Spaces:
Build error
Build error
| static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false}; | |
| uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) { | |
| // the FA kernels require padding to avoid extra runtime boundary checks | |
| return cparams.flash_attn ? 256u : 32u; | |
| } | |
| bool llama_kv_cache_init( | |
| struct llama_kv_cache & cache, | |
| const llama_model & model, | |
| const llama_cparams & cparams, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| uint32_t kv_size, | |
| bool offload) { | |
| const struct llama_hparams & hparams = model.hparams; | |
| const int32_t n_layer = hparams.n_layer; | |
| cache.has_shift = false; | |
| cache.recurrent = llama_model_is_recurrent(&model); | |
| cache.v_trans = !cache.recurrent && !cparams.flash_attn; | |
| cache.can_shift = !cache.recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA | |
| LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n", | |
| __func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, cache.can_shift); | |
| cache.head = 0; | |
| cache.size = kv_size; | |
| cache.used = 0; | |
| cache.type_k = type_k; | |
| cache.type_v = type_v; | |
| cache.cells.clear(); | |
| cache.cells.resize(kv_size); | |
| // create a context for each buffer type | |
| std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; | |
| auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { | |
| auto it = ctx_map.find(buft); | |
| if (it == ctx_map.end()) { | |
| struct ggml_init_params params = { | |
| /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), | |
| /*.mem_buffer =*/ NULL, | |
| /*.no_alloc =*/ true, | |
| }; | |
| ggml_context * ctx = ggml_init(params); | |
| if (!ctx) { | |
| return nullptr; | |
| } | |
| ctx_map[buft] = ctx; | |
| cache.ctxs.emplace_back(ctx); | |
| return ctx; | |
| } | |
| return it->second; | |
| }; | |
| cache.k_l.reserve(n_layer); | |
| cache.v_l.reserve(n_layer); | |
| for (int i = 0; i < n_layer; i++) { | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); | |
| LLAMA_LOG_DEBUG("%s: layer %d: n_embd_k_gqa = %d, n_embd_v_gqa = %d\n", __func__, i, n_embd_k_gqa, n_embd_v_gqa); | |
| ggml_backend_buffer_type_t buft; | |
| if (offload) { | |
| auto * dev = model.dev_layer(i); | |
| buft = ggml_backend_dev_buffer_type(dev); | |
| } else { | |
| buft = ggml_backend_cpu_buffer_type(); | |
| } | |
| ggml_context * ctx = ctx_for_buft(buft); | |
| if (!ctx) { | |
| LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__); | |
| return false; | |
| } | |
| ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); | |
| ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); | |
| ggml_format_name(k, "cache_k_l%d", i); | |
| ggml_format_name(v, "cache_v_l%d", i); | |
| cache.k_l.push_back(k); | |
| cache.v_l.push_back(v); | |
| } | |
| // allocate tensors and initialize the buffers to avoid NaNs in the padding | |
| for (auto it : ctx_map) { | |
| auto * buft = it.first; | |
| auto * ctx = it.second; | |
| ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); | |
| if (!buf) { | |
| LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); | |
| return false; | |
| } | |
| ggml_backend_buffer_clear(buf, 0); | |
| LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); | |
| cache.bufs.emplace_back(buf); | |
| } | |
| return true; | |
| } | |
| struct llama_kv_cache_slot_info llama_kv_cache_find_slot( | |
| struct llama_kv_cache & cache, | |
| const struct llama_ubatch & ubatch) { | |
| const uint32_t n_tokens = ubatch.n_tokens; | |
| const uint32_t n_seqs = ubatch.n_seqs; | |
| const uint32_t n_seq_tokens = ubatch.n_seq_tokens; | |
| if (cache.recurrent) { | |
| // For recurrent state architectures (like Mamba or RWKV), | |
| // each cache cell can store the state for a whole sequence. | |
| // A slot should be always be contiguous. | |
| // can only process batches with an equal number of new tokens in each sequence | |
| GGML_ASSERT(ubatch.equal_seqs); | |
| int32_t min = cache.size - 1; | |
| int32_t max = 0; | |
| // everything should fit if all seq_ids are smaller than the max | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| const uint32_t n_seq_id = ubatch.n_seq_id[s]; | |
