Spaces:
Build error
Build error
| #!/usr/bin/env python3 | |
| from __future__ import annotations | |
| import logging | |
| import argparse | |
| import os | |
| import re | |
| import sys | |
| from pathlib import Path | |
| from typing import Any | |
| import numpy as np | |
| # Necessary to load the local gguf package | |
| if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists(): | |
| sys.path.insert(0, str(Path(__file__).parent.parent.parent)) | |
| from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402 | |
| logger = logging.getLogger("gguf-dump") | |
| def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]: | |
| host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG' | |
| if reader.byte_order == 'S': | |
| file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE' | |
| else: | |
| file_endian = host_endian | |
| return (host_endian, file_endian) | |
| # For more information about what field.parts and field.data represent, | |
| # please see the comments in the modify_gguf.py example. | |
| def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: | |
| host_endian, file_endian = get_file_host_endian(reader) | |
| print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100 | |
| print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100 | |
| for n, field in enumerate(reader.fields.values(), 1): | |
| if not field.types: | |
| pretty_type = 'N/A' | |
| elif field.types[0] == GGUFValueType.ARRAY: | |
| nest_count = len(field.types) - 1 | |
| pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count | |
| else: | |
| pretty_type = str(field.types[-1].name) | |
| log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}' | |
| if len(field.types) == 1: | |
| curr_type = field.types[0] | |
| if curr_type == GGUFValueType.STRING: | |
| log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])) | |
| elif field.types[0] in reader.gguf_scalar_to_np: | |
| log_message += ' = {0}'.format(field.parts[-1][0]) | |
| print(log_message) # noqa: NP100 | |
| if args.no_tensors: | |
| return | |
| print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100 | |
| for n, tensor in enumerate(reader.tensors, 1): | |
| prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape))) | |
| print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100 | |
| def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None: | |
| import json | |
| host_endian, file_endian = get_file_host_endian(reader) | |
| metadata: dict[str, Any] = {} | |
| tensors: dict[str, Any] = {} | |
| result = { | |
| "filename": args.model, | |
| "endian": file_endian, | |
| "metadata": metadata, | |
| "tensors": tensors, | |
| } | |
| for idx, field in enumerate(reader.fields.values()): | |
| curr: dict[str, Any] = { | |
| "index": idx, | |
| "type": field.types[0].name if field.types else 'UNKNOWN', | |
| "offset": field.offset, | |
| } | |
| metadata[field.name] = curr | |
| if field.types[:1] == [GGUFValueType.ARRAY]: | |
| curr["array_types"] = [t.name for t in field.types][1:] | |
| if not args.json_array: | |
| continue | |
| itype = field.types[-1] | |
| if itype == GGUFValueType.STRING: | |
| curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data] | |
| else: | |
| curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()] | |
| elif field.types[0] == GGUFValueType.STRING: | |
| curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8") | |
| else: | |
| curr["value"] = field.parts[-1].tolist()[0] | |
| if not args.no_tensors: | |
| for idx, tensor in enumerate(reader.tensors): | |
| tensors[tensor.name] = { | |
| "index": idx, | |
| "shape": tensor.shape.tolist(), | |
| "type": tensor.tensor_type.name, | |
| "offset": tensor.field.offset, | |
| } | |
| json.dump(result, sys.stdout) | |
| def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]): | |
| # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957 | |
| # Alignment Utility Function | |
| def strAlign(padding: int, alignMode: str | None, strVal: str): | |
| if alignMode == 'center': | |
| return strVal.center(padding) | |
| elif alignMode == 'right': | |
| return strVal.rjust(padding - 1) + ' ' | |
| elif alignMode == 'left': | |
| return ' ' + strVal.ljust(padding - 1) | |
| else: # default left | |
| return ' ' + strVal.ljust(padding - 1) | |
| def dashAlign(padding: int, alignMode: str | None): | |
| if alignMode == 'center': | |
| return ':' + '-' * (padding - 2) + ':' | |
