Spaces:
Configuration error
Configuration error
Commit
·
a043943
1
Parent(s):
a064439
update all
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +2 -1
- README.md +2 -2
- __pycache__/ptp_utils_null_text_inversion.cpython-310.pyc +0 -0
- __pycache__/ptp_utils_null_text_inversion.cpython-38.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- __pycache__/xformers.cpython-310.pyc +0 -0
- annotator/__pycache__/util.cpython-310.pyc +0 -0
- annotator/dwpose/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/dwpose/__pycache__/onnxdet.cpython-310.pyc +0 -0
- annotator/dwpose/__pycache__/onnxpose.cpython-310.pyc +0 -0
- annotator/dwpose/__pycache__/util.cpython-310.pyc +0 -0
- annotator/dwpose/__pycache__/wholebody.cpython-310.pyc +0 -0
- annotator/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/midas/__pycache__/api.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/base_model.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/blocks.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/transforms.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/vit.cpython-310.pyc +0 -0
- annotator/openpose/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/openpose/__pycache__/body.cpython-310.pyc +0 -0
- annotator/openpose/__pycache__/face.cpython-310.pyc +0 -0
- annotator/openpose/__pycache__/hand.cpython-310.pyc +0 -0
- annotator/openpose/__pycache__/model.cpython-310.pyc +0 -0
- annotator/openpose/__pycache__/util.cpython-310.pyc +0 -0
- annotator/zoe/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/zoe/zoedepth/data/__init__.py +24 -0
- annotator/zoe/zoedepth/data/data_mono.py +573 -0
- annotator/zoe/zoedepth/data/ddad.py +117 -0
- annotator/zoe/zoedepth/data/diml_indoor_test.py +125 -0
- annotator/zoe/zoedepth/data/diml_outdoor_test.py +114 -0
- annotator/zoe/zoedepth/data/diode.py +125 -0
- annotator/zoe/zoedepth/data/hypersim.py +138 -0
- annotator/zoe/zoedepth/data/ibims.py +81 -0
- annotator/zoe/zoedepth/data/preprocess.py +154 -0
- annotator/zoe/zoedepth/data/sun_rgbd_loader.py +106 -0
- annotator/zoe/zoedepth/data/transforms.py +481 -0
- annotator/zoe/zoedepth/data/vkitti.py +151 -0
- annotator/zoe/zoedepth/data/vkitti2.py +187 -0
- annotator/zoe/zoedepth/models/__init__.py +24 -0
- annotator/zoe/zoedepth/models/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/zoe/zoedepth/models/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/zoe/zoedepth/models/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/zoe/zoedepth/models/__pycache__/depth_model.cpython-310.pyc +0 -0
- annotator/zoe/zoedepth/models/__pycache__/depth_model.cpython-38.pyc +0 -0
- annotator/zoe/zoedepth/models/__pycache__/depth_model.cpython-39.pyc +0 -0
- annotator/zoe/zoedepth/models/__pycache__/model_io.cpython-310.pyc +0 -0
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
annotator/ckpts/**
|
| 2 |
result/**
|
| 3 |
-
trash/**
|
|
|
|
|
|
| 1 |
annotator/ckpts/**
|
| 2 |
result/**
|
| 3 |
+
trash/**
|
| 4 |
+
data/**
|
README.md
CHANGED
|
@@ -6,9 +6,9 @@ Our method is tested using cuda12.1, fp16 of accelerator and xformers on a singl
|
|
| 6 |
conda create -n st-modulator python==3.10
|
| 7 |
conda activate st-modulator
|
| 8 |
|
| 9 |
-
# Step 2: Install PyTorch and
|
| 10 |
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia
|
| 11 |
-
|
| 12 |
# Step 3: Install additional dependencies with pip
|
| 13 |
pip install -r requirements.txt
|
| 14 |
```
|
|
|
|
| 6 |
conda create -n st-modulator python==3.10
|
| 7 |
conda activate st-modulator
|
| 8 |
|
| 9 |
+
# Step 2: Install PyTorch, CUDA and Xformers
|
| 10 |
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia
|
| 11 |
+
pip install --pre -U xformers==0.0.27
|
| 12 |
# Step 3: Install additional dependencies with pip
|
| 13 |
pip install -r requirements.txt
|
| 14 |
```
|
__pycache__/ptp_utils_null_text_inversion.cpython-310.pyc
DELETED
|
Binary file (10 kB)
|
|
|
__pycache__/ptp_utils_null_text_inversion.cpython-38.pyc
DELETED
|
Binary file (9.33 kB)
|
|
|
__pycache__/utils.cpython-310.pyc
DELETED
|
Binary file (2.01 kB)
|
|
|
__pycache__/xformers.cpython-310.pyc
DELETED
|
Binary file (359 Bytes)
|
|
|
annotator/__pycache__/util.cpython-310.pyc
CHANGED
|
Binary files a/annotator/__pycache__/util.cpython-310.pyc and b/annotator/__pycache__/util.cpython-310.pyc differ
|
|
|
annotator/dwpose/__pycache__/__init__.cpython-310.pyc
CHANGED
|
Binary files a/annotator/dwpose/__pycache__/__init__.cpython-310.pyc and b/annotator/dwpose/__pycache__/__init__.cpython-310.pyc differ
|
|
|
annotator/dwpose/__pycache__/onnxdet.cpython-310.pyc
CHANGED
|
Binary files a/annotator/dwpose/__pycache__/onnxdet.cpython-310.pyc and b/annotator/dwpose/__pycache__/onnxdet.cpython-310.pyc differ
|
|
|
annotator/dwpose/__pycache__/onnxpose.cpython-310.pyc
CHANGED
|
Binary files a/annotator/dwpose/__pycache__/onnxpose.cpython-310.pyc and b/annotator/dwpose/__pycache__/onnxpose.cpython-310.pyc differ
|
|
|
annotator/dwpose/__pycache__/util.cpython-310.pyc
CHANGED
|
Binary files a/annotator/dwpose/__pycache__/util.cpython-310.pyc and b/annotator/dwpose/__pycache__/util.cpython-310.pyc differ
|
|
|
annotator/dwpose/__pycache__/wholebody.cpython-310.pyc
CHANGED
|
Binary files a/annotator/dwpose/__pycache__/wholebody.cpython-310.pyc and b/annotator/dwpose/__pycache__/wholebody.cpython-310.pyc differ
|
|
|
annotator/midas/__pycache__/__init__.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/__pycache__/__init__.cpython-310.pyc and b/annotator/midas/__pycache__/__init__.cpython-310.pyc differ
|
|
|
annotator/midas/__pycache__/api.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/__pycache__/api.cpython-310.pyc and b/annotator/midas/__pycache__/api.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/__init__.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/__init__.cpython-310.pyc and b/annotator/midas/midas/__pycache__/__init__.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/base_model.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/base_model.cpython-310.pyc and b/annotator/midas/midas/__pycache__/base_model.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/blocks.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/blocks.cpython-310.pyc and b/annotator/midas/midas/__pycache__/blocks.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc and b/annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc and b/annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc and b/annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/transforms.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/transforms.cpython-310.pyc and b/annotator/midas/midas/__pycache__/transforms.cpython-310.pyc differ
|
|
|
annotator/midas/midas/__pycache__/vit.cpython-310.pyc
CHANGED
|
Binary files a/annotator/midas/midas/__pycache__/vit.cpython-310.pyc and b/annotator/midas/midas/__pycache__/vit.cpython-310.pyc differ
|
|
|
annotator/openpose/__pycache__/__init__.cpython-310.pyc
CHANGED
|
Binary files a/annotator/openpose/__pycache__/__init__.cpython-310.pyc and b/annotator/openpose/__pycache__/__init__.cpython-310.pyc differ
|
|
|
annotator/openpose/__pycache__/body.cpython-310.pyc
CHANGED
|
Binary files a/annotator/openpose/__pycache__/body.cpython-310.pyc and b/annotator/openpose/__pycache__/body.cpython-310.pyc differ
|
|
|
annotator/openpose/__pycache__/face.cpython-310.pyc
CHANGED
|
Binary files a/annotator/openpose/__pycache__/face.cpython-310.pyc and b/annotator/openpose/__pycache__/face.cpython-310.pyc differ
|
|
|
annotator/openpose/__pycache__/hand.cpython-310.pyc
CHANGED
|
Binary files a/annotator/openpose/__pycache__/hand.cpython-310.pyc and b/annotator/openpose/__pycache__/hand.cpython-310.pyc differ
|
|
|
annotator/openpose/__pycache__/model.cpython-310.pyc
CHANGED
|
Binary files a/annotator/openpose/__pycache__/model.cpython-310.pyc and b/annotator/openpose/__pycache__/model.cpython-310.pyc differ
|
|
|
annotator/openpose/__pycache__/util.cpython-310.pyc
CHANGED
|
Binary files a/annotator/openpose/__pycache__/util.cpython-310.pyc and b/annotator/openpose/__pycache__/util.cpython-310.pyc differ
|
|
|
annotator/zoe/__pycache__/__init__.cpython-310.pyc
CHANGED
|
Binary files a/annotator/zoe/__pycache__/__init__.cpython-310.pyc and b/annotator/zoe/__pycache__/__init__.cpython-310.pyc differ
|
|
|
annotator/zoe/zoedepth/data/__init__.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
annotator/zoe/zoedepth/data/data_mono.py
ADDED
|
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
# This file is partly inspired from BTS (https://github.com/cleinc/bts/blob/master/pytorch/bts_dataloader.py); author: Jin Han Lee
|
| 26 |
+
|
| 27 |
+
import itertools
|
| 28 |
+
import os
|
| 29 |
+
import random
|
| 30 |
+
|
| 31 |
+
import numpy as np
|
| 32 |
+
import cv2
|
| 33 |
+
import torch
|
| 34 |
+
import torch.nn as nn
|
| 35 |
+
import torch.utils.data.distributed
|
| 36 |
+
from zoedepth.utils.easydict import EasyDict as edict
|
| 37 |
+
from PIL import Image, ImageOps
|
| 38 |
+
from torch.utils.data import DataLoader, Dataset
|
| 39 |
+
from torchvision import transforms
|
| 40 |
+
|
| 41 |
+
from zoedepth.utils.config import change_dataset
|
| 42 |
+
|
| 43 |
+
from .ddad import get_ddad_loader
|
| 44 |
+
from .diml_indoor_test import get_diml_indoor_loader
|
| 45 |
+
from .diml_outdoor_test import get_diml_outdoor_loader
|
| 46 |
+
from .diode import get_diode_loader
|
| 47 |
+
from .hypersim import get_hypersim_loader
|
| 48 |
+
from .ibims import get_ibims_loader
|
| 49 |
+
from .sun_rgbd_loader import get_sunrgbd_loader
|
| 50 |
+
from .vkitti import get_vkitti_loader
|
| 51 |
+
from .vkitti2 import get_vkitti2_loader
|
| 52 |
+
|
| 53 |
+
from .preprocess import CropParams, get_white_border, get_black_border
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _is_pil_image(img):
|
| 57 |
+
return isinstance(img, Image.Image)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def _is_numpy_image(img):
|
| 61 |
+
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def preprocessing_transforms(mode, **kwargs):
|
| 65 |
+
return transforms.Compose([
|
| 66 |
+
ToTensor(mode=mode, **kwargs)
|
| 67 |
+
])
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class DepthDataLoader(object):
|
| 71 |
+
def __init__(self, config, mode, device='cpu', transform=None, **kwargs):
|
| 72 |
+
"""
|
| 73 |
+
Data loader for depth datasets
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
config (dict): Config dictionary. Refer to utils/config.py
|
| 77 |
+
mode (str): "train" or "online_eval"
|
| 78 |
+
device (str, optional): Device to load the data on. Defaults to 'cpu'.