| for (uint32_t j = 0; j < n_seq_id; ++j) { | |
| const llama_seq_id seq_id = ubatch.seq_id[s][j]; | |
| if (seq_id < 0 || (uint32_t) seq_id >= cache.size) { | |
| // too big seq_id | |
| // TODO: would it be possible to resize the cache instead? | |
| LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); | |
| return llama_kv_cache_slot_info_failed; | |
| } | |
| if (j > 0) { | |
| llama_kv_cell & seq = cache.cells[seq_id]; | |
| if (seq.tail >= 0) { | |
| llama_kv_cell & cell = cache.cells[seq.tail]; | |
| // clear cells from seq_ids that become shared | |
| // (should not normally happen, but let's handle it anyway) | |
| cell.seq_id.erase(seq_id); | |
| seq.tail = -1; | |
| if (cell.seq_id.empty()) { | |
| cell.pos = -1; | |
| cell.src = -1; | |
| cache.used -= 1; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| { | |
| std::vector<int32_t> tails_verif; | |
| tails_verif.assign(cache.size, -1); | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| llama_kv_cell & cell = cache.cells[i]; | |
| for (llama_seq_id seq_id : cell.seq_id) { | |
| if (tails_verif[seq_id] != -1) { | |
| LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]); | |
| } | |
| tails_verif[seq_id] = i; | |
| } | |
| } | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (tails_verif[i] != cache.cells[i].tail) { | |
| LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]); | |
| } | |
| } | |
| } | |
| // find next empty cell | |
| uint32_t next_empty_cell = cache.head; | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; } | |
| llama_kv_cell & cell = cache.cells[next_empty_cell]; | |
| if (cell.is_empty()) { break; } | |
| next_empty_cell += 1; | |
| } | |
| // find usable cell range | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| const llama_seq_id seq_id = ubatch.seq_id[s][0]; | |
| llama_kv_cell & seq_meta = cache.cells[seq_id]; | |
| bool has_cell = false; | |
| if (seq_meta.tail >= 0) { | |
| llama_kv_cell & cell = cache.cells[seq_meta.tail]; | |
| GGML_ASSERT(cell.has_seq_id(seq_id)); | |
| // does this seq_id "own" the cell? | |
| if (cell.seq_id.size() == 1) { has_cell = true; } | |
| } | |
| if (!has_cell) { | |
| llama_kv_cell & empty_cell = cache.cells[next_empty_cell]; | |
| GGML_ASSERT(empty_cell.is_empty()); | |
| // copy old tail into the empty cell | |
| if (seq_meta.tail >= 0) { | |
| llama_kv_cell & orig_cell = cache.cells[seq_meta.tail]; | |
| empty_cell.pos = orig_cell.pos; | |
| empty_cell.src = orig_cell.src; | |
| orig_cell.seq_id.erase(seq_id); | |
| empty_cell.seq_id.insert(seq_id); // will be overwritten | |
| } | |
| seq_meta.tail = next_empty_cell; | |
| // find next empty cell | |
| if (s + 1 < n_seqs) { | |
| next_empty_cell += 1; | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; } | |
| llama_kv_cell & cell = cache.cells[next_empty_cell]; | |
| if (cell.is_empty()) { break; } | |
| next_empty_cell += 1; | |
| } | |
| } | |
| } | |
| if (min > seq_meta.tail) { min = seq_meta.tail; } | |
| if (max < seq_meta.tail) { max = seq_meta.tail; } | |
| } | |
| // gather and re-order | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| int32_t dst_id = s + min; | |
| int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail; | |
| if (dst_id != src_id) { | |
| llama_kv_cell & dst_cell = cache.cells[dst_id]; | |
| llama_kv_cell & src_cell = cache.cells[src_id]; | |
| std::swap(dst_cell.pos, src_cell.pos); | |
| std::swap(dst_cell.src, src_cell.src); | |
| std::swap(dst_cell.seq_id, src_cell.seq_id); | |
| // swap tails (assuming they NEVER overlap) | |
| for (const llama_seq_id seq_id : src_cell.seq_id) { | |
| cache.cells[seq_id].tail = src_id; | |
| } | |
| for (const llama_seq_id seq_id : dst_cell.seq_id) { | |
| cache.cells[seq_id].tail = dst_id; | |
| } | |
| } | |
| } | |
| // update the pos of the used seqs | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1]; | |
| int32_t cell_id = s + min; | |
| llama_kv_cell & cell = cache.cells[cell_id]; | |
| if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { | |
| // What should happen when the pos backtracks or skips a value? | |
| // Clearing the state mid-batch would require special-casing which isn't done. | |
| LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n", | |
| __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens); | |
| } | |
| cell.pos = last_pos; | |
| cell.seq_id.clear(); | |
| for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) { | |
| const llama_seq_id seq_id = ubatch.seq_id[s][j]; | |
| cell.seq_id.insert(seq_id); | |
| cache.cells[seq_id].tail = cell_id; | |
| } | |
| } | |
| // allow getting the range of used cells, from head to head + n | |
| cache.head = min; | |
| cache.n = max - min + 1; | |
| cache.used = std::count_if(cache.cells.begin(), cache.cells.end(), | |
| [](const llama_kv_cell& cell){ return !cell.is_empty(); }); | |
| // sanity check | |
| return llama_kv_cache_slot_info(cache.n >= n_seqs); | |
| } | |
| // otherwise, one cell per token. | |
| if (n_tokens > cache.size) { | |
| LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); | |
| return llama_kv_cache_slot_info_failed; | |
| } | |
| uint32_t n_tested = 0; | |
| while (true) { | |
| if (cache.head + n_tokens > cache.size) { | |
| n_tested += cache.size - cache.head; | |
| cache.head = 0; | |
| continue; | |
| } | |
| bool found = true; | |
| for (uint32_t i = 0; i < n_tokens; i++) { | |
| if (cache.cells[cache.head + i].pos >= 0) { | |
| found = false; | |
| cache.head += i + 1; | |
| n_tested += i + 1; | |
| break; | |
| } | |
| } | |
| if (found) { | |
| break; | |
| } | |
| if (n_tested >= cache.size) { | |
| //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); | |
| return llama_kv_cache_slot_info_failed; | |
| } | |
| } | |
| for (uint32_t s = 0; s < n_seqs; s++) { | |
| for (uint32_t i = 0; i < n_seq_tokens; ++i) { | |
| uint32_t k = s*n_seq_tokens + i; | |
| cache.cells[cache.head + k].pos = ubatch.pos[k]; | |
| for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) { | |
| cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]); | |
| } | |
| } | |
| } | |
| cache.used += n_tokens; | |
| return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens); | |
| } | |
| uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { | |
| for (uint32_t i = cache.size; i > 0; --i) { | |
| const llama_kv_cell & cell = cache.cells[i - 1]; | |
| if (cell.pos >= 0 && !cell.is_empty()) { | |
| return i; | |
| } | |
| } | |
| return 0; | |
| } | |
| void llama_kv_cache_clear(struct llama_kv_cache & cache) { | |
| for (int32_t i = 0; i < (int32_t) cache.size; ++i) { | |
| cache.cells[i].pos = -1; | |
| cache.cells[i].seq_id.clear(); | |
| cache.cells[i].src = -1; | |
| cache.cells[i].tail = -1; | |
| } | |
| cache.head = 0; | |
| cache.used = 0; | |
| for (auto & buf : cache.bufs) { | |
| ggml_backend_buffer_clear(buf.get(), 0); | |
| } | |
| } | |
| bool llama_kv_cache_seq_rm( | |
| struct llama_kv_cache & cache, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1) { | |
| uint32_t new_head = cache.size; | |
| if (p0 < 0) p0 = 0; | |
| if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); | |
| // models like Mamba or RWKV can't have a state partially erased | |
| if (cache.recurrent) { | |
| if (seq_id >= (int64_t) cache.size) { | |
| // could be fatal | |
| return false; | |
| } | |
| if (0 <= seq_id) { | |
| int32_t & tail_id = cache.cells[seq_id].tail; | |
| if (tail_id >= 0) { | |
| const llama_kv_cell & cell = cache.cells[tail_id]; | |
| // partial intersection is invalid | |
| if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) { | |
| return false; | |
| } | |
| // invalidate tails which will be cleared | |
| if (p0 <= cell.pos && cell.pos < p1) { | |
| tail_id = -1; | |
| } | |
| } | |
| } else { | |
| // seq_id is negative, then the range should include everything or nothing | |
| if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) { | |
| return false; | |
| } | |
| } | |
| } | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { | |
| if (seq_id < 0) { | |
| cache.cells[i].seq_id.clear(); | |
| } else if (cache.cells[i].has_seq_id(seq_id)) { | |
| cache.cells[i].seq_id.erase(seq_id); | |
| } else { | |
| continue; | |
| } | |
| if (cache.cells[i].is_empty()) { | |
| // keep count of the number of used cells | |
| if (cache.cells[i].pos >= 0) cache.used--; | |
| cache.cells[i].pos = -1; | |
| cache.cells[i].src = -1; | |
