150 |
+
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
def __init__(
|
| 154 |
+
self,
|
| 155 |
+
in_channels: int,
|
| 156 |
+
out_channels: int,
|
| 157 |
+
kernel_size: Union[int, Tuple[int, int]] = 3,
|
| 158 |
+
stride: Union[int, Tuple[int, int]] = 1,
|
| 159 |
+
padding: Optional[Union[int, Tuple[int, int], str]] = None,
|
| 160 |
+
groups: int = 1,
|
| 161 |
+
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
|
| 162 |
+
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
| 163 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
| 164 |
+
inplace: Optional[bool] = True,
|
| 165 |
+
bias: Optional[bool] = None,
|
| 166 |
+
) -> None:
|
| 167 |
+
|
| 168 |
+
super().__init__(
|
| 169 |
+
in_channels,
|
| 170 |
+
out_channels,
|
| 171 |
+
kernel_size,
|
| 172 |
+
stride,
|
| 173 |
+
padding,
|
| 174 |
+
groups,
|
| 175 |
+
norm_layer,
|
| 176 |
+
activation_layer,
|
| 177 |
+
dilation,
|
| 178 |
+
inplace,
|
| 179 |
+
bias,
|
| 180 |
+
torch.nn.Conv2d,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class MLP(torch.nn.Sequential):
|
| 185 |
+
"""This block implements the multi-layer perceptron (MLP) module.
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
in_channels (int): Number of channels of the input
|
| 189 |
+
hidden_channels (List[int]): List of the hidden channel dimensions
|
| 190 |
+
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
|
| 191 |
+
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
|
| 192 |
+
inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
|
| 193 |
+
Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
|
| 194 |
+
bias (bool): Whether to use bias in the linear layer. Default ``True``
|
| 195 |
+
dropout (float): The probability for the dropout layer. Default: 0.0
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
def __init__(
|
| 199 |
+
self,
|
| 200 |
+
in_channels: int,
|
| 201 |
+
hidden_channels: List[int],
|
| 202 |
+
norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
|
| 203 |
+
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
| 204 |
+
inplace: Optional[bool] = None,
|
| 205 |
+
bias: bool = True,
|
| 206 |
+
dropout: float = 0.0,
|
| 207 |
+
):
|
| 208 |
+
# The addition of `norm_layer` is inspired from the implementation of TorchMultimodal:
|
| 209 |
+
# https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py
|
| 210 |
+
params = {} if inplace is None else {"inplace": inplace}
|
| 211 |
+
|
| 212 |
+
layers = []
|
| 213 |
+
in_dim = in_channels
|
| 214 |
+
for hidden_dim in hidden_channels[:-1]:
|
| 215 |
+
layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias))
|
| 216 |
+
if norm_layer is not None:
|
| 217 |
+
layers.append(norm_layer(hidden_dim))
|
| 218 |
+
layers.append(activation_layer(**params))
|
| 219 |
+
layers.append(torch.nn.Dropout(dropout, **params))
|
| 220 |
+
in_dim = hidden_dim
|
| 221 |
+
|
| 222 |
+
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias))
|
| 223 |
+
layers.append(torch.nn.Dropout(dropout, **params))
|
| 224 |
+
|
| 225 |
+
super().__init__(*layers)
|
| 226 |
+
_log_api_usage_once(self)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def conv3x3(
|
| 230 |
+
in_channels: int,
|
| 231 |
+
out_channels: int,
|
| 232 |
+
stride: int = 1,
|
| 233 |
+
groups: int = 1,
|
| 234 |
+
dilation: int = 1,
|
| 235 |
+
) -> nn.Conv2d:
|
| 236 |
+
"""3x3 convolution with padding"""
|
| 237 |
+
return nn.Conv2d(
|
| 238 |
+
in_channels,
|
| 239 |
+
out_channels,
|
| 240 |
+
kernel_size=3,
|
| 241 |
+
stride=stride,
|
| 242 |
+
padding=dilation,
|
| 243 |
+
groups=groups,
|
| 244 |
+
bias=False,
|
| 245 |
+
dilation=dilation,
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def conv1x1(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d:
|
| 250 |
+
"""1x1 convolution"""
|
| 251 |
+
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
class BasicBlock(nn.Module):
|
| 255 |
+
expansion: int = 1
|
| 256 |
+
|
| 257 |
+
def __init__(
|
| 258 |
+
self,
|
| 259 |
+
in_channels: int,
|
| 260 |
+
out_channels: int,
|
| 261 |
+
stride: int = 1,
|
| 262 |
+
groups: int = 1,
