Spaces:
Build error
Build error
| import Foundation | |
| import llama | |
| enum LlamaError: Error { | |
| case couldNotInitializeContext | |
| } | |
| func llama_batch_clear(_ batch: inout llama_batch) { | |
| batch.n_tokens = 0 | |
| } | |
| func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) { | |
| batch.token [Int(batch.n_tokens)] = id | |
| batch.pos [Int(batch.n_tokens)] = pos | |
| batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count) | |
| for i in 0..<seq_ids.count { | |
| batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i] | |
| } | |
| batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0 | |
| batch.n_tokens += 1 | |
| } | |
| actor LlamaContext { | |
| private var model: OpaquePointer | |
| private var context: OpaquePointer | |
| private var vocab: OpaquePointer | |
| private var sampling: UnsafeMutablePointer<llama_sampler> | |
| private var batch: llama_batch | |
| private var tokens_list: [llama_token] | |
| var is_done: Bool = false | |
| /// This variable is used to store temporarily invalid cchars | |
| private var temporary_invalid_cchars: [CChar] | |
| var n_len: Int32 = 1024 | |
| var n_cur: Int32 = 0 | |
| var n_decode: Int32 = 0 | |
| init(model: OpaquePointer, context: OpaquePointer) { | |
| self.model = model | |
| self.context = context | |
| self.tokens_list = [] | |
| self.batch = llama_batch_init(512, 0, 1) | |
| self.temporary_invalid_cchars = [] | |
| let sparams = llama_sampler_chain_default_params() | |
| self.sampling = llama_sampler_chain_init(sparams) | |
| llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4)) | |
| llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234)) | |
| vocab = llama_model_get_vocab(model) | |
| } | |
| deinit { | |
| llama_sampler_free(sampling) | |
| llama_batch_free(batch) | |
| llama_model_free(model) | |
| llama_free(context) | |
| llama_backend_free() | |
| } | |
| static func create_context(path: String) throws -> LlamaContext { | |
| llama_backend_init() | |
| var model_params = llama_model_default_params() | |
| #if targetEnvironment(simulator) | |
| model_params.n_gpu_layers = 0 | |
| print("Running on simulator, force use n_gpu_layers = 0") | |
| #endif | |
| let model = llama_model_load_from_file(path, model_params) | |
| guard let model else { | |
| print("Could not load model at \(path)") | |
| throw LlamaError.couldNotInitializeContext | |
| } | |
| let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2)) | |
| print("Using \(n_threads) threads") | |
| var ctx_params = llama_context_default_params() | |
| ctx_params.n_ctx = 2048 | |
| ctx_params.n_threads = Int32(n_threads) | |
| ctx_params.n_threads_batch = Int32(n_threads) | |
| let context = llama_init_from_model(model, ctx_params) | |
| guard let context else { | |
| print("Could not load context!") | |
| throw LlamaError.couldNotInitializeContext | |
| } | |
| return LlamaContext(model: model, context: context) | |
| } | |
| func model_info() -> String { | |
| let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256) | |
| result.initialize(repeating: Int8(0), count: 256) | |
| defer { | |
| result.deallocate() | |
| } | |
| // TODO: this is probably very stupid way to get the string from C | |
| let nChars = llama_model_desc(model, result, 256) | |
| let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars)) | |
| var SwiftString = "" | |
| for char in bufferPointer { | |
| SwiftString.append(Character(UnicodeScalar(UInt8(char)))) | |
| } | |
| return SwiftString | |
| } | |
| func get_n_tokens() -> Int32 { | |
| return batch.n_tokens; | |
| } | |
| func completion_init(text: String) { | |
| print("attempting to complete \"\(text)\"") | |
| tokens_list = tokenize(text: text, add_bos: true) | |
| temporary_invalid_cchars = [] | |
| let n_ctx = llama_n_ctx(context) | |
| let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count) | |
| print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)") | |
| if n_kv_req > n_ctx { | |
| print("error: n_kv_req > n_ctx, the required KV cache size is not big enough") | |
| } | |
| for id in tokens_list { | |
| print(String(cString: token_to_piece(token: id) + [0])) | |
| } | |
| llama_batch_clear(&batch) | |
| for i1 in 0..<tokens_list.count { | |
| let i = Int(i1) | |
| llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false) | |
| } | |
| batch.logits[Int(batch.n_tokens) - 1] = 1 // true | |
| if llama_decode(context, batch) != 0 { | |
| print("llama_decode() failed") | |
| } | |
| n_cur = batch.n_tokens | |
| } | |
| func completion_loop() -> String { | |
| var new_token_id: llama_token = 0 | |
| new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1) | |
| if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len { | |
| print("\n") | |
| is_done = true | |
| let new_token_str = String(cString: temporary_invalid_cchars + [0]) | |
| temporary_invalid_cchars.removeAll() | |
| return new_token_str | |
| } | |
| let new_token_cchars = token_to_piece(token: new_token_id) | |
| temporary_invalid_cchars.append(contentsOf: new_token_cchars) | |
| let new_token_str: String | |
