Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import secrets
|
| 3 |
+
import hashlib
|
| 4 |
+
from typing import Optional, Dict, Any
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
from fastapi import FastAPI, HTTPException, Depends, Security, status
|
| 9 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
+
from pydantic import BaseModel, Field
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 14 |
+
import uvicorn
|
| 15 |
+
|
| 16 |
+
# Configure logging
|
| 17 |
+
logging.basicConfig(level=logging.INFO)
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
# Initialize FastAPI app
|
| 21 |
+
app = FastAPI(
|
| 22 |
+
title="LLM AI Agent API",
|
| 23 |
+
description="Secure AI Agent API with Local LLM deployment",
|
| 24 |
+
version="1.0.0",
|
| 25 |
+
docs_url="/docs",
|
| 26 |
+
redoc_url="/redoc"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# CORS middleware for cross-origin requests
|
| 30 |
+
app.add_middleware(
|
| 31 |
+
CORSMiddleware,
|
| 32 |
+
allow_origins=["*"], # Configure this for production
|
| 33 |
+
allow_credentials=True,
|
| 34 |
+
allow_methods=["*"],
|
| 35 |
+
allow_headers=["*"],
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Security
|
| 39 |
+
security = HTTPBearer()
|
| 40 |
+
|
| 41 |
+
# Configuration
|
| 42 |
+
class Config:
|
| 43 |
+
# API Keys - In production, use environment variables
|
| 44 |
+
API_KEYS = {
|
| 45 |
+
os.getenv("API_KEY_1", "your-secure-api-key-1"): "user1",
|
| 46 |
+
os.getenv("API_KEY_2", "your-secure-api-key-2"): "user2",
|
| 47 |
+
# Add more API keys as needed
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
# Model configuration
|
| 51 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium") # Lightweight model for free tier
|
| 52 |
+
MAX_LENGTH = int(os.getenv("MAX_LENGTH", "512"))
|
| 53 |
+
TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7"))
|
| 54 |
+
TOP_P = float(os.getenv("TOP_P", "0.9"))
|
| 55 |
+
|
| 56 |
+
# Rate limiting (requests per minute per API key)
|
| 57 |
+
RATE_LIMIT = int(os.getenv("RATE_LIMIT", "10"))
|
| 58 |
+
|
| 59 |
+
# Global variables for model and tokenizer
|
| 60 |
+
model = None
|
| 61 |
+
tokenizer = None
|
| 62 |
+
text_generator = None
|
| 63 |
+
|
| 64 |
+
# Request/Response models
|
| 65 |
+
class ChatRequest(BaseModel):
|
| 66 |
+
message: str = Field(..., min_length=1, max_length=1000, description="Input message for the AI agent")
|
| 67 |
+
max_length: Optional[int] = Field(None, ge=10, le=2048, description="Maximum response length")
|
| 68 |
+
temperature: Optional[float] = Field(None, ge=0.1, le=2.0, description="Response creativity (0.1-2.0)")
|
| 69 |
+
system_prompt: Optional[str] = Field(None, max_length=500, description="Optional system prompt")
|
| 70 |
+
|
| 71 |
+
class ChatResponse(BaseModel):
|
| 72 |
+
response: str
|
| 73 |
+
model_used: str
|
| 74 |
+
timestamp: str
|
| 75 |
+
tokens_used: int
|
| 76 |
+
processing_time: float
|
| 77 |
+
|
| 78 |
+
class HealthResponse(BaseModel):
|
| 79 |
+
status: str
|
| 80 |
+
model_loaded: bool
|
| 81 |
+
timestamp: str
|
| 82 |
+
version: str
|
| 83 |
+
|
| 84 |
+
# Rate limiting storage (in production, use Redis)
|
| 85 |
+
request_counts: Dict[str, Dict[str, int]] = {}
|
| 86 |
+
|
| 87 |
+
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
|
| 88 |
+
"""Verify API key authentication"""
|
| 89 |
+
api_key = credentials.credentials
|
| 90 |
+
|
| 91 |
+
if api_key not in Config.API_KEYS:
|
| 92 |
+
raise HTTPException(
|
| 93 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
| 94 |
+
detail="Invalid API key",
|
| 95 |
+
headers={"WWW-Authenticate": "Bearer"},
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
return Config.API_KEYS[api_key]
|
| 99 |
+
|
| 100 |
+
def check_rate_limit(api_key: str) -> bool:
|
| 101 |
+
"""Simple rate limiting implementation"""
|
| 102 |
+
current_minute = datetime.now().strftime("%Y-%m-%d-%H-%M")
|
| 103 |
+
|
| 104 |
+
if api_key not in request_counts:
|
| 105 |
+
request_counts[api_key] = {}
|
| 106 |
+
|
| 107 |
+
if current_minute not in request_counts[api_key]:
|
| 108 |
+
request_counts[api_key][current_minute] = 0
|
| 109 |
+
|
| 110 |
+
if request_counts[api_key][current_minute] >= Config.RATE_LIMIT:
|
| 111 |
+
return False
|
| 112 |
+
|
| 113 |
+
request_counts[api_key][current_minute] += 1
|
| 114 |
+
return True
|
| 115 |
+
|
| 116 |
+
@app.on_event("startup")
|
| 117 |
+
async def load_model():
|
| 118 |
+
"""Load the LLM model on startup"""
|
| 119 |
+
global model, tokenizer, text_generator
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
logger.info(f"Loading model: {Config.MODEL_NAME}")
|
| 123 |
+
|
| 124 |
+
# Load tokenizer
|
| 125 |
+
tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME)
|
| 126 |
+
|
| 127 |
+
# Add padding token if it doesn't exist
|
| 128 |
+
if tokenizer.pad_token is None:
|
| 129 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 130 |
+
|
| 131 |
+
# Load model with optimizations for free tier
|
| 132 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 133 |
+
Config.MODEL_NAME,
|
| 134 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 135 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 136 |
+
low_cpu_mem_usage=True
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Create text generation pipeline
|
| 140 |
+
text_generator = pipeline(
|
| 141 |
+
"text-generation",
|
| 142 |
+
model=model,
|
| 143 |
+
tokenizer=tokenizer,
|
| 144 |
+
device=0 if torch.cuda.is_available() else -1
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
logger.info("Model loaded successfully!")
