Spaces:
Build error
Build error
| int main(int argc, char ** argv){ | |
| common_params params; | |
| if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) { | |
| return 1; | |
| } | |
| common_init(); | |
| const int n_draft = params.speculative.n_max; | |
| // init llama.cpp | |
| llama_backend_init(); | |
| llama_numa_init(params.numa); | |
| // load the model | |
| common_init_result llama_init = common_init_from_params(params); | |
| llama_context_ptr & ctx = llama_init.context; | |
| // tokenize the prompt | |
| std::vector<llama_token> inp; | |
| inp = common_tokenize(ctx.get(), params.prompt, true, true); | |
| common_ngram_cache ngram_cache_context; | |
| common_ngram_cache ngram_cache_dynamic; | |
| common_ngram_cache ngram_cache_static; | |
| int64_t t_draft_flat_us = 0; | |
| int64_t t_draft_us = 0; | |
| { | |
| const int64_t t_start_draft_us = ggml_time_us(); | |
| if (!params.lookup_cache_static.empty()) { | |
| try { | |
| ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static); | |
| } catch (std::ifstream::failure const &) { | |
| LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); | |
| exit(1); | |
| } | |
| } | |
| if (!params.lookup_cache_dynamic.empty()) { | |
| try { | |
| ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic); | |
| } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program | |
| } | |
| t_draft_flat_us += ggml_time_us() - t_start_draft_us; | |
| } | |
| const int n_input = inp.size(); | |
| const int n_ctx = llama_n_ctx(ctx.get()); | |
| int n_drafted = 0; | |
| int n_accept = 0; | |
| const int64_t t_start_ms = ggml_time_ms(); | |
| // Iterate over input tokens in chunks of size n_ctx. | |
| // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility. | |
| for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) { | |
| const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx); | |
| std::vector<llama_token> pseudo_output; | |
| pseudo_output.push_back(inp_slice[0]); | |
| while ((int) pseudo_output.size() < n_ctx) { | |
| // Simulate drafting and decoding from draft: | |
| std::vector<llama_token> draft; | |
| draft.push_back(pseudo_output.back()); | |
| { | |
| const int64_t t_start_draft_us = ggml_time_us(); | |
| common_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); | |
| t_draft_us += ggml_time_us() - t_start_draft_us; | |
| } | |
| n_drafted += draft.size() - 1; | |
| for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) { | |
| const llama_token ground_truth = inp_slice[pseudo_output.size()]; | |
| const llama_token drafted = draft[j]; | |
| if (ground_truth != drafted) { | |
| break; | |
| } | |
| ++n_accept; | |
| pseudo_output.push_back(ground_truth); | |
| { | |
| const int64_t t_start_draft_us = ggml_time_us(); | |
| common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); | |
| t_draft_us += ggml_time_us() - t_start_draft_us; | |
| } | |
| } | |
| // After each simulated batch decoding simulate the sampling of a single token: | |
| if ((int) pseudo_output.size() < n_ctx) { | |
| pseudo_output.push_back(inp_slice[pseudo_output.size()]); | |
| { | |
| const int64_t t_start_draft_us = ggml_time_us(); | |
| common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); | |
| t_draft_us += ggml_time_us() - t_start_draft_us; | |
| } | |
| } | |
| draft.erase(draft.begin()); | |
| } | |
| if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) { | |
| const int64_t t_now_ms = ggml_time_ms(); | |
| const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start; | |
| const int64_t eta_min = eta_ms / (60*1000); | |
| const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000; | |
| LOG_INF("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s); | |
| } | |
| // After each chunk, update the dynamic ngram cache with the context ngram cache: | |
| common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); | |
| ngram_cache_context.clear(); | |
| } | |
| LOG("\n"); | |
| LOG_INF("\n"); | |
| LOG_INF("n_draft = %d\n", n_draft); | |
| LOG_INF("n_predict = %d\n", n_input - n_input % n_ctx); | |
| LOG_INF("n_drafted = %d\n", n_drafted); | |
| LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); | |
| LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", | |
| t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); | |
| LOG_INF("n_accept = %d\n", n_accept); | |
| LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); | |
| llama_backend_free(); | |
| LOG("\n\n"); | |
| return 0; | |
| } | |