|
| 79 |
+
transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None.
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
self.config = config
|
| 83 |
+
|
| 84 |
+
if config.dataset == 'ibims':
|
| 85 |
+
self.data = get_ibims_loader(config, batch_size=1, num_workers=1)
|
| 86 |
+
return
|
| 87 |
+
|
| 88 |
+
if config.dataset == 'sunrgbd':
|
| 89 |
+
self.data = get_sunrgbd_loader(
|
| 90 |
+
data_dir_root=config.sunrgbd_root, batch_size=1, num_workers=1)
|
| 91 |
+
return
|
| 92 |
+
|
| 93 |
+
if config.dataset == 'diml_indoor':
|
| 94 |
+
self.data = get_diml_indoor_loader(
|
| 95 |
+
data_dir_root=config.diml_indoor_root, batch_size=1, num_workers=1)
|
| 96 |
+
return
|
| 97 |
+
|
| 98 |
+
if config.dataset == 'diml_outdoor':
|
| 99 |
+
self.data = get_diml_outdoor_loader(
|
| 100 |
+
data_dir_root=config.diml_outdoor_root, batch_size=1, num_workers=1)
|
| 101 |
+
return
|
| 102 |
+
|
| 103 |
+
if "diode" in config.dataset:
|
| 104 |
+
self.data = get_diode_loader(
|
| 105 |
+
config[config.dataset+"_root"], batch_size=1, num_workers=1)
|
| 106 |
+
return
|
| 107 |
+
|
| 108 |
+
if config.dataset == 'hypersim_test':
|
| 109 |
+
self.data = get_hypersim_loader(
|
| 110 |
+
config.hypersim_test_root, batch_size=1, num_workers=1)
|
| 111 |
+
return
|
| 112 |
+
|
| 113 |
+
if config.dataset == 'vkitti':
|
| 114 |
+
self.data = get_vkitti_loader(
|
| 115 |
+
config.vkitti_root, batch_size=1, num_workers=1)
|
| 116 |
+
return
|
| 117 |
+
|
| 118 |
+
if config.dataset == 'vkitti2':
|
| 119 |
+
self.data = get_vkitti2_loader(
|
| 120 |
+
config.vkitti2_root, batch_size=1, num_workers=1)
|
| 121 |
+
return
|
| 122 |
+
|
| 123 |
+
if config.dataset == 'ddad':
|
| 124 |
+
self.data = get_ddad_loader(config.ddad_root, resize_shape=(
|
| 125 |
+
352, 1216), batch_size=1, num_workers=1)
|
| 126 |
+
return
|
| 127 |
+
|
| 128 |
+
img_size = self.config.get("img_size", None)
|
| 129 |
+
img_size = img_size if self.config.get(
|
| 130 |
+
"do_input_resize", False) else None
|
| 131 |
+
|
| 132 |
+
if transform is None:
|
| 133 |
+
transform = preprocessing_transforms(mode, size=img_size)
|
| 134 |
+
|
| 135 |
+
if mode == 'train':
|
| 136 |
+
|
| 137 |
+
Dataset = DataLoadPreprocess
|
| 138 |
+
self.training_samples = Dataset(
|
| 139 |
+
config, mode, transform=transform, device=device)
|
| 140 |
+
|
| 141 |
+
if config.distributed:
|
| 142 |
+
self.train_sampler = torch.utils.data.distributed.DistributedSampler(
|
| 143 |
+
self.training_samples)
|
| 144 |
+
else:
|
| 145 |
+
self.train_sampler = None
|
| 146 |
+
|
| 147 |
+
self.data = DataLoader(self.training_samples,
|
| 148 |
+
batch_size=config.batch_size,
|
| 149 |
+
shuffle=(self.train_sampler is None),
|
| 150 |
+
num_workers=config.workers,
|
| 151 |
+
pin_memory=True,
|
| 152 |
+
persistent_workers=True,
|
| 153 |
+
# prefetch_factor=2,
|
| 154 |
+
sampler=self.train_sampler)
|
| 155 |
+
|
| 156 |
+
elif mode == 'online_eval':
|
| 157 |
+
self.testing_samples = DataLoadPreprocess(
|
| 158 |
+
config, mode, transform=transform)
|
| 159 |
+
if config.distributed: # redundant. here only for readability and to be more explicit
|
| 160 |
+
# Give whole test set to all processes (and report evaluation only on one) regardless
|
| 161 |
+
self.eval_sampler = None
|
| 162 |
+
else:
|
| 163 |
+
self.eval_sampler = None
|
| 164 |
+
self.data = DataLoader(self.testing_samples, 1,
|
| 165 |
+
shuffle=kwargs.get("shuffle_test", False),
|
| 166 |
+
num_workers=1,
|
| 167 |
+
pin_memory=False,
|
| 168 |
+
sampler=self.eval_sampler)
|
| 169 |
+
|
| 170 |
+
elif mode == 'test':
|
| 171 |
+
self.testing_samples = DataLoadPreprocess(
|
| 172 |
+
config, mode, transform=transform)
|
| 173 |
+
self.data = DataLoader(self.testing_samples,
|
| 174 |
+
1, shuffle=False, num_workers=1)
|
| 175 |
+
|
| 176 |
+
else:
|
| 177 |
+
print(
|
| 178 |
+
'mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def repetitive_roundrobin(*iterables):
|
| 182 |
+
"""
|
| 183 |
+
cycles through iterables but sample wise
|
| 184 |
+
first yield first sample from first iterable then first sample from second iterable and so on
|
| 185 |
+
then second sample from first iterable then second sample from second iterable and so on
|
| 186 |
+
|
| 187 |
+
If one iterable is shorter than the others, it is repeated until all iterables are exhausted
|
| 188 |
+
repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E
|
| 189 |
+
"""
|
| 190 |
+
# Repetitive roundrobin
|
| 191 |
+
iterables_ = [iter(it) for it in iterables]
|
| 192 |
+
exhausted = [False] * len(iterables)
|
| 193 |
+
while not all(exhausted):
|
| 194 |
+
for i, it in enumerate(iterables_):
|
| 195 |
+
try:
|
| 196 |
+
yield next(it)
|
| 197 |
+
except StopIteration:
|
| 198 |
+
exhausted[i] = True
|
| 199 |
+
iterables_[i] = itertools.cycle(iterables[i])
|
| 200 |
+
# First elements may get repeated if one iterable is shorter than the others
|
| 201 |
+
yield next(iterables_[i])
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
class RepetitiveRoundRobinDataLoader(object):
|
| 205 |
+
def __init__(self, *dataloaders):
|
| 206 |
+
self.dataloaders = dataloaders
|
| 207 |
+
|
| 208 |
+
def __iter__(self):
|
| 209 |
+
return repetitive_roundrobin(*self.dataloaders)
|
| 210 |
+
|
| 211 |
+
def __len__(self):
|
| 212 |
+
# First samples get repeated, thats why the plus one
|
| 213 |
+
return len(self.dataloaders) * (max(len(dl) for dl in self.dataloaders) + 1)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class MixedNYUKITTI(object):
|
| 217 |
+
def __init__(self, config, mode, device='cpu', **kwargs):
|
| 218 |
+
config = edict(config)
|
| 219 |
+
config.workers = config.workers // 2
|
| 220 |
+
self.config = config
|
| 221 |
+
nyu_conf = change_dataset(edict(config), 'nyu')
|
| 222 |
+
kitti_conf = change_dataset(edict(config), 'kitti')
|
| 223 |
+
|
| 224 |
+
# make nyu default for testing
|
| 225 |
+
self.config = config = nyu_conf
|
| 226 |
+
img_size = self.config.get("img_size", None)
|
| 227 |
+
img_size = img_size if self.config.get(
|
| 228 |
+
"do_input_resize", False) else None
|
| 229 |
+
if mode == 'train':
|
| 230 |
+
nyu_loader = DepthDataLoader(
|
| 231 |
+
nyu_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
|
| 232 |
+
kitti_loader = DepthDataLoader(
|
| 233 |
+
kitti_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
|
| 234 |
+
# It has been changed to repetitive roundrobin
|
| 235 |
+
self.data = RepetitiveRoundRobinDataLoader(
|
| 236 |
+
nyu_loader, kitti_loader)
|
| 237 |
+
else:
|
| 238 |
+
self.data = DepthDataLoader(nyu_conf, mode, device=device).data
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def remove_leading_slash(s):
|
| 242 |
+
if s[0] == '/' or s[0] == '\\':
|
| 243 |
+
return s[1:]
|
| 244 |
+
return s
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class CachedReader:
|
| 248 |
+
def __init__(self, shared_dict=None):
|
| 249 |
+
if shared_dict:
|
| 250 |
+
self._cache = shared_dict
|
| 251 |
+
else:
|
| 252 |
+
self._cache = {}
|
| 253 |
+
|
| 254 |
+
def open(self, fpath):
|
| 255 |
+
im = self._cache.get(fpath, None)
|
| 256 |
+
if im is None:
|
| 257 |
+
im = self._cache[fpath] = Image.open(fpath)
|
| 258 |
+
return im
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class ImReader:
|
| 262 |
+
def __init__(self):
|
| 263 |
+
pass
|
| 264 |