| elif alignMode == 'right': | |
| return '-' * (padding - 1) + ':' | |
| elif alignMode == 'left': | |
| return ':' + '-' * (padding - 1) | |
| else: # default left | |
| return '-' * (padding) | |
| # Calculate Padding For Each Column Based On Header and Data Length | |
| rowsPadding = {} | |
| for index, columnEntry in enumerate(header_map): | |
| padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2 | |
| headerPadCount = len(columnEntry['header_name']) + 2 | |
| rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount | |
| # Render Markdown Header | |
| rows = [] | |
| rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map))) | |
| rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map))) | |
| # Render Tabular Data | |
| for item in data: | |
| rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map))) | |
| # Convert Tabular String Rows Into String | |
| tableString = "" | |
| for row in rows: | |
| tableString += f'|{row}|\n' | |
| return tableString | |
| def element_count_rounded_notation(count: int) -> str: | |
| if count > 1e15 : | |
| # Quadrillion | |
| scaled_amount = count * 1e-15 | |
| scale_suffix = "Q" | |
| elif count > 1e12 : | |
| # Trillions | |
| scaled_amount = count * 1e-12 | |
| scale_suffix = "T" | |
| elif count > 1e9 : | |
| # Billions | |
| scaled_amount = count * 1e-9 | |
| scale_suffix = "B" | |
| elif count > 1e6 : | |
| # Millions | |
| scaled_amount = count * 1e-6 | |
| scale_suffix = "M" | |
| elif count > 1e3 : | |
| # Thousands | |
| scaled_amount = count * 1e-3 | |
| scale_suffix = "K" | |
| else: | |
| # Under Thousands | |
| scaled_amount = count | |
| scale_suffix = "" | |
| return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}" | |
| def translate_tensor_name(name): | |
| words = name.split(".") | |
| # Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names | |
| abbreviation_dictionary = { | |
| 'token_embd': 'Token embedding', | |
| 'pos_embd': 'Position embedding', | |
| 'output_norm': 'Output normalization', | |
| 'output': 'Output', | |
| 'attn_norm': 'Attention normalization', | |
| 'attn_norm_2': 'Attention normalization', | |
| 'attn_qkv': 'Attention query-key-value', | |
| 'attn_q': 'Attention query', | |
| 'attn_k': 'Attention key', | |
| 'attn_v': 'Attention value', | |
| 'attn_output': 'Attention output', | |
| 'ffn_norm': 'Feed-forward network normalization', | |
| 'ffn_up': 'Feed-forward network "up"', | |
| 'ffn_gate': 'Feed-forward network "gate"', | |
| 'ffn_down': 'Feed-forward network "down"', | |
| 'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models', | |
| 'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models', | |
| 'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models', | |
| 'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models', | |
| 'ssm_in': 'State space model input projections', | |
| 'ssm_conv1d': 'State space model rolling/shift', | |
| 'ssm_x': 'State space model selective parametrization', | |
| 'ssm_a': 'State space model state compression', | |
| 'ssm_d': 'State space model skip connection', | |
| 'ssm_dt': 'State space model time step', | |
| 'ssm_out': 'State space model output projection', | |
| 'blk': 'Block', | |
| 'enc': 'Encoder', | |
| 'dec': 'Decoder', | |
| } | |
| expanded_words = [] | |
| for word in words: | |
| word_norm = word.strip().lower() | |
| if word_norm in abbreviation_dictionary: | |
| expanded_words.append(abbreviation_dictionary[word_norm].title()) | |
| else: | |
| expanded_words.append(word.title()) | |
| return ' '.join(expanded_words) | |
| def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: | |
| host_endian, file_endian = get_file_host_endian(reader) | |
| markdown_content = "" | |
| markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n' | |
| markdown_content += f'- Endian: {file_endian} endian\n' | |
| markdown_content += '\n' | |
| markdown_content += '## Key Value Metadata Store\n\n' | |
| markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n' | |
| markdown_content += '\n' | |
| kv_dump_table: list[dict[str, str | int]] = [] | |
| for n, field in enumerate(reader.fields.values(), 1): | |
| if not field.types: | |
| pretty_type = 'N/A' | |
| elif field.types[0] == GGUFValueType.ARRAY: | |
| nest_count = len(field.types) - 1 | |
| pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count | |
| else: | |
| pretty_type = str(field.types[-1].name) | |