| if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) { | |
| temporary_invalid_cchars.removeAll() | |
| new_token_str = string | |
| } else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) { | |
| // in this case, at least the suffix of the temporary_invalid_cchars can be interpreted as UTF8 string | |
| let string = String(cString: temporary_invalid_cchars + [0]) | |
| temporary_invalid_cchars.removeAll() | |
| new_token_str = string | |
| } else { | |
| new_token_str = "" | |
| } | |
| print(new_token_str) | |
| // tokens_list.append(new_token_id) | |
| llama_batch_clear(&batch) | |
| llama_batch_add(&batch, new_token_id, n_cur, [0], true) | |
| n_decode += 1 | |
| n_cur += 1 | |
| if llama_decode(context, batch) != 0 { | |
| print("failed to evaluate llama!") | |
| } | |
| return new_token_str | |
| } | |
| func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String { | |
| var pp_avg: Double = 0 | |
| var tg_avg: Double = 0 | |
| var pp_std: Double = 0 | |
| var tg_std: Double = 0 | |
| for _ in 0..<nr { | |
| // bench prompt processing | |
| llama_batch_clear(&batch) | |
| let n_tokens = pp | |
| for i in 0..<n_tokens { | |
| llama_batch_add(&batch, 0, Int32(i), [0], false) | |
| } | |
| batch.logits[Int(batch.n_tokens) - 1] = 1 // true | |
| llama_kv_cache_clear(context) | |
| let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000; | |
| if llama_decode(context, batch) != 0 { | |
| print("llama_decode() failed during prompt") | |
| } | |
| llama_synchronize(context) | |
| let t_pp_end = DispatchTime.now().uptimeNanoseconds / 1000; | |
| // bench text generation | |
| llama_kv_cache_clear(context) | |
| let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000; | |
| for i in 0..<tg { | |
| llama_batch_clear(&batch) | |
| for j in 0..<pl { | |
| llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true) | |
| } | |
| if llama_decode(context, batch) != 0 { | |
| print("llama_decode() failed during text generation") | |
| } | |
| llama_synchronize(context) | |
| } | |
| let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000; | |
| llama_kv_cache_clear(context) | |
| let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0 | |
| let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0 | |
| let speed_pp = Double(pp) / t_pp | |
| let speed_tg = Double(pl*tg) / t_tg | |
| pp_avg += speed_pp | |
| tg_avg += speed_tg | |
| pp_std += speed_pp * speed_pp | |
| tg_std += speed_tg * speed_tg | |
| print("pp \(speed_pp) t/s, tg \(speed_tg) t/s") | |
| } | |
| pp_avg /= Double(nr) | |
| tg_avg /= Double(nr) | |
| if nr > 1 { | |
| pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1)) | |
| tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1)) | |
| } else { | |
| pp_std = 0 | |
| tg_std = 0 | |
| } | |
| let model_desc = model_info(); | |
| let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0); | |
| let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9); | |
| let backend = "Metal"; | |
| let pp_avg_str = String(format: "%.2f", pp_avg); | |
| let tg_avg_str = String(format: "%.2f", tg_avg); | |
| let pp_std_str = String(format: "%.2f", pp_std); | |
| let tg_std_str = String(format: "%.2f", tg_std); | |
| var result = "" | |
| result += String("| model | size | params | backend | test | t/s |\n") | |
| result += String("| --- | --- | --- | --- | --- | --- |\n") | |
| result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n") | |
| result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n") | |
| return result; | |
| } | |
| func clear() { | |
| tokens_list.removeAll() | |
| temporary_invalid_cchars.removeAll() | |
| llama_kv_cache_clear(context) | |
| } | |
| private func tokenize(text: String, add_bos: Bool) -> [llama_token] { | |
| let utf8Count = text.utf8.count | |
| let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1 | |
| let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens) | |
| let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false) | |
| var swiftTokens: [llama_token] = [] | |
| for i in 0..<tokenCount { | |
| swiftTokens.append(tokens[Int(i)]) | |
| } | |
| tokens.deallocate() | |
| return swiftTokens | |
| } | |
| /// - note: The result does not contain null-terminator | |
| private func token_to_piece(token: llama_token) -> [CChar] { | |
| let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8) | |
| result.initialize(repeating: Int8(0), count: 8) | |
| defer { | |
| result.deallocate() | |
| } | |
| let nTokens = llama_token_to_piece(vocab, token, result, 8, 0, false) | |
| if nTokens < 0 { | |
| let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens)) | |
| newResult.initialize(repeating: Int8(0), count: Int(-nTokens)) | |
| defer { | |
| newResult.deallocate() | |
| } | |
| let nNewTokens = llama_token_to_piece(vocab, token, newResult, -nTokens, 0, false) | |
| let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens)) | |
| return Array(bufferPointer) | |
| } else { | |
| let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens)) | |
| return Array(bufferPointer) | |
| } | |
| } | |
| } | |