+
|
| 265 |
+
# @cache
|
| 266 |
+
def open(self, fpath):
|
| 267 |
+
return Image.open(fpath)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class DataLoadPreprocess(Dataset):
|
| 271 |
+
def __init__(self, config, mode, transform=None, is_for_online_eval=False, **kwargs):
|
| 272 |
+
self.config = config
|
| 273 |
+
if mode == 'online_eval':
|
| 274 |
+
with open(config.filenames_file_eval, 'r') as f:
|
| 275 |
+
self.filenames = f.readlines()
|
| 276 |
+
else:
|
| 277 |
+
with open(config.filenames_file, 'r') as f:
|
| 278 |
+
self.filenames = f.readlines()
|
| 279 |
+
|
| 280 |
+
self.mode = mode
|
| 281 |
+
self.transform = transform
|
| 282 |
+
self.to_tensor = ToTensor(mode)
|
| 283 |
+
self.is_for_online_eval = is_for_online_eval
|
| 284 |
+
if config.use_shared_dict:
|
| 285 |
+
self.reader = CachedReader(config.shared_dict)
|
| 286 |
+
else:
|
| 287 |
+
self.reader = ImReader()
|
| 288 |
+
|
| 289 |
+
def postprocess(self, sample):
|
| 290 |
+
return sample
|
| 291 |
+
|
| 292 |
+
def __getitem__(self, idx):
|
| 293 |
+
sample_path = self.filenames[idx]
|
| 294 |
+
focal = float(sample_path.split()[2])
|
| 295 |
+
sample = {}
|
| 296 |
+
|
| 297 |
+
if self.mode == 'train':
|
| 298 |
+
if self.config.dataset == 'kitti' and self.config.use_right and random.random() > 0.5:
|
| 299 |
+
image_path = os.path.join(
|
| 300 |
+
self.config.data_path, remove_leading_slash(sample_path.split()[3]))
|
| 301 |
+
depth_path = os.path.join(
|
| 302 |
+
self.config.gt_path, remove_leading_slash(sample_path.split()[4]))
|
| 303 |
+
else:
|
| 304 |
+
image_path = os.path.join(
|
| 305 |
+
self.config.data_path, remove_leading_slash(sample_path.split()[0]))
|
| 306 |
+
depth_path = os.path.join(
|
| 307 |
+
self.config.gt_path, remove_leading_slash(sample_path.split()[1]))
|
| 308 |
+
|
| 309 |
+
image = self.reader.open(image_path)
|
| 310 |
+
depth_gt = self.reader.open(depth_path)
|
| 311 |
+
w, h = image.size
|
| 312 |
+
|
| 313 |
+
if self.config.do_kb_crop:
|
| 314 |
+
height = image.height
|
| 315 |
+
width = image.width
|
| 316 |
+
top_margin = int(height - 352)
|
| 317 |
+
left_margin = int((width - 1216) / 2)
|
| 318 |
+
depth_gt = depth_gt.crop(
|
| 319 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
| 320 |
+
image = image.crop(
|
| 321 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
| 322 |
+
|
| 323 |
+
# Avoid blank boundaries due to pixel registration?
|
| 324 |
+
# Train images have white border. Test images have black border.
|
| 325 |
+
if self.config.dataset == 'nyu' and self.config.avoid_boundary:
|
| 326 |
+
# print("Avoiding Blank Boundaries!")
|
| 327 |
+
# We just crop and pad again with reflect padding to original size
|
| 328 |
+
# original_size = image.size
|
| 329 |
+
crop_params = get_white_border(np.array(image, dtype=np.uint8))
|
| 330 |
+
image = image.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
|
| 331 |
+
depth_gt = depth_gt.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
|
| 332 |
+
|
| 333 |
+
# Use reflect padding to fill the blank
|
| 334 |
+
image = np.array(image)
|
| 335 |
+
image = np.pad(image, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right), (0, 0)), mode='reflect')
|
| 336 |
+
image = Image.fromarray(image)
|
| 337 |
+
|
| 338 |
+
depth_gt = np.array(depth_gt)
|
| 339 |
+
depth_gt = np.pad(depth_gt, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right)), 'constant', constant_values=0)
|
| 340 |
+
depth_gt = Image.fromarray(depth_gt)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
if self.config.do_random_rotate and (self.config.aug):
|
| 344 |
+
random_angle = (random.random() - 0.5) * 2 * self.config.degree
|
| 345 |
+
image = self.rotate_image(image, random_angle)
|
| 346 |
+
depth_gt = self.rotate_image(
|
| 347 |
+
depth_gt, random_angle, flag=Image.NEAREST)
|
| 348 |
+
|
| 349 |
+
image = np.asarray(image, dtype=np.float32) / 255.0
|
| 350 |
+
depth_gt = np.asarray(depth_gt, dtype=np.float32)
|
| 351 |
+
depth_gt = np.expand_dims(depth_gt, axis=2)
|
| 352 |
+
|
| 353 |
+
if self.config.dataset == 'nyu':
|
| 354 |
+
depth_gt = depth_gt / 1000.0
|
| 355 |
+
else:
|
| 356 |
+
depth_gt = depth_gt / 256.0
|
| 357 |
+
|
| 358 |
+
if self.config.aug and (self.config.random_crop):
|
| 359 |
+
image, depth_gt = self.random_crop(
|
| 360 |
+
image, depth_gt, self.config.input_height, self.config.input_width)
|
| 361 |
+
|
| 362 |
+
if self.config.aug and self.config.random_translate:
|
| 363 |
+
# print("Random Translation!")
|
| 364 |
+
image, depth_gt = self.random_translate(image, depth_gt, self.config.max_translation)
|
| 365 |
+
|
| 366 |
+
image, depth_gt = self.train_preprocess(image, depth_gt)
|
| 367 |
+
mask = np.logical_and(depth_gt > self.config.min_depth,
|
| 368 |
+
depth_gt < self.config.max_depth).squeeze()[None, ...]
|
| 369 |
+
sample = {'image': image, 'depth': depth_gt, 'focal': focal,
|
| 370 |
+
'mask': mask, **sample}
|
| 371 |
+
|
| 372 |
+
else:
|
| 373 |
+
if self.mode == 'online_eval':
|
| 374 |
+
data_path = self.config.data_path_eval
|
| 375 |
+
else:
|
| 376 |
+
data_path = self.config.data_path
|
| 377 |
+
|
| 378 |
+
image_path = os.path.join(
|
| 379 |
+
data_path, remove_leading_slash(sample_path.split()[0]))
|
| 380 |
+
image = np.asarray(self.reader.open(image_path),
|
| 381 |
+
dtype=np.float32) / 255.0
|
| 382 |
+
|
| 383 |
+
if self.mode == 'online_eval':
|
| 384 |
+
gt_path = self.config.gt_path_eval
|
| 385 |
+
depth_path = os.path.join(
|
| 386 |
+
gt_path, remove_leading_slash(sample_path.split()[1]))
|
| 387 |
+
has_valid_depth = False
|
| 388 |
+
try:
|
| 389 |
+
depth_gt = self.reader.open(depth_path)
|
| 390 |
+
has_valid_depth = True
|
| 391 |
+
except IOError:
|
| 392 |
+
depth_gt = False
|
| 393 |
+
# print('Missing gt for {}'.format(image_path))
|
| 394 |
+
|
| 395 |
+
if has_valid_depth:
|
| 396 |
+
depth_gt = np.asarray(depth_gt, dtype=np.float32)
|
| 397 |
+
depth_gt = np.expand_dims(depth_gt, axis=2)
|
| 398 |
+
if self.config.dataset == 'nyu':
|
| 399 |
+
depth_gt = depth_gt / 1000.0
|
| 400 |
+
else:
|
| 401 |
+
depth_gt = depth_gt / 256.0
|
| 402 |
+
|
| 403 |
+
mask = np.logical_and(
|
| 404 |
+
depth_gt >= self.config.min_depth, depth_gt <= self.config.max_depth).squeeze()[None, ...]
|
| 405 |
+
else:
|
| 406 |
+
mask = False
|
| 407 |
+
|
| 408 |
+
if self.config.do_kb_crop:
|
| 409 |
+
height = image.shape[0]
|
| 410 |
+
width = image.shape[1]
|
| 411 |
+
top_margin = int(height - 352)
|
| 412 |
+
left_margin = int((width - 1216) / 2)
|
| 413 |
+
image = image[top_margin:top_margin + 352,
|
| 414 |
+
left_margin:left_margin + 1216, :]
|
| 415 |
+
if self.mode == 'online_eval' and has_valid_depth:
|
| 416 |
+
depth_gt = depth_gt[top_margin:top_margin +
|
| 417 |
+
352, left_margin:left_margin + 1216, :]
|
| 418 |
+
|
| 419 |
+
if self.mode == 'online_eval':
|
| 420 |
+
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth,
|
| 421 |
+
'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1],
|
| 422 |
+
'mask': mask}
|
| 423 |
+
else:
|
| 424 |
+
sample = {'image': image, 'focal': focal}
|
| 425 |
+
|
| 426 |
+
if (self.mode == 'train') or ('has_valid_depth' in sample and sample['has_valid_depth']):
|
| 427 |
+
mask = np.logical_and(depth_gt > self.config.min_depth,
|
| 428 |
+
depth_gt < self.config.max_depth).squeeze()[None, ...]