|
| 263 |
+
base_width: int = 64,
|
| 264 |
+
dilation: int = 1,
|
| 265 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
| 266 |
+
**kwargs: Any,
|
| 267 |
+
) -> None:
|
| 268 |
+
super().__init__()
|
| 269 |
+
if norm_layer is None:
|
| 270 |
+
norm_layer = nn.BatchNorm2d
|
| 271 |
+
if groups != 1 or base_width != 64:
|
| 272 |
+
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
| 273 |
+
if dilation > 1:
|
| 274 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
| 275 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
| 276 |
+
self.conv1 = conv3x3(in_channels, out_channels, stride)
|
| 277 |
+
self.bn1 = norm_layer(out_channels)
|
| 278 |
+
self.relu = nn.ReLU(inplace=True)
|
| 279 |
+
self.conv2 = conv3x3(out_channels, out_channels)
|
| 280 |
+
self.bn2 = norm_layer(out_channels)
|
| 281 |
+
self.stride = stride
|
| 282 |
+
if in_channels != out_channels:
|
| 283 |
+
self.downsample = nn.Sequential(
|
| 284 |
+
conv1x1(in_channels, out_channels),
|
| 285 |
+
nn.BatchNorm2d(out_channels),
|
| 286 |
+
)
|
| 287 |
+
else:
|
| 288 |
+
self.downsample = nn.Identity()
|
| 289 |
+
|
| 290 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 291 |
+
identity = x
|
| 292 |
+
|
| 293 |
+
out = self.conv1(x)
|
| 294 |
+
out = self.bn1(out)
|
| 295 |
+
out = self.relu(out)
|
| 296 |
+
|
| 297 |
+
out = self.conv2(out)
|
| 298 |
+
out = self.bn2(out)
|
| 299 |
+
|
| 300 |
+
out += self.downsample(identity)
|
| 301 |
+
out = self.relu(out)
|
| 302 |
+
|
| 303 |
+
return out
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class Bottleneck(nn.Module):
|
| 307 |
+
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
| 308 |
+
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
| 309 |
+
# according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
|
| 310 |
+
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
| 311 |
+
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
| 312 |
+
def __init__(
|
| 313 |
+
self,
|
| 314 |
+
in_channels: int,
|
| 315 |
+
out_channels: int,
|
| 316 |
+
stride: int = 1,
|
| 317 |
+
groups: int = 1,
|
| 318 |
+
base_width: int = 64,
|
| 319 |
+
dilation: int = 1,
|
| 320 |
+
expansion: int = 4,
|
| 321 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
| 322 |
+
**kwargs: Any,
|
| 323 |
+
) -> None:
|
| 324 |
+
super().__init__()
|
| 325 |
+
if norm_layer is None:
|
| 326 |
+
norm_layer = nn.BatchNorm2d
|
| 327 |
+
width = int(out_channels * (base_width / 64.0)) * groups
|
| 328 |
+
self.expansion = expansion
|
| 329 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
| 330 |
+
self.conv1 = conv1x1(in_channels, width)
|
| 331 |
+
self.bn1 = norm_layer(width)
|
| 332 |
+
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
| 333 |
+
self.bn2 = norm_layer(width)
|
| 334 |
+
self.conv3 = conv1x1(width, out_channels * self.expansion)
|
| 335 |
+
self.bn3 = norm_layer(out_channels * self.expansion)
|
| 336 |
+
self.relu = nn.ReLU(inplace=True)
|
| 337 |
+
self.stride = stride
|
| 338 |
+
if in_channels != out_channels:
|
| 339 |
+
self.downsample = nn.Sequential(
|
| 340 |
+
conv1x1(in_channels, out_channels),
|
| 341 |
+
nn.BatchNorm2d(out_channels),
|
| 342 |
+
)
|
| 343 |
+
else:
|
| 344 |
+
self.downsample = nn.Identity()
|
| 345 |
+
|
| 346 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 347 |
+
identity = x
|
| 348 |
+
|
| 349 |
+
out = self.conv1(x)
|
| 350 |
+
out = self.bn1(out)
|
| 351 |
+
out = self.relu(out)
|
| 352 |
+
|
| 353 |
+
out = self.conv2(out)
|
| 354 |
+
out = self.bn2(out)
|
| 355 |
+
out = self.relu(out)
|
| 356 |
+
|
| 357 |
+
out = self.conv3(out)
|
| 358 |
+
out = self.bn3(out)
|
| 359 |
+
|
| 360 |
+
out += self.downsample(identity)
|
| 361 |
+
out = self.relu(out)
|
| 362 |
+
|
| 363 |
+
return out
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def _init_weights(model: nn.Module) -> None:
|
| 367 |
+
for m in model.modules():
|
| 368 |
+
if isinstance(m, nn.Conv2d):
|
| 369 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
| 370 |
+
if m.bias is not None:
|
| 371 |
+
nn.init.constant_(m.bias, 0.)