| def escape_markdown_inline_code(value_string): | |
| # Find the longest contiguous sequence of backticks in the string then | |
| # wrap string with appropriate number of backticks required to escape it | |
| max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0) | |
| inline_code_marker = '`' * (max_backticks + 1) | |
| # If the string starts or ends with a backtick, add a space at the beginning and end | |
| if value_string.startswith('`') or value_string.endswith('`'): | |
| value_string = f" {value_string} " | |
| return f"{inline_code_marker}{value_string}{inline_code_marker}" | |
| total_elements = len(field.data) | |
| value = "" | |
| if len(field.types) == 1: | |
| curr_type = field.types[0] | |
| if curr_type == GGUFValueType.STRING: | |
| truncate_length = 60 | |
| value_string = str(bytes(field.parts[-1]), encoding='utf-8') | |
| if len(value_string) > truncate_length: | |
| head = escape_markdown_inline_code(value_string[:truncate_length // 2]) | |
| tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) | |
| value = "{head}...{tail}".format(head=head, tail=tail) | |
| else: | |
| value = escape_markdown_inline_code(value_string) | |
| elif curr_type in reader.gguf_scalar_to_np: | |
| value = str(field.parts[-1][0]) | |
| else: | |
| if field.types[0] == GGUFValueType.ARRAY: | |
| curr_type = field.types[1] | |
| array_elements = [] | |
| if curr_type == GGUFValueType.STRING: | |
| render_element = min(5, total_elements) | |
| for element_pos in range(render_element): | |
| truncate_length = 30 | |
| value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8') | |
| if len(value_string) > truncate_length: | |
| head = escape_markdown_inline_code(value_string[:truncate_length // 2]) | |
| tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) | |
| value = "{head}...{tail}".format(head=head, tail=tail) | |
| else: | |
| value = escape_markdown_inline_code(value_string) | |
| array_elements.append(value) | |
| elif curr_type in reader.gguf_scalar_to_np: | |
| render_element = min(7, total_elements) | |
| for element_pos in range(render_element): | |
| array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0])) | |
| value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]' | |
| kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value}) | |
| kv_dump_table_header_map = [ | |
| {'key_name':'n', 'header_name':'POS', 'align':'right'}, | |
| {'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'}, | |
| {'key_name':'total_elements', 'header_name':'Count', 'align':'right'}, | |
| {'key_name':'field_name', 'header_name':'Key', 'align':'left'}, | |
| {'key_name':'value', 'header_name':'Value', 'align':'left'}, | |
| ] | |
| markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table) | |
| markdown_content += "\n" | |
| if not args.no_tensors: | |
| # Group tensors by their prefix and maintain order | |
| tensor_prefix_order: list[str] = [] | |
| tensor_name_to_key: dict[str, int] = {} | |
| tensor_groups: dict[str, list[ReaderTensor]] = {} | |
| total_elements = sum(tensor.n_elements for tensor in reader.tensors) | |
| # Parsing Tensors Record | |
| for key, tensor in enumerate(reader.tensors): | |
| tensor_components = tensor.name.split('.') | |
| # Classify Tensor Group | |
| tensor_group_name = "base" | |
| if tensor_components[0] == 'blk': | |
| tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}" | |
| elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk': | |
| tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}" | |
| elif tensor_components[0] in ['enc', 'dec']: | |
| tensor_group_name = f"{tensor_components[0]}" | |
| # Check if new Tensor Group | |
| if tensor_group_name not in tensor_groups: | |
| tensor_groups[tensor_group_name] = [] | |
| tensor_prefix_order.append(tensor_group_name) | |
| # Record Tensor and Tensor Position | |
| tensor_groups[tensor_group_name].append(tensor) | |
| tensor_name_to_key[tensor.name] = key | |
| # Tensors Mapping Dump | |
| markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n' | |
| markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n' | |
| markdown_content += '\n' | |
| for group in tensor_prefix_order: | |
| tensors = tensor_groups[group] | |
| group_elements = sum(tensor.n_elements for tensor in tensors) | |
| markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n" | |
| markdown_content += "\n" | |