|
| 429 |
+
sample['mask'] = mask
|
| 430 |
+
|
| 431 |
+
if self.transform:
|
| 432 |
+
sample = self.transform(sample)
|
| 433 |
+
|
| 434 |
+
sample = self.postprocess(sample)
|
| 435 |
+
sample['dataset'] = self.config.dataset
|
| 436 |
+
sample = {**sample, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1]}
|
| 437 |
+
|
| 438 |
+
return sample
|
| 439 |
+
|
| 440 |
+
def rotate_image(self, image, angle, flag=Image.BILINEAR):
|
| 441 |
+
result = image.rotate(angle, resample=flag)
|
| 442 |
+
return result
|
| 443 |
+
|
| 444 |
+
def random_crop(self, img, depth, height, width):
|
| 445 |
+
assert img.shape[0] >= height
|
| 446 |
+
assert img.shape[1] >= width
|
| 447 |
+
assert img.shape[0] == depth.shape[0]
|
| 448 |
+
assert img.shape[1] == depth.shape[1]
|
| 449 |
+
x = random.randint(0, img.shape[1] - width)
|
| 450 |
+
y = random.randint(0, img.shape[0] - height)
|
| 451 |
+
img = img[y:y + height, x:x + width, :]
|
| 452 |
+
depth = depth[y:y + height, x:x + width, :]
|
| 453 |
+
|
| 454 |
+
return img, depth
|
| 455 |
+
|
| 456 |
+
def random_translate(self, img, depth, max_t=20):
|
| 457 |
+
assert img.shape[0] == depth.shape[0]
|
| 458 |
+
assert img.shape[1] == depth.shape[1]
|
| 459 |
+
p = self.config.translate_prob
|
| 460 |
+
do_translate = random.random()
|
| 461 |
+
if do_translate > p:
|
| 462 |
+
return img, depth
|
| 463 |
+
x = random.randint(-max_t, max_t)
|
| 464 |
+
y = random.randint(-max_t, max_t)
|
| 465 |
+
M = np.float32([[1, 0, x], [0, 1, y]])
|
| 466 |
+
# print(img.shape, depth.shape)
|
| 467 |
+
img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
|
| 468 |
+
depth = cv2.warpAffine(depth, M, (depth.shape[1], depth.shape[0]))
|
| 469 |
+
depth = depth.squeeze()[..., None] # add channel dim back. Affine warp removes it
|
| 470 |
+
# print("after", img.shape, depth.shape)
|
| 471 |
+
return img, depth
|
| 472 |
+
|
| 473 |
+
def train_preprocess(self, image, depth_gt):
|
| 474 |
+
if self.config.aug:
|
| 475 |
+
# Random flipping
|
| 476 |
+
do_flip = random.random()
|
| 477 |
+
if do_flip > 0.5:
|
| 478 |
+
image = (image[:, ::-1, :]).copy()
|
| 479 |
+
depth_gt = (depth_gt[:, ::-1, :]).copy()
|
| 480 |
+
|
| 481 |
+
# Random gamma, brightness, color augmentation
|
| 482 |
+
do_augment = random.random()
|
| 483 |
+
if do_augment > 0.5:
|
| 484 |
+
image = self.augment_image(image)
|
| 485 |
+
|
| 486 |
+
return image, depth_gt
|
| 487 |
+
|
| 488 |
+
def augment_image(self, image):
|
| 489 |
+
# gamma augmentation
|
| 490 |
+
gamma = random.uniform(0.9, 1.1)
|
| 491 |
+
image_aug = image ** gamma
|
| 492 |
+
|
| 493 |
+
# brightness augmentation
|
| 494 |
+
if self.config.dataset == 'nyu':
|
| 495 |
+
brightness = random.uniform(0.75, 1.25)
|
| 496 |
+
else:
|
| 497 |
+
brightness = random.uniform(0.9, 1.1)
|
| 498 |
+
image_aug = image_aug * brightness
|
| 499 |
+
|
| 500 |
+
# color augmentation
|
| 501 |
+
colors = np.random.uniform(0.9, 1.1, size=3)
|
| 502 |
+
white = np.ones((image.shape[0], image.shape[1]))
|
| 503 |
+
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
|
| 504 |
+
image_aug *= color_image
|
| 505 |
+
image_aug = np.clip(image_aug, 0, 1)
|
| 506 |
+
|
| 507 |
+
return image_aug
|
| 508 |
+
|
| 509 |
+
def __len__(self):
|
| 510 |
+
return len(self.filenames)
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
class ToTensor(object):
|
| 514 |
+
def __init__(self, mode, do_normalize=False, size=None):
|
| 515 |
+
self.mode = mode
|
| 516 |
+
self.normalize = transforms.Normalize(
|
| 517 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
|
| 518 |
+
self.size = size
|
| 519 |
+
if size is not None:
|
| 520 |
+
self.resize = transforms.Resize(size=size)
|
| 521 |
+
else:
|
| 522 |
+
self.resize = nn.Identity()
|
| 523 |
+
|
| 524 |
+
def __call__(self, sample):
|
| 525 |
+
image, focal = sample['image'], sample['focal']
|
| 526 |
+
image = self.to_tensor(image)
|
| 527 |
+
image = self.normalize(image)
|
| 528 |
+
image = self.resize(image)
|
| 529 |
+
|
| 530 |
+
if self.mode == 'test':
|
| 531 |
+
return {'image': image, 'focal': focal}
|
| 532 |
+
|
| 533 |
+
depth = sample['depth']
|
| 534 |
+
if self.mode == 'train':
|
| 535 |
+
depth = self.to_tensor(depth)
|
| 536 |
+
return {**sample, 'image': image, 'depth': depth, 'focal': focal}
|
| 537 |
+
else:
|
| 538 |
+
has_valid_depth = sample['has_valid_depth']
|
| 539 |
+
image = self.resize(image)
|
| 540 |
+
return {**sample, 'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth,
|
| 541 |
+
'image_path': sample['image_path'], 'depth_path': sample['depth_path']}
|
| 542 |
+
|
| 543 |
+
def to_tensor(self, pic):
|
| 544 |
+
if not (_is_pil_image(pic) or _is_numpy_image(pic)):
|
| 545 |
+
raise TypeError(
|
| 546 |
+
'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
|
| 547 |
+
|
| 548 |
+
if isinstance(pic, np.ndarray):
|
| 549 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 550 |
+
return img
|
| 551 |
+
|
| 552 |
+
# handle PIL Image
|
| 553 |
+
if pic.mode == 'I':
|
| 554 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 555 |
+
elif pic.mode == 'I;16':
|
| 556 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 557 |
+
else:
|
| 558 |
+
img = torch.ByteTensor(
|
| 559 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 560 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 561 |
+
if pic.mode == 'YCbCr':
|
| 562 |
+
nchannel = 3
|
| 563 |
+
elif pic.mode == 'I;16':
|
| 564 |
+
nchannel = 1
|
| 565 |
+
else:
|
| 566 |
+
nchannel = len(pic.mode)
|
| 567 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 568 |
+
|
| 569 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 570 |
+
if isinstance(img, torch.ByteTensor):
|
| 571 |
+
return img.float()
|
| 572 |
+
else:
|
| 573 |
+
return img
|
annotator/zoe/zoedepth/data/ddad.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from torch.utils.data import DataLoader, Dataset
|
| 31 |
+
from torchvision import transforms
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class ToTensor(object):
|
| 35 |
+
def __init__(self, resize_shape):
|
| 36 |
+
# self.normalize = transforms.Normalize(
|
| 37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 38 |
+
self.normalize = lambda x : x
|
| 39 |
+
self.resize = transforms.Resize(resize_shape)
|
| 40 |
+
|
| 41 |
+
def __call__(self, sample):
|
| 42 |
+
image, depth = sample['image'], sample['depth']
|
| 43 |
+
image = self.to_tensor(image)
|
| 44 |
+
image = self.normalize(image)
|
| 45 |
+
depth = self.to_tensor(depth)
|
| 46 |
+
|
| 47 |
+
image = self.resize(image)
|
| 48 |
+
|
| 49 |
+
return {'image': image, 'depth': depth, 'dataset': "ddad"}
|
| 50 |
+
|
| 51 |
+
def to_tensor(self, pic):
|
| 52 |
+
|
| 53 |
+
if isinstance(pic, np.ndarray):
|
| 54 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 55 |
+
return img
|
| 56 |
+
|
| 57 |
+
# # handle PIL Image
|
| 58 |
+
if pic.mode == 'I':
|
| 59 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 60 |
+
elif pic.mode == 'I;16':
|
| 61 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 62 |
+
else:
|
| 63 |
+
img = torch.ByteTensor(
|
| 64 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 65 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 66 |
+
if pic.mode == 'YCbCr':
|
| 67 |
+
nchannel = 3
|
| 68 |
+
elif pic.mode == 'I;16':
|
| 69 |
+
nchannel = 1
|
| 70 |
+
else:
|
| 71 |
+
nchannel = len(pic.mode)
|
| 72 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 73 |
+
|
| 74 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 75 |
+
|
| 76 |
+
if isinstance(img, torch.ByteTensor):
|
| 77 |
+
return img.float()
|
| 78 |
+
else:
|
| 79 |
+
return img
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class DDAD(Dataset):
|
| 83 |
+
def __init__(self, data_dir_root, resize_shape):
|
| 84 |
+
import glob
|
| 85 |
+
|
| 86 |
+
# image paths are of the form <data_dir_root>/{outleft, depthmap}/*.png
|
| 87 |
+
self.image_files = glob.glob(os.path.join(data_dir_root, '*.png'))
|
| 88 |
+
self.depth_files = [r.replace("_rgb.png", "_depth.npy")
|
| 89 |
+
for r in self.image_files]
|
| 90 |
+
self.transform = ToTensor(resize_shape)
|
| 91 |
+
|
| 92 |
+
def __getitem__(self, idx):
|
| 93 |
+
|
| 94 |
+
image_path = self.image_files[idx]
|
| 95 |
+
depth_path = self.depth_files[idx]
|
| 96 |
+
|
| 97 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
| 98 |
+
depth = np.load(depth_path) # meters
|
| 99 |
+
|
| 100 |
+
# depth[depth > 8] = -1
|
| 101 |
+
depth = depth[..., None]
|
| 102 |
+
|
| 103 |
+
sample = dict(image=image, depth=depth)
|
| 104 |
+
sample = self.transform(sample)
|
| 105 |
+
|
| 106 |
+
if idx == 0:
|
| 107 |
+
print(sample["image"].shape)
|
| 108 |
+
|
| 109 |
+
return sample
|
| 110 |
+
|
| 111 |
+
def __len__(self):
|
| 112 |
+
return len(self.image_files)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def get_ddad_loader(data_dir_root, resize_shape, batch_size=1, **kwargs):
|
| 116 |
+