| if (new_head == cache.size) new_head = i; | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != cache.size && new_head < cache.head) cache.head = new_head; | |
| return true; | |
| } | |
| void llama_kv_cache_seq_cp( | |
| struct llama_kv_cache & cache, | |
| llama_seq_id seq_id_src, | |
| llama_seq_id seq_id_dst, | |
| llama_pos p0, | |
| llama_pos p1) { | |
| if (p0 < 0) p0 = 0; | |
| if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); | |
| if (cache.recurrent) { | |
| if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) { | |
| llama_kv_cell & tail_src = cache.cells[seq_id_src]; | |
| llama_kv_cell & tail_dst = cache.cells[seq_id_dst]; | |
| if (tail_dst.tail >= 0) { | |
| // clear destination seq_id if it wasn't empty | |
| llama_kv_cell & cell_dst = cache.cells[tail_dst.tail]; | |
| cell_dst.seq_id.erase(seq_id_dst); | |
| tail_dst.tail = -1; | |
| if (cell_dst.seq_id.empty()) { | |
| cell_dst.pos = -1; | |
| cell_dst.delta = -1; | |
| cell_dst.src = -1; | |
| cache.used -= 1; | |
| } | |
| } | |
| if (tail_src.tail >= 0) { | |
| llama_kv_cell & cell_src = cache.cells[tail_src.tail]; | |
| cell_src.seq_id.insert(seq_id_dst); | |
| tail_dst.tail = tail_src.tail; | |
| } | |
| } | |
| return; | |
| } | |
| // otherwise, this is the KV cache of a Transformer-like model | |
| cache.head = 0; | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { | |
| cache.cells[i].seq_id.insert(seq_id_dst); | |
| } | |
| } | |
| } | |
| void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { | |
| uint32_t new_head = cache.size; | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (cache.recurrent && (llama_seq_id) i != seq_id) { | |
| cache.cells[i].tail = -1; | |
| } | |
| if (!cache.cells[i].has_seq_id(seq_id)) { | |
| if (cache.cells[i].pos >= 0) cache.used--; | |
| cache.cells[i].pos = -1; | |
| cache.cells[i].src = -1; | |
| cache.cells[i].seq_id.clear(); | |
| if (new_head == cache.size) new_head = i; | |
| } else { | |
| cache.cells[i].seq_id.clear(); | |
| cache.cells[i].seq_id.insert(seq_id); | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != cache.size && new_head < cache.head) cache.head = new_head; | |
| } | |
| void llama_kv_cache_seq_add( | |
| struct llama_kv_cache & cache, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1, | |
| llama_pos delta) { | |
| uint32_t new_head = cache.size; | |
| if (p0 < 0) p0 = 0; | |
| if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); | |
| // If there is no range then return early to avoid looping over the cache. | |
| if (p0 == p1) return; | |
| if (cache.recurrent) { | |
| // for Mamba-like or RWKV models, only the pos needs to be shifted | |
| if (0 <= seq_id && seq_id < (int64_t) cache.size) { | |
| const int32_t tail_id = cache.cells[seq_id].tail; | |
| if (tail_id >= 0) { | |
| llama_kv_cell & cell = cache.cells[tail_id]; | |
| if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { | |
| cell.pos += delta; | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { | |
| cache.has_shift = true; | |
| cache.cells[i].pos += delta; | |
| cache.cells[i].delta += delta; | |
| if (cache.cells[i].pos < 0) { | |
| if (!cache.cells[i].is_empty()) { | |
| cache.used--; | |
| } | |
| cache.cells[i].pos = -1; | |
| cache.cells[i].seq_id.clear(); | |
| if (new_head == cache.size) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| // Otherwise we just start the next search from the beginning. | |
| cache.head = new_head != cache.size ? new_head : 0; | |
| } | |
| void llama_kv_cache_seq_div( | |
| struct llama_kv_cache & cache, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1, | |
| int d) { | |
| if (p0 < 0) p0 = 0; | |
| if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); | |
| // If there is no range then return early to avoid looping over the cache. | |
| if (p0 == p1) return; | |
| if (cache.recurrent) { | |
| // for Mamba-like or RWKV models, only the pos needs to be changed | |
| if (0 <= seq_id && seq_id < (int64_t) cache.size) { | |
| const int32_t tail_id = cache.cells[seq_id].tail; | |
| if (tail_id >= 0) { | |
| llama_kv_cell & cell = cache.cells[tail_id]; | |
| if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { | |
