Update app.py
Browse files
app.py
CHANGED
|
@@ -6,35 +6,44 @@ import numpy as np
|
|
| 6 |
import librosa
|
| 7 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
| 14 |
|
| 15 |
model.eval()
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
def classify_accuracy(audio):
|
| 18 |
"""
|
| 19 |
-
|
| 20 |
-
We'll
|
| 21 |
"""
|
| 22 |
if audio is None:
|
| 23 |
return "No audio provided."
|
| 24 |
|
| 25 |
sample_rate, data = audio
|
| 26 |
|
| 27 |
-
# Ensure
|
| 28 |
if not isinstance(data, np.ndarray):
|
| 29 |
data = np.array(data)
|
| 30 |
|
| 31 |
-
# Resample if
|
| 32 |
target_sr = 16000
|
| 33 |
if sample_rate != target_sr:
|
| 34 |
data = librosa.resample(data, orig_sr=sample_rate, target_sr=target_sr)
|
| 35 |
sample_rate = target_sr
|
| 36 |
|
| 37 |
-
#
|
| 38 |
inputs = feature_extractor(
|
| 39 |
data,
|
| 40 |
sampling_rate=sample_rate,
|
|
@@ -47,28 +56,29 @@ def classify_accuracy(audio):
|
|
| 47 |
logits = outputs.logits
|
| 48 |
predicted_id = torch.argmax(logits, dim=-1).item()
|
| 49 |
|
| 50 |
-
# Map
|
| 51 |
accuracy_level = predicted_id + 3
|
| 52 |
|
| 53 |
return f"Predicted Accuracy Level: {accuracy_level}"
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
description = (
|
| 58 |
"Upload an audio file (or record audio) on the left. "
|
| 59 |
-
"The model
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
-
# Gradio Interface:
|
| 63 |
demo = gr.Interface(
|
| 64 |
fn=classify_accuracy,
|
| 65 |
-
inputs=gr.Audio(source="upload", type="numpy"),
|
| 66 |
-
outputs="text",
|
| 67 |
title=title,
|
| 68 |
description=description,
|
| 69 |
-
allow_flagging="never"
|
| 70 |
)
|
| 71 |
|
| 72 |
-
# 3. Launch Gradio App
|
| 73 |
if __name__ == "__main__":
|
| 74 |
demo.launch()
|
|
|
|
| 6 |
import librosa
|
| 7 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
| 8 |
|
| 9 |
+
# ------------------------------------------------
|
| 10 |
+
# 1. Load base Wav2Vec2 model + classification head
|
| 11 |
+
# ------------------------------------------------
|
| 12 |
+
model_name = "facebook/wav2vec2-base-960h"
|
| 13 |
+
|
| 14 |
+
# We specify num_labels=8 to create a random classification head on top
|
| 15 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(
|
| 16 |
+
model_name,
|
| 17 |
+
num_labels=8
|
| 18 |
+
)
|
| 19 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
| 20 |
|
| 21 |
model.eval()
|
| 22 |
|
| 23 |
+
# ------------------------------------------------
|
| 24 |
+
# 2. Define inference function
|
| 25 |
+
# ------------------------------------------------
|
| 26 |
def classify_accuracy(audio):
|
| 27 |
"""
|
| 28 |
+
Receives a tuple (sample_rate, data) from Gradio when type='numpy'.
|
| 29 |
+
We'll resample if needed, run a forward pass, and return a 'level'.
|
| 30 |
"""
|
| 31 |
if audio is None:
|
| 32 |
return "No audio provided."
|
| 33 |
|
| 34 |
sample_rate, data = audio
|
| 35 |
|
| 36 |
+
# Ensure we have a NumPy array
|
| 37 |
if not isinstance(data, np.ndarray):
|
| 38 |
data = np.array(data)
|
| 39 |
|
| 40 |
+
# Resample if the model expects 16kHz
|
| 41 |
target_sr = 16000
|
| 42 |
if sample_rate != target_sr:
|
| 43 |
data = librosa.resample(data, orig_sr=sample_rate, target_sr=target_sr)
|
| 44 |
sample_rate = target_sr
|
| 45 |
|
| 46 |
+
# Extract features
|
| 47 |
inputs = feature_extractor(
|
| 48 |
data,
|
| 49 |
sampling_rate=sample_rate,
|
|
|
|
| 56 |
logits = outputs.logits
|
| 57 |
predicted_id = torch.argmax(logits, dim=-1).item()
|
| 58 |
|
| 59 |
+
# Map 0..7 → 3..10 if you want a "level" in that range
|
| 60 |
accuracy_level = predicted_id + 3
|
| 61 |
|
| 62 |
return f"Predicted Accuracy Level: {accuracy_level}"
|
| 63 |
|
| 64 |
+
# ------------------------------------------------
|
| 65 |
+
# 3. Build Gradio interface
|
| 66 |
+
# ------------------------------------------------
|
| 67 |
+
title = "Speech Accuracy Classifier (Base Wav2Vec2)"
|
| 68 |
description = (
|
| 69 |
"Upload an audio file (or record audio) on the left. "
|
| 70 |
+
"The base model is NOT fine-tuned for classification, so results may be random. "
|
| 71 |
+
"This demo simply illustrates how to attach a classification head."
|
| 72 |
)
|
| 73 |
|
|
|
|
| 74 |
demo = gr.Interface(
|
| 75 |
fn=classify_accuracy,
|
| 76 |
+
inputs=gr.Audio(source="upload", type="numpy"),
|
| 77 |
+
outputs="text",
|
| 78 |
title=title,
|
| 79 |
description=description,
|
| 80 |
+
allow_flagging="never"
|
| 81 |
)
|
| 82 |
|
|
|
|
| 83 |
if __name__ == "__main__":
|
| 84 |
demo.launch()
|