dataset = DDAD(data_dir_root, resize_shape)
|
| 117 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
annotator/zoe/zoedepth/data/diml_indoor_test.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from torch.utils.data import DataLoader, Dataset
|
| 31 |
+
from torchvision import transforms
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class ToTensor(object):
|
| 35 |
+
def __init__(self):
|
| 36 |
+
# self.normalize = transforms.Normalize(
|
| 37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 38 |
+
self.normalize = lambda x : x
|
| 39 |
+
self.resize = transforms.Resize((480, 640))
|
| 40 |
+
|
| 41 |
+
def __call__(self, sample):
|
| 42 |
+
image, depth = sample['image'], sample['depth']
|
| 43 |
+
image = self.to_tensor(image)
|
| 44 |
+
image = self.normalize(image)
|
| 45 |
+
depth = self.to_tensor(depth)
|
| 46 |
+
|
| 47 |
+
image = self.resize(image)
|
| 48 |
+
|
| 49 |
+
return {'image': image, 'depth': depth, 'dataset': "diml_indoor"}
|
| 50 |
+
|
| 51 |
+
def to_tensor(self, pic):
|
| 52 |
+
|
| 53 |
+
if isinstance(pic, np.ndarray):
|
| 54 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 55 |
+
return img
|
| 56 |
+
|
| 57 |
+
# # handle PIL Image
|
| 58 |
+
if pic.mode == 'I':
|
| 59 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 60 |
+
elif pic.mode == 'I;16':
|
| 61 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 62 |
+
else:
|
| 63 |
+
img = torch.ByteTensor(
|
| 64 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 65 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 66 |
+
if pic.mode == 'YCbCr':
|
| 67 |
+
nchannel = 3
|
| 68 |
+
elif pic.mode == 'I;16':
|
| 69 |
+
nchannel = 1
|
| 70 |
+
else:
|
| 71 |
+
nchannel = len(pic.mode)
|
| 72 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 73 |
+
|
| 74 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 75 |
+
if isinstance(img, torch.ByteTensor):
|
| 76 |
+
return img.float()
|
| 77 |
+
else:
|
| 78 |
+
return img
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class DIML_Indoor(Dataset):
|
| 82 |
+
def __init__(self, data_dir_root):
|
| 83 |
+
import glob
|
| 84 |
+
|
| 85 |
+
# image paths are of the form <data_dir_root>/{HR, LR}/<scene>/{color, depth_filled}/*.png
|
| 86 |
+
self.image_files = glob.glob(os.path.join(
|
| 87 |
+
data_dir_root, "LR", '*', 'color', '*.png'))
|
| 88 |
+
self.depth_files = [r.replace("color", "depth_filled").replace(
|
| 89 |
+
"_c.png", "_depth_filled.png") for r in self.image_files]
|
| 90 |
+
self.transform = ToTensor()
|
| 91 |
+
|
| 92 |
+
def __getitem__(self, idx):
|
| 93 |
+
image_path = self.image_files[idx]
|
| 94 |
+
depth_path = self.depth_files[idx]
|
| 95 |
+
|
| 96 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
| 97 |
+
depth = np.asarray(Image.open(depth_path),
|
| 98 |
+
dtype='uint16') / 1000.0 # mm to meters
|
| 99 |
+
|
| 100 |
+
# print(np.shape(image))
|
| 101 |
+
# print(np.shape(depth))
|
| 102 |
+
|
| 103 |
+
# depth[depth > 8] = -1
|
| 104 |
+
depth = depth[..., None]
|
| 105 |
+
|
| 106 |
+
sample = dict(image=image, depth=depth)
|
| 107 |
+
|
| 108 |
+
# return sample
|
| 109 |
+
sample = self.transform(sample)
|
| 110 |
+
|
| 111 |
+
if idx == 0:
|
| 112 |
+
print(sample["image"].shape)
|
| 113 |
+
|
| 114 |
+
return sample
|
| 115 |
+
|
| 116 |
+
def __len__(self):
|
| 117 |
+
return len(self.image_files)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def get_diml_indoor_loader(data_dir_root, batch_size=1, **kwargs):
|
| 121 |
+
dataset = DIML_Indoor(data_dir_root)
|
| 122 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
| 123 |
+
|
| 124 |
+
# get_diml_indoor_loader(data_dir_root="datasets/diml/indoor/test/HR")
|
| 125 |
+
# get_diml_indoor_loader(data_dir_root="datasets/diml/indoor/test/LR")
|
annotator/zoe/zoedepth/data/diml_outdoor_test.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from torch.utils.data import DataLoader, Dataset
|
| 31 |
+
from torchvision import transforms
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class ToTensor(object):
|
| 35 |
+
def __init__(self):
|
| 36 |
+
# self.normalize = transforms.Normalize(
|
| 37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 38 |
+
self.normalize = lambda x : x
|
| 39 |
+
|
| 40 |
+
def __call__(self, sample):
|
| 41 |
+
image, depth = sample['image'], sample['depth']
|
| 42 |
+
image = self.to_tensor(image)
|
| 43 |
+
image = self.normalize(image)
|
| 44 |
+
depth = self.to_tensor(depth)
|
| 45 |
+
|
| 46 |
+
return {'image': image, 'depth': depth, 'dataset': "diml_outdoor"}
|
| 47 |
+
|
| 48 |
+
def to_tensor(self, pic):
|
| 49 |
+
|
| 50 |
+
if isinstance(pic, np.ndarray):
|
| 51 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 52 |
+
return img
|
| 53 |
+
|
| 54 |
+
# # handle PIL Image
|
| 55 |
+
if pic.mode == 'I':
|
| 56 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 57 |
+
elif pic.mode == 'I;16':
|
| 58 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 59 |
+
else:
|
| 60 |
+
img = torch.ByteTensor(
|
| 61 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 62 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 63 |
+
if pic.mode == 'YCbCr':
|
| 64 |
+
nchannel = 3
|
| 65 |
+
elif pic.mode == 'I;16':
|
| 66 |
+
nchannel = 1
|
| 67 |
+
else:
|
| 68 |
+
nchannel = len(pic.mode)
|
| 69 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 70 |
+
|
| 71 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 72 |
+
if isinstance(img, torch.ByteTensor):
|
| 73 |
+
return img.float()
|
| 74 |
+
else:
|
| 75 |
+
return img
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class DIML_Outdoor(Dataset):
|
| 79 |
+
def __init__(self, data_dir_root):
|
| 80 |
+
import glob
|
| 81 |
+
|
| 82 |
+
# image paths are of the form <data_dir_root>/{outleft, depthmap}/*.png
|
| 83 |
+
self.image_files = glob.glob(os.path.join(
|
| 84 |
+
data_dir_root, "*", 'outleft', '*.png'))
|
| 85 |
+
self.depth_files = [r.replace("outleft", "depthmap")
|
| 86 |
+
for r in self.image_files]
|
| 87 |
+
self.transform = ToTensor()
|
| 88 |
+
|
| 89 |
+
def __getitem__(self, idx):
|
| 90 |
+
image_path = self.image_files[idx]
|
| 91 |
+
depth_path = self.depth_files[idx]
|
| 92 |
+
|
| 93 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
| 94 |
+
depth = np.asarray(Image.open(depth_path),
|
| 95 |
+
dtype='uint16') / 1000.0 # mm to meters
|
| 96 |
+
|
| 97 |
+
# depth[depth > 8] = -1
|
| 98 |
+
depth = depth[..., None]
|
| 99 |
+
|
| 100 |
+
sample = dict(image=image, depth=depth, dataset="diml_outdoor")
|
| 101 |
+
|
| 102 |
+
# return sample
|
| 103 |
+
return self.transform(sample)
|
| 104 |
+
|
| 105 |
+
def __len__(self):
|
| 106 |
+
return len(self.image_files)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def get_diml_outdoor_loader(data_dir_root, batch_size=1, **kwargs):
|
| 110 |
+
dataset = DIML_Outdoor(data_dir_root)
|
| 111 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
| 112 |
+
|
| 113 |
+
# get_diml_outdoor_loader(data_dir_root="datasets/diml/outdoor/test/HR")
|
| 114 |
+
# get_diml_outdoor_loader(data_dir_root="datasets/diml/outdoor/test/LR")
|
annotator/zoe/zoedepth/data/diode.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from torch.utils.data import DataLoader, Dataset
|
| 31 |
+
from torchvision import transforms
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class ToTensor(object):
|
| 35 |
+
def __init__(self):
|
| 36 |
+
# self.normalize = transforms.Normalize(
|
| 37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 38 |
+
self.normalize = lambda x : x
|
| 39 |
+
self.resize = transforms.Resize(480)
|
| 40 |
+
|
| 41 |
+
def __call__(self, sample):
|
| 42 |
+
image, depth = sample['image'], sample['depth']
|
| 43 |
+
image = self.to_tensor(image)
|
| 44 |
+
image = self.normalize(image)
|
| 45 |
+
depth = self.to_tensor(depth)
|
| 46 |
+
|
| 47 |
+
image = self.resize(image)
|
| 48 |
+
|
| 49 |
+
return {'image': image, 'depth': depth, 'dataset': "diode"}
|
| 50 |
+
|
| 51 |
+
def to_tensor(self, pic):
|
| 52 |
+
|
| 53 |
+
if isinstance(pic, np.ndarray):
|
| 54 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 55 |
+
return img
|
| 56 |
+
|
| 57 |
+
# # handle PIL Image
|
| 58 |
+
if pic.mode == 'I':
|
| 59 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 60 |
+
elif pic.mode == 'I;16':
|
| 61 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 62 |
+
else:
|
| 63 |
+
img = torch.ByteTensor(
|
| 64 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 65 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 66 |
+
if pic.mode == 'YCbCr':
|
| 67 |
+
nchannel = 3
|
| 68 |
+
elif pic.mode == 'I;16':
|
| 69 |
+
nchannel = 1
|
| 70 |
+
else:
|
| 71 |
+
nchannel = len(pic.mode)
|
| 72 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 73 |
+
|
| 74 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 75 |
+
|
| 76 |
+
if isinstance(img, torch.ByteTensor):
|
| 77 |
+
return img.float()
|
| 78 |
+
else:
|
| 79 |
+
return img