| markdown_content += "### Tensor Data Offset\n" | |
| markdown_content += '\n' | |
| markdown_content += 'This table contains the offset and data segment relative to start of file\n' | |
| markdown_content += '\n' | |
| tensor_mapping_table: list[dict[str, str | int]] = [] | |
| for key, tensor in enumerate(reader.tensors): | |
| data_offset_pretty = '{0:#16x}'.format(tensor.data_offset) | |
| data_size_pretty = '{0:#16x}'.format(tensor.n_bytes) | |
| tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty}) | |
| tensors_mapping_table_header_map = [ | |
| {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, | |
| {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, | |
| {'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'}, | |
| {'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'}, | |
| ] | |
| markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table) | |
| markdown_content += "\n" | |
| for group in tensor_prefix_order: | |
| tensors = tensor_groups[group] | |
| group_elements = sum(tensor.n_elements for tensor in tensors) | |
| group_percentage = group_elements / total_elements * 100 | |
| markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n" | |
| # Precalculate column sizing for visual consistency | |
| prettify_element_est_count_size: int = 1 | |
| prettify_element_count_size: int = 1 | |
| prettify_dimension_max_widths: dict[int, int] = {} | |
| for tensor in tensors: | |
| prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements)))) | |
| prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements))) | |
| for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))): | |
| prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size))) | |
| # Generate Tensor Layer Table Content | |
| tensor_dump_table: list[dict[str, str | int]] = [] | |
| for tensor in tensors: | |
| human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)")) | |
| pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape)))) | |
| element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})" | |
| element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}" | |
| type_name_string = f"{tensor.tensor_type.name}" | |
| tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string}) | |
| tensor_dump_table_header_map = [ | |
| {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, | |
| {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, | |
| {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'}, | |
| {'key_name':'element_count', 'header_name':'Elements', 'align':'left'}, | |
| {'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'}, | |
| {'key_name':'tensor_type', 'header_name':'Type', 'align':'left'}, | |
| ] | |
| markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table) | |
| markdown_content += "\n" | |
| markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n" | |
| markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n" | |
| markdown_content += "\n\n" | |
| print(markdown_content) # noqa: NP100 | |
| def main() -> None: | |
| parser = argparse.ArgumentParser(description="Dump GGUF file metadata") | |
| parser.add_argument("model", type=str, help="GGUF format model filename") | |
| parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata") | |
| parser.add_argument("--json", action="store_true", help="Produce JSON output") | |
| parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)") | |
| parser.add_argument("--data-offset", action="store_true", help="Start of data offset") | |
| parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field") | |
| parser.add_argument("--markdown", action="store_true", help="Produce markdown output") | |
| parser.add_argument("--verbose", action="store_true", help="increase output verbosity") | |
| args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) | |
| logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) | |
| if not args.json and not args.markdown and not args.data_offset and not args.data_alignment: | |
| logger.info(f'* Loading: {args.model}') | |
| reader = GGUFReader(args.model, 'r') | |
| if args.json: | |
| dump_metadata_json(reader, args) | |
| elif args.markdown: | |
| dump_markdown_metadata(reader, args) | |
| elif args.data_offset: | |
| print(reader.data_offset) # noqa: NP100 | |
| elif args.data_alignment: | |
| print(reader.alignment) # noqa: NP100 | |
| else: | |
| dump_metadata(reader, args) | |
| if __name__ == '__main__': | |
| main() | |