|
| 372 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
| 373 |
+
nn.init.constant_(m.weight, 1.)
|
| 374 |
+
if m.bias is not None:
|
| 375 |
+
nn.init.constant_(m.bias, 0.)
|
| 376 |
+
elif isinstance(m, nn.Linear):
|
| 377 |
+
nn.init.normal_(m.weight, std=0.01)
|
| 378 |
+
if m.bias is not None:
|
| 379 |
+
nn.init.constant_(m.bias, 0.)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
class Upsample(nn.Module):
|
| 383 |
+
def __init__(
|
| 384 |
+
self,
|
| 385 |
+
size: Union[int, Tuple[int, int]] = None,
|
| 386 |
+
scale_factor: Union[float, Tuple[float, float]] = None,
|
| 387 |
+
mode: str = "nearest",
|
| 388 |
+
align_corners: bool = False,
|
| 389 |
+
antialias: bool = False,
|
| 390 |
+
) -> None:
|
| 391 |
+
super().__init__()
|
| 392 |
+
self.interpolate = partial(
|
| 393 |
+
F.interpolate,
|
| 394 |
+
size=size,
|
| 395 |
+
scale_factor=scale_factor,
|
| 396 |
+
mode=mode,
|
| 397 |
+
align_corners=align_corners,
|
| 398 |
+
antialias=antialias,
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 402 |
+
return self.interpolate(x)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def make_vgg_layers(cfg: List[Union[str, int]], in_channels: int = 3, batch_norm: bool = False, dilation: int = 1) -> nn.Sequential:
|
| 406 |
+
layers = []
|
| 407 |
+
for v in cfg:
|
| 408 |
+
if v == "M":
|
| 409 |
+
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
|
| 410 |
+
elif v == "U":
|
| 411 |
+
layers += [Upsample(scale_factor=2, mode="bilinear")]
|
| 412 |
+
else:
|
| 413 |
+
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=dilation, dilation=dilation)
|
| 414 |
+
if batch_norm:
|
| 415 |
+
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
|
| 416 |
+
else:
|
| 417 |
+
layers += [conv2d, nn.ReLU(inplace=True)]
|
| 418 |
+
in_channels = v
|
| 419 |
+
return nn.Sequential(*layers)
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
def make_resnet_layers(
|
| 423 |
+
block: Union[BasicBlock, Bottleneck],
|
| 424 |
+
cfg: List[Union[int, str]],
|
| 425 |
+
in_channels: int,
|
| 426 |
+
dilation: int = 1,
|
| 427 |
+
expansion: int = 1,
|
| 428 |
+
) -> nn.Sequential:
|
| 429 |
+
layers = []
|
| 430 |
+
for v in cfg:
|
| 431 |
+
if v == "U":
|
| 432 |
+
layers.append(Upsample(scale_factor=2, mode="bilinear"))
|
| 433 |
+
else:
|
| 434 |
+
layers.append(block(
|
| 435 |
+
in_channels=in_channels,
|
| 436 |
+
out_channels=v,
|
| 437 |
+
dilation=dilation,
|
| 438 |
+
expansion=expansion,
|
| 439 |
+
))
|
| 440 |
+
in_channels = v
|
| 441 |
+
|
| 442 |
+
layers = nn.Sequential(*layers)
|
| 443 |
+
layers.apply(_init_weights)
|
| 444 |
+
return layers
|