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class DIODE(Dataset):
|
| 83 |
+
def __init__(self, data_dir_root):
|
| 84 |
+
import glob
|
| 85 |
+
|
| 86 |
+
# image paths are of the form <data_dir_root>/scene_#/scan_#/*.png
|
| 87 |
+
self.image_files = glob.glob(
|
| 88 |
+
os.path.join(data_dir_root, '*', '*', '*.png'))
|
| 89 |
+
self.depth_files = [r.replace(".png", "_depth.npy")
|
| 90 |
+
for r in self.image_files]
|
| 91 |
+
self.depth_mask_files = [
|
| 92 |
+
r.replace(".png", "_depth_mask.npy") for r in self.image_files]
|
| 93 |
+
self.transform = ToTensor()
|
| 94 |
+
|
| 95 |
+
def __getitem__(self, idx):
|
| 96 |
+
image_path = self.image_files[idx]
|
| 97 |
+
depth_path = self.depth_files[idx]
|
| 98 |
+
depth_mask_path = self.depth_mask_files[idx]
|
| 99 |
+
|
| 100 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
| 101 |
+
depth = np.load(depth_path) # in meters
|
| 102 |
+
valid = np.load(depth_mask_path) # binary
|
| 103 |
+
|
| 104 |
+
# depth[depth > 8] = -1
|
| 105 |
+
# depth = depth[..., None]
|
| 106 |
+
|
| 107 |
+
sample = dict(image=image, depth=depth, valid=valid)
|
| 108 |
+
|
| 109 |
+
# return sample
|
| 110 |
+
sample = self.transform(sample)
|
| 111 |
+
|
| 112 |
+
if idx == 0:
|
| 113 |
+
print(sample["image"].shape)
|
| 114 |
+
|
| 115 |
+
return sample
|
| 116 |
+
|
| 117 |
+
def __len__(self):
|
| 118 |
+
return len(self.image_files)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_diode_loader(data_dir_root, batch_size=1, **kwargs):
|
| 122 |
+
dataset = DIODE(data_dir_root)
|
| 123 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
| 124 |
+
|
| 125 |
+
# get_diode_loader(data_dir_root="datasets/diode/val/outdoor")
|
annotator/zoe/zoedepth/data/hypersim.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import glob
|
| 26 |
+
import os
|
| 27 |
+
|
| 28 |
+
import h5py
|
| 29 |
+
import numpy as np
|
| 30 |
+
import torch
|
| 31 |
+
from PIL import Image
|
| 32 |
+
from torch.utils.data import DataLoader, Dataset
|
| 33 |
+
from torchvision import transforms
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def hypersim_distance_to_depth(npyDistance):
|
| 37 |
+
intWidth, intHeight, fltFocal = 1024, 768, 886.81
|
| 38 |
+
|
| 39 |
+
npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape(
|
| 40 |
+
1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None]
|
| 41 |
+
npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5,
|
| 42 |
+
intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None]
|
| 43 |
+
npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32)
|
| 44 |
+
npyImageplane = np.concatenate(
|
| 45 |
+
[npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2)
|
| 46 |
+
|
| 47 |
+
npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal
|
| 48 |
+
return npyDepth
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class ToTensor(object):
|
| 52 |
+
def __init__(self):
|
| 53 |
+
# self.normalize = transforms.Normalize(
|
| 54 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 55 |
+
self.normalize = lambda x: x
|
| 56 |
+
self.resize = transforms.Resize((480, 640))
|
| 57 |
+
|
| 58 |
+
def __call__(self, sample):
|
| 59 |
+
image, depth = sample['image'], sample['depth']
|
| 60 |
+
image = self.to_tensor(image)
|
| 61 |
+
image = self.normalize(image)
|
| 62 |
+
depth = self.to_tensor(depth)
|
| 63 |
+
|
| 64 |
+
image = self.resize(image)
|
| 65 |
+
|
| 66 |
+
return {'image': image, 'depth': depth, 'dataset': "hypersim"}
|
| 67 |
+
|
| 68 |
+
def to_tensor(self, pic):
|
| 69 |
+
|
| 70 |
+
if isinstance(pic, np.ndarray):
|
| 71 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 72 |
+
return img
|
| 73 |
+
|
| 74 |
+
# # handle PIL Image
|
| 75 |
+
if pic.mode == 'I':
|
| 76 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 77 |
+
elif pic.mode == 'I;16':
|
| 78 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 79 |
+
else:
|
| 80 |
+
img = torch.ByteTensor(
|
| 81 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 82 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 83 |
+
if pic.mode == 'YCbCr':
|
| 84 |
+
nchannel = 3
|
| 85 |
+
elif pic.mode == 'I;16':
|
| 86 |
+
nchannel = 1
|
| 87 |
+
else:
|
| 88 |
+
nchannel = len(pic.mode)
|
| 89 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 90 |
+
|
| 91 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 92 |
+
if isinstance(img, torch.ByteTensor):
|
| 93 |
+
return img.float()
|
| 94 |
+
else:
|
| 95 |
+
return img
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class HyperSim(Dataset):
|
| 99 |
+
def __init__(self, data_dir_root):
|
| 100 |
+
# image paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.tonemap.jpg
|
| 101 |
+
# depth paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.depth_meters.hdf5
|
| 102 |
+
self.image_files = glob.glob(os.path.join(
|
| 103 |
+
data_dir_root, '*', 'images', 'scene_cam_*_final_preview', '*.tonemap.jpg'))
|
| 104 |
+
self.depth_files = [r.replace("_final_preview", "_geometry_hdf5").replace(
|
| 105 |
+
".tonemap.jpg", ".depth_meters.hdf5") for r in self.image_files]
|
| 106 |
+
self.transform = ToTensor()
|
| 107 |
+
|
| 108 |
+
def __getitem__(self, idx):
|
| 109 |
+
image_path = self.image_files[idx]
|
| 110 |
+
depth_path = self.depth_files[idx]
|
| 111 |
+
|
| 112 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
| 113 |
+
|
| 114 |
+
# depth from hdf5
|
| 115 |
+
depth_fd = h5py.File(depth_path, "r")
|
| 116 |
+
# in meters (Euclidean distance)
|
| 117 |
+
distance_meters = np.array(depth_fd['dataset'])
|
| 118 |
+
depth = hypersim_distance_to_depth(
|
| 119 |
+
distance_meters) # in meters (planar depth)
|
| 120 |
+
|
| 121 |
+
# depth[depth > 8] = -1
|
| 122 |
+
depth = depth[..., None]
|
| 123 |
+
|
| 124 |
+
sample = dict(image=image, depth=depth)
|
| 125 |
+
sample = self.transform(sample)
|
| 126 |
+
|
| 127 |
+
if idx == 0:
|
| 128 |
+
print(sample["image"].shape)
|
| 129 |
+
|
| 130 |
+
return sample
|
| 131 |
+
|
| 132 |
+
def __len__(self):
|
| 133 |
+
return len(self.image_files)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def get_hypersim_loader(data_dir_root, batch_size=1, **kwargs):
|
| 137 |
+
dataset = HyperSim(data_dir_root)
|
| 138 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
annotator/zoe/zoedepth/data/ibims.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from torch.utils.data import DataLoader, Dataset
|
| 31 |
+
from torchvision import transforms as T
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class iBims(Dataset):
|
| 35 |
+
def __init__(self, config):
|
| 36 |
+
root_folder = config.ibims_root
|
| 37 |
+
with open(os.path.join(root_folder, "imagelist.txt"), 'r') as f:
|
| 38 |
+
imglist = f.read().split()
|
| 39 |
+
|
| 40 |
+
samples = []
|
| 41 |
+
for basename in imglist:
|
| 42 |
+
img_path = os.path.join(root_folder, 'rgb', basename + ".png")
|
| 43 |
+
depth_path = os.path.join(root_folder, 'depth', basename + ".png")
|
| 44 |
+
valid_mask_path = os.path.join(
|
| 45 |
+
root_folder, 'mask_invalid', basename+".png")
|
| 46 |
+
transp_mask_path = os.path.join(
|
| 47 |
+
root_folder, 'mask_transp', basename+".png")
|
| 48 |
+
|
| 49 |
+
samples.append(
|
| 50 |
+
(img_path, depth_path, valid_mask_path, transp_mask_path))
|
| 51 |
+
|
| 52 |
+
self.samples = samples
|
| 53 |
+
# self.normalize = T.Normalize(
|
| 54 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 55 |
+
self.normalize = lambda x : x
|
| 56 |
+
|
| 57 |
+
def __getitem__(self, idx):
|
| 58 |
+
img_path, depth_path, valid_mask_path, transp_mask_path = self.samples[idx]
|
| 59 |
+
|
| 60 |
+
img = np.asarray(Image.open(img_path), dtype=np.float32) / 255.0
|
| 61 |
+
depth = np.asarray(Image.open(depth_path),
|
| 62 |
+
dtype=np.uint16).astype('float')*50.0/65535
|
| 63 |
+
|
| 64 |
+
mask_valid = np.asarray(Image.open(valid_mask_path))
|
| 65 |
+
mask_transp = np.asarray(Image.open(transp_mask_path))
|
| 66 |
+
|
| 67 |
+
# depth = depth * mask_valid * mask_transp
|
| 68 |
+
depth = np.where(mask_valid * mask_transp, depth, -1)
|
| 69 |
+
|
| 70 |
+
img = torch.from_numpy(img).permute(2, 0, 1)
|
| 71 |
+
img = self.normalize(img)
|
| 72 |
+
depth = torch.from_numpy(depth).unsqueeze(0)
|
| 73 |
+
return dict(image=img, depth=depth, image_path=img_path, depth_path=depth_path, dataset='ibims')
|
| 74 |
+
|
| 75 |
+
def __len__(self):
|
| 76 |
+
return len(self.samples)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def get_ibims_loader(config, batch_size=1, **kwargs):
|
| 80 |
+
dataloader = DataLoader(iBims(config), batch_size=batch_size, **kwargs)
|
| 81 |
+
return dataloader
|
annotator/zoe/zoedepth/data/preprocess.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import numpy as np
|
| 26 |
+
from dataclasses import dataclass
|
| 27 |
+
from typing import Tuple, List
|
| 28 |
+
|
| 29 |
+
# dataclass to store the crop parameters
|
| 30 |
+
@dataclass
|
| 31 |
+
class CropParams:
|
| 32 |
+
top: int