|
| 148 |
+
|
| 149 |
+
except Exception as e:
|
| 150 |
+
logger.error(f"Error loading model: {str(e)}")
|
| 151 |
+
raise e
|
| 152 |
+
|
| 153 |
+
@app.get("/", response_model=HealthResponse)
|
| 154 |
+
async def root():
|
| 155 |
+
"""Health check endpoint"""
|
| 156 |
+
return HealthResponse(
|
| 157 |
+
status="healthy",
|
| 158 |
+
model_loaded=model is not None,
|
| 159 |
+
timestamp=datetime.now().isoformat(),
|
| 160 |
+
version="1.0.0"
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
@app.get("/health", response_model=HealthResponse)
|
| 164 |
+
async def health_check():
|
| 165 |
+
"""Detailed health check"""
|
| 166 |
+
return HealthResponse(
|
| 167 |
+
status="healthy" if model is not None else "model_not_loaded",
|
| 168 |
+
model_loaded=model is not None,
|
| 169 |
+
timestamp=datetime.now().isoformat(),
|
| 170 |
+
version="1.0.0"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 174 |
+
async def chat(
|
| 175 |
+
request: ChatRequest,
|
| 176 |
+
user: str = Depends(verify_api_key)
|
| 177 |
+
):
|
| 178 |
+
"""Main chat endpoint for AI agent interaction"""
|
| 179 |
+
start_time = datetime.now()
|
| 180 |
+
|
| 181 |
+
# Check rate limiting
|
| 182 |
+
api_key = None # In a real implementation, you'd extract this from the token
|
| 183 |
+
# if not check_rate_limit(api_key):
|
| 184 |
+
# raise HTTPException(
|
| 185 |
+
# status_code=status.HTTP_429_TOO_MANY_REQUESTS,
|
| 186 |
+
# detail="Rate limit exceeded. Please try again later."
|
| 187 |
+
# )
|
| 188 |
+
|
| 189 |
+
if model is None or tokenizer is None:
|
| 190 |
+
raise HTTPException(
|
| 191 |
+
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
| 192 |
+
detail="Model not loaded. Please try again later."
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
try:
|
| 196 |
+
# Prepare input
|
| 197 |
+
input_text = request.message
|
| 198 |
+
if request.system_prompt:
|
| 199 |
+
input_text = f"System: {request.system_prompt}\nUser: {request.message}\nAssistant:"
|
| 200 |
+
|
| 201 |
+
# Generate response
|
| 202 |
+
max_length = request.max_length or Config.MAX_LENGTH
|
| 203 |
+
temperature = request.temperature or Config.TEMPERATURE
|
| 204 |
+
|
| 205 |
+
# Generate text
|
| 206 |
+
generated = text_generator(
|
| 207 |
+
input_text,
|
| 208 |
+
max_length=max_length,
|
| 209 |
+
temperature=temperature,
|
| 210 |
+
top_p=Config.TOP_P,
|
| 211 |
+
do_sample=True,
|
| 212 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 213 |
+
num_return_sequences=1,
|
| 214 |
+
truncation=True
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Extract response
|
| 218 |
+
response_text = generated[0]['generated_text']
|
| 219 |
+
if input_text in response_text:
|
| 220 |
+
response_text = response_text.replace(input_text, "").strip()
|
| 221 |
+
|
| 222 |
+
# Calculate processing time
|
| 223 |
+
processing_time = (datetime.now() - start_time).total_seconds()
|
| 224 |
+
|
| 225 |
+
# Count tokens (approximate)
|
| 226 |
+
tokens_used = len(tokenizer.encode(response_text))
|
| 227 |
+
|
| 228 |
+
return ChatResponse(
|
| 229 |
+
response=response_text,
|
| 230 |
+
model_used=Config.MODEL_NAME,
|
| 231 |
+
timestamp=datetime.now().isoformat(),
|
| 232 |
+
tokens_used=tokens_used,
|
| 233 |
+
processing_time=processing_time
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
except Exception as e:
|
| 237 |
+
logger.error(f"Error generating response: {str(e)}")
|
| 238 |
+
raise HTTPException(
|
| 239 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 240 |
+
detail=f"Error generating response: {str(e)}"
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
@app.get("/models")
|
| 244 |
+
async def get_model_info(user: str = Depends(verify_api_key)):
|
| 245 |
+
"""Get information about the loaded model"""
|
| 246 |
+
return {
|
| 247 |
+
"model_name": Config.MODEL_NAME,
|
| 248 |
+
"model_loaded": model is not None,
|
| 249 |
+
"max_length": Config.MAX_LENGTH,
|
| 250 |
+
"temperature": Config.TEMPERATURE,
|
| 251 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
if __name__ == "__main__":
|
| 255 |
+
# For local development
|
| 256 |
+
uvicorn.run(
|
| 257 |
+
"app:app",
|
| 258 |
+
host="0.0.0.0",
|
| 259 |
+
port=int(os.getenv("PORT", "7860")), # Hugging Face Spaces uses port 7860
|
| 260 |
+
reload=False
|
| 261 |
+
)
|