Spaces:
Build error
Build error
| static void print_usage(int, char ** argv) { | |
| printf("\nexample usage:\n"); | |
| printf("\n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]); | |
| printf("\n"); | |
| } | |
| int main(int argc, char ** argv) { | |
| std::string model_path; | |
| int ngl = 99; | |
| int n_ctx = 2048; | |
| // parse command line arguments | |
| for (int i = 1; i < argc; i++) { | |
| try { | |
| if (strcmp(argv[i], "-m") == 0) { | |
| if (i + 1 < argc) { | |
| model_path = argv[++i]; | |
| } else { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else if (strcmp(argv[i], "-c") == 0) { | |
| if (i + 1 < argc) { | |
| n_ctx = std::stoi(argv[++i]); | |
| } else { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else if (strcmp(argv[i], "-ngl") == 0) { | |
| if (i + 1 < argc) { | |
| ngl = std::stoi(argv[++i]); | |
| } else { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } catch (std::exception & e) { | |
| fprintf(stderr, "error: %s\n", e.what()); | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } | |
| if (model_path.empty()) { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| // only print errors | |
| llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) { | |
| if (level >= GGML_LOG_LEVEL_ERROR) { | |
| fprintf(stderr, "%s", text); | |
| } | |
| }, nullptr); | |
| // load dynamic backends | |
| ggml_backend_load_all(); | |
| // initialize the model | |
| llama_model_params model_params = llama_model_default_params(); | |
| model_params.n_gpu_layers = ngl; | |
| llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params); | |
| if (!model) { | |
| fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
| return 1; | |
| } | |
| const llama_vocab * vocab = llama_model_get_vocab(model); | |
| // initialize the context | |
| llama_context_params ctx_params = llama_context_default_params(); | |
| ctx_params.n_ctx = n_ctx; | |
| ctx_params.n_batch = n_ctx; | |
| llama_context * ctx = llama_init_from_model(model, ctx_params); | |
| if (!ctx) { | |
| fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
| return 1; | |
| } | |
| // initialize the sampler | |
| llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params()); | |
| llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1)); | |
| llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f)); | |
| llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); | |
| // helper function to evaluate a prompt and generate a response | |
| auto generate = [&](const std::string & prompt) { | |
| std::string response; | |
| const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0; | |
| // tokenize the prompt | |
| const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true); | |
| std::vector<llama_token> prompt_tokens(n_prompt_tokens); | |
| if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) { | |
| GGML_ABORT("failed to tokenize the prompt\n"); | |
| } | |
| // prepare a batch for the prompt | |
| llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); | |
| llama_token new_token_id; | |
| while (true) { | |
| // check if we have enough space in the context to evaluate this batch | |
| int n_ctx = llama_n_ctx(ctx); | |
| int n_ctx_used = llama_get_kv_cache_used_cells(ctx); | |
| if (n_ctx_used + batch.n_tokens > n_ctx) { | |
| printf("\033[0m\n"); | |
| fprintf(stderr, "context size exceeded\n"); | |
| exit(0); | |
| } | |
| if (llama_decode(ctx, batch)) { | |
| GGML_ABORT("failed to decode\n"); | |
| } | |
| // sample the next token | |
| new_token_id = llama_sampler_sample(smpl, ctx, -1); | |
| // is it an end of generation? | |
| if (llama_vocab_is_eog(vocab, new_token_id)) { | |
| break; | |
| } | |
| // convert the token to a string, print it and add it to the response | |
| char buf[256]; | |
| int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true); | |
| if (n < 0) { | |
| GGML_ABORT("failed to convert token to piece\n"); | |
| } | |
| std::string piece(buf, n); | |
| printf("%s", piece.c_str()); | |
| fflush(stdout); | |
| response += piece; | |
| // prepare the next batch with the sampled token | |
| batch = llama_batch_get_one(&new_token_id, 1); | |
| } | |
| return response; | |
| }; | |
| std::vector<llama_chat_message> messages; | |
| std::vector<char> formatted(llama_n_ctx(ctx)); | |
| int prev_len = 0; | |
| while (true) { | |
| // get user input | |
| printf("\033[32m> \033[0m"); | |
| std::string user; | |
| std::getline(std::cin, user); | |
| if (user.empty()) { | |
| break; | |
| } | |
| const char * tmpl = llama_model_chat_template(model, /* name */ nullptr); | |
| // add the user input to the message list and format it | |
| messages.push_back({"user", strdup(user.c_str())}); | |
| int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size()); | |
| if (new_len > (int)formatted.size()) { | |
| formatted.resize(new_len); | |
| new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size()); | |
| } | |
| if (new_len < 0) { | |
| fprintf(stderr, "failed to apply the chat template\n"); | |
| return 1; | |
| } | |
| // remove previous messages to obtain the prompt to generate the response | |
| std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len); | |
| // generate a response | |
| printf("\033[33m"); | |
| std::string response = generate(prompt); | |
| printf("\n\033[0m"); | |
| // add the response to the messages | |
| messages.push_back({"assistant", strdup(response.c_str())}); | |
| prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0); | |
| if (prev_len < 0) { | |
| fprintf(stderr, "failed to apply the chat template\n"); | |
| return 1; | |
| } | |
| } | |
| // free resources | |
| for (auto & msg : messages) { | |
| free(const_cast<char *>(msg.content)); | |
| } | |
| llama_sampler_free(smpl); | |
| llama_free(ctx); | |
| llama_model_free(model); | |
| return 0; | |
| } | |