|
| 33 |
+
bottom: int
|
| 34 |
+
left: int
|
| 35 |
+
right: int
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_border_params(rgb_image, tolerance=0.1, cut_off=20, value=0, level_diff_threshold=5, channel_axis=-1, min_border=5) -> CropParams:
|
| 40 |
+
gray_image = np.mean(rgb_image, axis=channel_axis)
|
| 41 |
+
h, w = gray_image.shape
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def num_value_pixels(arr):
|
| 45 |
+
return np.sum(np.abs(arr - value) < level_diff_threshold)
|
| 46 |
+
|
| 47 |
+
def is_above_tolerance(arr, total_pixels):
|
| 48 |
+
return (num_value_pixels(arr) / total_pixels) > tolerance
|
| 49 |
+
|
| 50 |
+
# Crop top border until number of value pixels become below tolerance
|
| 51 |
+
top = min_border
|
| 52 |
+
while is_above_tolerance(gray_image[top, :], w) and top < h-1:
|
| 53 |
+
top += 1
|
| 54 |
+
if top > cut_off:
|
| 55 |
+
break
|
| 56 |
+
|
| 57 |
+
# Crop bottom border until number of value pixels become below tolerance
|
| 58 |
+
bottom = h - min_border
|
| 59 |
+
while is_above_tolerance(gray_image[bottom, :], w) and bottom > 0:
|
| 60 |
+
bottom -= 1
|
| 61 |
+
if h - bottom > cut_off:
|
| 62 |
+
break
|
| 63 |
+
|
| 64 |
+
# Crop left border until number of value pixels become below tolerance
|
| 65 |
+
left = min_border
|
| 66 |
+
while is_above_tolerance(gray_image[:, left], h) and left < w-1:
|
| 67 |
+
left += 1
|
| 68 |
+
if left > cut_off:
|
| 69 |
+
break
|
| 70 |
+
|
| 71 |
+
# Crop right border until number of value pixels become below tolerance
|
| 72 |
+
right = w - min_border
|
| 73 |
+
while is_above_tolerance(gray_image[:, right], h) and right > 0:
|
| 74 |
+
right -= 1
|
| 75 |
+
if w - right > cut_off:
|
| 76 |
+
break
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
return CropParams(top, bottom, left, right)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_white_border(rgb_image, value=255, **kwargs) -> CropParams:
|
| 83 |
+
"""Crops the white border of the RGB.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
rgb: RGB image, shape (H, W, 3).
|
| 87 |
+
Returns:
|
| 88 |
+
Crop parameters.
|
| 89 |
+
"""
|
| 90 |
+
if value == 255:
|
| 91 |
+
# assert range of values in rgb image is [0, 255]
|
| 92 |
+
assert np.max(rgb_image) <= 255 and np.min(rgb_image) >= 0, "RGB image values are not in range [0, 255]."
|
| 93 |
+
assert rgb_image.max() > 1, "RGB image values are not in range [0, 255]."
|
| 94 |
+
elif value == 1:
|
| 95 |
+
# assert range of values in rgb image is [0, 1]
|
| 96 |
+
assert np.max(rgb_image) <= 1 and np.min(rgb_image) >= 0, "RGB image values are not in range [0, 1]."
|
| 97 |
+
|
| 98 |
+
return get_border_params(rgb_image, value=value, **kwargs)
|
| 99 |
+
|
| 100 |
+
def get_black_border(rgb_image, **kwargs) -> CropParams:
|
| 101 |
+
"""Crops the black border of the RGB.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
rgb: RGB image, shape (H, W, 3).
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
Crop parameters.
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
return get_border_params(rgb_image, value=0, **kwargs)
|
| 111 |
+
|
| 112 |
+
def crop_image(image: np.ndarray, crop_params: CropParams) -> np.ndarray:
|
| 113 |
+
"""Crops the image according to the crop parameters.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
image: RGB or depth image, shape (H, W, 3) or (H, W).
|
| 117 |
+
crop_params: Crop parameters.
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
Cropped image.
|
| 121 |
+
"""
|
| 122 |
+
return image[crop_params.top:crop_params.bottom, crop_params.left:crop_params.right]
|
| 123 |
+
|
| 124 |
+
def crop_images(*images: np.ndarray, crop_params: CropParams) -> Tuple[np.ndarray]:
|
| 125 |
+
"""Crops the images according to the crop parameters.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
images: RGB or depth images, shape (H, W, 3) or (H, W).
|
| 129 |
+
crop_params: Crop parameters.
|
| 130 |
+
|
| 131 |
+
Returns:
|
| 132 |
+
Cropped images.
|
| 133 |
+
"""
|
| 134 |
+
return tuple(crop_image(image, crop_params) for image in images)
|
| 135 |
+
|
| 136 |
+
def crop_black_or_white_border(rgb_image, *other_images: np.ndarray, tolerance=0.1, cut_off=20, level_diff_threshold=5) -> Tuple[np.ndarray]:
|
| 137 |
+
"""Crops the white and black border of the RGB and depth images.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
rgb: RGB image, shape (H, W, 3). This image is used to determine the border.
|
| 141 |
+
other_images: The other images to crop according to the border of the RGB image.
|
| 142 |
+
Returns:
|
| 143 |
+
Cropped RGB and other images.
|
| 144 |
+
"""
|
| 145 |
+
# crop black border
|
| 146 |
+
crop_params = get_black_border(rgb_image, tolerance=tolerance, cut_off=cut_off, level_diff_threshold=level_diff_threshold)
|
| 147 |
+
cropped_images = crop_images(rgb_image, *other_images, crop_params=crop_params)
|
| 148 |
+
|
| 149 |
+
# crop white border
|
| 150 |
+
crop_params = get_white_border(cropped_images[0], tolerance=tolerance, cut_off=cut_off, level_diff_threshold=level_diff_threshold)
|
| 151 |
+
cropped_images = crop_images(*cropped_images, crop_params=crop_params)
|
| 152 |
+
|
| 153 |
+
return cropped_images
|
| 154 |
+
|
annotator/zoe/zoedepth/data/sun_rgbd_loader.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from torch.utils.data import DataLoader, Dataset
|
| 31 |
+
from torchvision import transforms
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class ToTensor(object):
|
| 35 |
+
def __init__(self):
|
| 36 |
+
# self.normalize = transforms.Normalize(
|
| 37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 38 |
+
self.normalize = lambda x : x
|
| 39 |
+
|
| 40 |
+
def __call__(self, sample):
|
| 41 |
+
image, depth = sample['image'], sample['depth']
|
| 42 |
+
image = self.to_tensor(image)
|
| 43 |
+
image = self.normalize(image)
|
| 44 |
+
depth = self.to_tensor(depth)
|
| 45 |
+
|
| 46 |
+
return {'image': image, 'depth': depth, 'dataset': "sunrgbd"}
|
| 47 |
+
|
| 48 |
+
def to_tensor(self, pic):
|
| 49 |
+
|
| 50 |
+
if isinstance(pic, np.ndarray):
|
| 51 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 52 |
+
return img
|
| 53 |
+
|
| 54 |
+
# # handle PIL Image
|
| 55 |
+
if pic.mode == 'I':
|
| 56 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 57 |
+
elif pic.mode == 'I;16':
|
| 58 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 59 |
+
else:
|
| 60 |
+
img = torch.ByteTensor(
|
| 61 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 62 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 63 |
+
if pic.mode == 'YCbCr':
|
| 64 |
+
nchannel = 3
|
| 65 |
+
elif pic.mode == 'I;16':
|
| 66 |
+
nchannel = 1
|
| 67 |
+
else:
|
| 68 |
+
nchannel = len(pic.mode)
|
| 69 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 70 |
+
|
| 71 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 72 |
+
if isinstance(img, torch.ByteTensor):
|
| 73 |
+
return img.float()
|
| 74 |
+
else:
|
| 75 |
+
return img
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class SunRGBD(Dataset):
|
| 79 |
+
def __init__(self, data_dir_root):
|
| 80 |
+
# test_file_dirs = loadmat(train_test_file)['alltest'].squeeze()
|
| 81 |
+
# all_test = [t[0].replace("/n/fs/sun3d/data/", "") for t in test_file_dirs]
|
| 82 |
+
# self.all_test = [os.path.join(data_dir_root, t) for t in all_test]
|
| 83 |
+
import glob
|
| 84 |
+
self.image_files = glob.glob(
|
| 85 |
+
os.path.join(data_dir_root, 'rgb', 'rgb', '*'))
|
| 86 |
+
self.depth_files = [
|
| 87 |
+
r.replace("rgb/rgb", "gt/gt").replace("jpg", "png") for r in self.image_files]
|
| 88 |
+
self.transform = ToTensor()
|
| 89 |
+
|
| 90 |
+
def __getitem__(self, idx):
|
| 91 |
+
image_path = self.image_files[idx]
|
| 92 |
+
depth_path = self.depth_files[idx]
|
| 93 |
+
|
| 94 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
| 95 |
+
depth = np.asarray(Image.open(depth_path), dtype='uint16') / 1000.0
|
| 96 |
+
depth[depth > 8] = -1
|
| 97 |
+
depth = depth[..., None]
|
| 98 |
+
return self.transform(dict(image=image, depth=depth))
|
| 99 |
+
|
| 100 |
+
def __len__(self):
|
| 101 |
+
return len(self.image_files)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def get_sunrgbd_loader(data_dir_root, batch_size=1, **kwargs):
|
| 105 |
+
dataset = SunRGBD(data_dir_root)
|
| 106 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
annotator/zoe/zoedepth/data/transforms.py
ADDED
|
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import math
|
| 26 |
+
import random
|
| 27 |
+
|
| 28 |
+
import cv2
|
| 29 |
+
import numpy as np
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class RandomFliplr(object):
|
| 33 |
+
"""Horizontal flip of the sample with given probability.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
def __init__(self, probability=0.5):
|
| 37 |
+
"""Init.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
probability (float, optional): Flip probability. Defaults to 0.5.