| cell.pos /= d; | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { | |
| cache.has_shift = true; | |
| { | |
| llama_pos p_old = cache.cells[i].pos; | |
| cache.cells[i].pos /= d; | |
| cache.cells[i].delta += cache.cells[i].pos - p_old; | |
| } | |
| } | |
| } | |
| } | |
| llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { | |
| llama_pos result = 0; | |
| for (uint32_t i = 0; i < cache.size; ++i) { | |
| if (cache.cells[i].has_seq_id(seq_id)) { | |
| result = std::max(result, cache.cells[i].pos); | |
| } | |
| } | |
| return result; | |
| } | |
| void llama_kv_cache_defrag(struct llama_kv_cache & cache) { | |
| if (!cache.recurrent) { | |
| cache.do_defrag = true; | |
| } | |
| } | |
| int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv) { | |
| int result = 0; | |
| for (uint32_t i = 0; i < kv.size; i++) { | |
| result += kv.cells[i].seq_id.size(); | |
| } | |
| return result; | |
| } | |
| int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv) { | |
| return kv.used; | |
| } | |
| bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv) { | |
| return kv.can_shift; | |
| } | |
| // | |
| // kv cache view | |
| // | |
| struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max) { | |
| struct llama_kv_cache_view result = { | |
| /*.n_cells = */ 0, | |
| /*.n_seq_max = */ n_seq_max, | |
| /*.token_count = */ 0, | |
| /*.used_cells = */ llama_get_kv_cache_used_cells(kv), | |
| /*.max_contiguous = */ 0, | |
| /*.max_contiguous_idx = */ -1, | |
| /*.cells = */ nullptr, | |
| /*.cells_sequences = */ nullptr, | |
| }; | |
| return result; | |
| } | |
| void llama_kv_cache_view_free(struct llama_kv_cache_view * view) { | |
| if (view->cells != nullptr) { | |
| free(view->cells); | |
| view->cells = nullptr; | |
| } | |
| if (view->cells_sequences != nullptr) { | |
| free(view->cells_sequences); | |
| view->cells_sequences = nullptr; | |
| } | |
| } | |
| void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv) { | |
| if (uint32_t(view->n_cells) < kv.size || view->cells == nullptr) { | |
| view->n_cells = int32_t(kv.size); | |
| void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells); | |
| GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells"); | |
| view->cells = (struct llama_kv_cache_view_cell *)p; | |
| p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells); | |
| GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences"); | |
| view->cells_sequences = (llama_seq_id *)p; | |
| } | |
| const std::vector<llama_kv_cell> & kv_cells = kv.cells; | |
| llama_kv_cache_view_cell * c_curr = view->cells; | |
| llama_seq_id * cs_curr = view->cells_sequences; | |
| int32_t used_cells = 0; | |
| int32_t token_count = 0; | |
| int32_t curr_contig_idx = -1; | |
| uint32_t max_contig = 0; | |
| int32_t max_contig_idx = -1; | |
| for (int32_t i = 0; i < int32_t(kv.size); i++, c_curr++, cs_curr += view->n_seq_max) { | |
| const size_t curr_size = kv_cells[i].seq_id.size(); | |
| token_count += curr_size; | |
| c_curr->pos = kv_cells[i].pos + kv_cells[i].delta; | |
| if (curr_size > 0) { | |
| if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) { | |
| max_contig = i - curr_contig_idx; | |
| max_contig_idx = curr_contig_idx; | |
| } | |
| curr_contig_idx = -1; | |
| } else if (curr_contig_idx < 0) { | |
| curr_contig_idx = i; | |
| } | |
| int seq_idx = 0; | |
| for (const llama_seq_id it : kv_cells[i].seq_id) { | |
| if (seq_idx >= view->n_seq_max) { | |
| break; | |
| } | |
| cs_curr[seq_idx] = it; | |
| seq_idx++; | |
| } | |
| if (seq_idx != 0) { | |
| used_cells++; | |
| } | |
| for (; seq_idx < view->n_seq_max; seq_idx++) { | |
| cs_curr[seq_idx] = -1; | |
| } | |
| } | |
| if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) { | |
| max_contig_idx = curr_contig_idx; | |
| max_contig = kv_cells.size() - curr_contig_idx; | |
| } | |
| view->max_contiguous = max_contig; | |
| view->max_contiguous_idx = max_contig_idx; | |
| view->token_count = token_count; | |
| view->used_cells = used_cells; | |
| if (uint32_t(used_cells) != kv.used) { | |
| LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n", | |
| __func__, kv.used, used_cells); | |
| } | |
| } | |