Spaces:
Runtime error
Runtime error
File size: 7,272 Bytes
5b3c737 e288d1f 5b3c737 4b6e6e0 5b3c737 4b6e6e0 e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 7247f8a e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 4b6e6e0 5b3c737 4b6e6e0 5b3c737 4b6e6e0 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 4b6e6e0 5b3c737 4b6e6e0 5b3c737 4b6e6e0 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 e288d1f 5b3c737 ef89132 5b3c737 e288d1f 5b3c737 4995edd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
import io
import re
import logging
import tempfile
from datetime import datetime
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from snac import SNAC
import gradio as gr
import numpy as np
# =============================
# Logging
# =============================
logging.basicConfig(
filename="tts_app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# global flags
# =============================
# Enable TF32 where available (Ampere+ GPUs) for faster matmuls with minimal quality loss
try:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
except Exception:
pass
# Prefer high-precision matmul kernels on CPU when needed
try:
torch.set_float32_matmul_precision("high")
except Exception:
pass
# =============================
# Device & dtype selection
# =============================
if torch.cuda.is_available():
device = "cuda"
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
else:
device = "cpu"
dtype = torch.float32 # safer on CPU
# Load models once at startup
# =============================
# Model names
# =============================
voice_model_name = "webbigdata/VoiceCore"
snac_model_name = "hubertsiuzdak/snac_24khz"
# =============================
# Load models (once)
# =============================
logging.info("Loading models…")
voice_model = AutoModelForCausalLM.from_pretrained(
voice_model_name,
torch_dtype=dtype,
device_map="auto",
use_cache=True,
)
voice_tokenizer = AutoTokenizer.from_pretrained(voice_model_name)
# compile for extra speed on PyTorch 2.0+
try:
voice_model = torch.compile(voice_model)
logging.info("voice_model compiled with torch.compile")
except Exception as e:
logging.info(f"torch.compile unavailable or failed: {e}")
snac_model = SNAC.from_pretrained(snac_model_name)
# Move SNAC to same device. Keep default dtype for safety.
snac_model.to(device)
# =============================
# Helpers
# =============================
# Security: sanitize and limit input text
SANITIZE_RX = re.compile(r"[\x00-\x1F\x7F]")
# Security: sanitize and limit input text
def sanitize_text(text, max_length=500):
# Remove any non-printable or control characters
clean_text = SANITIZE_RX.sub("", text or "")
# Limit text length
if len(clean_text) > max_length:
clean_text = clean_text[:max_length]
return clean_text.strip()
# =============================
# Core generation
# =============================
@torch.inference_mode()
def generate_voice(voice_type: str, text: str, max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9):
# Log request
logging.info(
f"Request received - Voice: {voice_type}, Text length: {0 if text is None else len(text)}"
)
# Sanitize input
text = sanitize_text(text)
chosen_voice = f"{voice_type}[neutral]"
prompt = f"{chosen_voice}: {text}"
# Tokenization directly to device
input_ids = voice_tokenizer(prompt, return_tensors="pt").input_ids.to(device)
# Prepend/append special tokens on-device
start_token = torch.tensor([[128259]], dtype=torch.long, device=device)
end_tokens = torch.tensor([[128009, 128260, 128261]], dtype=torch.long, device=device)
input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
# Attention mask on-device
attention_mask = torch.ones_like(input_ids, device=device)
# Faster decoding settings
try:
generated_ids = voice_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.1,
eos_token_id=128258,
use_cache=True,
)
except Exception as e:
logging.error(f"Generation error: {e}")
raise RuntimeError("Error during voice generation")
# Post-process tokens
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx + 1 :]
else:
cropped_tensor = generated_ids
processed_row = cropped_tensor[0][cropped_tensor[0] != token_to_remove]
code_list = processed_row.tolist()
new_length = (len(code_list) // 7) * 7
code_list = [t - 128266 for t in code_list[:new_length]]
layer_1, layer_2, layer_3 = [], [], []
for i in range(len(code_list) // 7):
layer_1.append(code_list[7 * i])
layer_2.append(code_list[7 * i + 1] - 4096)
layer_3.append(code_list[7 * i + 2] - 8192)
layer_3.append(code_list[7 * i + 3] - 12288)
layer_2.append(code_list[7 * i + 4] - 16384)
layer_3.append(code_list[7 * i + 5] - 20480)
layer_3.append(code_list[7 * i + 6] - 24576)
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0),
]
# SNAC decode on the same device
audio = snac_model.decode(codes)
# Ensure float32 on CPU for Gradio numpy output
audio_np = audio.detach().squeeze().float().cpu().numpy()
# Return numpy audio directly (avoids disk I/O)
sample_rate = 24000
return sample_rate, audio_np
# =============================
# Gradio UI
# =============================
voices = [
"amitaro_female",
"matsukaze_male",
"naraku_female",
"shiguu_male",
"sayoko_female",
"dahara1_male",
]
with gr.Blocks(title="VoiceCore TTS — Fast") as iface:
gr.Markdown("# VoiceCore TTS — Fast Mode\nGenerate speech from text using VoiceCore + SNAC (optimized).")
with gr.Row():
voice_dd = gr.Dropdown(label="Voice Type", choices=voices, value="matsukaze_male")
max_new = gr.Slider(64, 8192, value=2048, step=64, label="Max New Tokens (lower = faster)")
with gr.Row():
temp = gr.Slider(0.1, 1.2, value=0.6, step=0.05, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
text_in = gr.Textbox(label="Text", lines=4, placeholder="Type what you want the voice to say…")
audio_out = gr.Audio(type="numpy", label="Generated Audio", streaming=False)
def _wrap(voice, text, mx, t, p):
return generate_voice(voice, text, int(mx), float(t), float(p))
gen_btn = gr.Button("Generate")
gen_btn.click(_wrap, inputs=[voice_dd, text_in, max_new, temp, top_p], outputs=[audio_out])
@torch.inference_mode()
def _warmup():
try:
_ = generate_voice("matsukaze_male", "hello world", max_new_tokens=128)
logging.info("Warm-up generation completed")
except Exception as e:
logging.info(f"Warm-up skipped/failed: {e}")
if __name__ == "__main__":
logging.info("Starting VoiceCore TTS app (Fast Mode)")
# Optional: warm up kernels so first request is snappy
_warmup()
iface.queue(max_size=32).launch()
|