|
| 41 |
+
"""
|
| 42 |
+
self.__probability = probability
|
| 43 |
+
|
| 44 |
+
def __call__(self, sample):
|
| 45 |
+
prob = random.random()
|
| 46 |
+
|
| 47 |
+
if prob < self.__probability:
|
| 48 |
+
for k, v in sample.items():
|
| 49 |
+
if len(v.shape) >= 2:
|
| 50 |
+
sample[k] = np.fliplr(v).copy()
|
| 51 |
+
|
| 52 |
+
return sample
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
| 56 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
sample (dict): sample
|
| 60 |
+
size (tuple): image size
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
tuple: new size
|
| 64 |
+
"""
|
| 65 |
+
shape = list(sample["disparity"].shape)
|
| 66 |
+
|
| 67 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
| 68 |
+
return sample
|
| 69 |
+
|
| 70 |
+
scale = [0, 0]
|
| 71 |
+
scale[0] = size[0] / shape[0]
|
| 72 |
+
scale[1] = size[1] / shape[1]
|
| 73 |
+
|
| 74 |
+
scale = max(scale)
|
| 75 |
+
|
| 76 |
+
shape[0] = math.ceil(scale * shape[0])
|
| 77 |
+
shape[1] = math.ceil(scale * shape[1])
|
| 78 |
+
|
| 79 |
+
# resize
|
| 80 |
+
sample["image"] = cv2.resize(
|
| 81 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
sample["disparity"] = cv2.resize(
|
| 85 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
| 86 |
+
)
|
| 87 |
+
sample["mask"] = cv2.resize(
|
| 88 |
+
sample["mask"].astype(np.float32),
|
| 89 |
+
tuple(shape[::-1]),
|
| 90 |
+
interpolation=cv2.INTER_NEAREST,
|
| 91 |
+
)
|
| 92 |
+
sample["mask"] = sample["mask"].astype(bool)
|
| 93 |
+
|
| 94 |
+
return tuple(shape)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class RandomCrop(object):
|
| 98 |
+
"""Get a random crop of the sample with the given size (width, height).
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
def __init__(
|
| 102 |
+
self,
|
| 103 |
+
width,
|
| 104 |
+
height,
|
| 105 |
+
resize_if_needed=False,
|
| 106 |
+
image_interpolation_method=cv2.INTER_AREA,
|
| 107 |
+
):
|
| 108 |
+
"""Init.
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
width (int): output width
|
| 112 |
+
height (int): output height
|
| 113 |
+
resize_if_needed (bool, optional): If True, sample might be upsampled to ensure
|
| 114 |
+
that a crop of size (width, height) is possbile. Defaults to False.
|
| 115 |
+
"""
|
| 116 |
+
self.__size = (height, width)
|
| 117 |
+
self.__resize_if_needed = resize_if_needed
|
| 118 |
+
self.__image_interpolation_method = image_interpolation_method
|
| 119 |
+
|
| 120 |
+
def __call__(self, sample):
|
| 121 |
+
|
| 122 |
+
shape = sample["disparity"].shape
|
| 123 |
+
|
| 124 |
+
if self.__size[0] > shape[0] or self.__size[1] > shape[1]:
|
| 125 |
+
if self.__resize_if_needed:
|
| 126 |
+
shape = apply_min_size(
|
| 127 |
+
sample, self.__size, self.__image_interpolation_method
|
| 128 |
+
)
|
| 129 |
+
else:
|
| 130 |
+
raise Exception(
|
| 131 |
+
"Output size {} bigger than input size {}.".format(
|
| 132 |
+
self.__size, shape
|
| 133 |
+
)
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
offset = (
|
| 137 |
+
np.random.randint(shape[0] - self.__size[0] + 1),
|
| 138 |
+
np.random.randint(shape[1] - self.__size[1] + 1),
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
for k, v in sample.items():
|
| 142 |
+
if k == "code" or k == "basis":
|
| 143 |
+
continue
|
| 144 |
+
|
| 145 |
+
if len(sample[k].shape) >= 2:
|
| 146 |
+
sample[k] = v[
|
| 147 |
+
offset[0]: offset[0] + self.__size[0],
|
| 148 |
+
offset[1]: offset[1] + self.__size[1],
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
return sample
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class Resize(object):
|
| 155 |
+
"""Resize sample to given size (width, height).
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
def __init__(
|
| 159 |
+
self,
|
| 160 |
+
width,
|
| 161 |
+
height,
|
| 162 |
+
resize_target=True,
|
| 163 |
+
keep_aspect_ratio=False,
|
| 164 |
+
ensure_multiple_of=1,
|
| 165 |
+
resize_method="lower_bound",
|
| 166 |
+
image_interpolation_method=cv2.INTER_AREA,
|
| 167 |
+
letter_box=False,
|
| 168 |
+
):
|
| 169 |
+
"""Init.
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
width (int): desired output width
|
| 173 |
+
height (int): desired output height
|
| 174 |
+
resize_target (bool, optional):
|
| 175 |
+
True: Resize the full sample (image, mask, target).
|
| 176 |
+
False: Resize image only.
|
| 177 |
+
Defaults to True.
|
| 178 |
+
keep_aspect_ratio (bool, optional):
|
| 179 |
+
True: Keep the aspect ratio of the input sample.
|
| 180 |
+
Output sample might not have the given width and height, and
|
| 181 |
+
resize behaviour depends on the parameter 'resize_method'.
|
| 182 |
+
Defaults to False.
|
| 183 |
+
ensure_multiple_of (int, optional):
|
| 184 |
+
Output width and height is constrained to be multiple of this parameter.
|
| 185 |
+
Defaults to 1.
|
| 186 |
+
resize_method (str, optional):
|
| 187 |
+
"lower_bound": Output will be at least as large as the given size.
|
| 188 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
| 189 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
| 190 |
+
Defaults to "lower_bound".
|
| 191 |
+
"""
|
| 192 |
+
self.__width = width
|
| 193 |
+
self.__height = height
|
| 194 |
+
|
| 195 |
+
self.__resize_target = resize_target
|
| 196 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
| 197 |
+
self.__multiple_of = ensure_multiple_of
|
| 198 |
+
self.__resize_method = resize_method
|
| 199 |
+
self.__image_interpolation_method = image_interpolation_method
|
| 200 |
+
self.__letter_box = letter_box
|
| 201 |
+
|
| 202 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
| 203 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 204 |
+
|
| 205 |
+
if max_val is not None and y > max_val:
|
| 206 |
+
y = (np.floor(x / self.__multiple_of)
|
| 207 |
+
* self.__multiple_of).astype(int)
|
| 208 |
+
|
| 209 |
+
if y < min_val:
|
| 210 |
+
y = (np.ceil(x / self.__multiple_of)
|
| 211 |
+
* self.__multiple_of).astype(int)
|
| 212 |
+
|
| 213 |
+
return y
|
| 214 |
+
|
| 215 |
+
def get_size(self, width, height):
|
| 216 |
+
# determine new height and width
|
| 217 |
+
scale_height = self.__height / height
|
| 218 |
+
scale_width = self.__width / width
|
| 219 |
+
|
| 220 |
+
if self.__keep_aspect_ratio:
|
| 221 |
+
if self.__resize_method == "lower_bound":
|
| 222 |
+
# scale such that output size is lower bound
|
| 223 |
+
if scale_width > scale_height:
|
| 224 |
+
# fit width
|
| 225 |
+
scale_height = scale_width
|
| 226 |
+
else:
|
| 227 |
+
# fit height
|
| 228 |
+
scale_width = scale_height
|
| 229 |
+
elif self.__resize_method == "upper_bound":
|
| 230 |
+
# scale such that output size is upper bound
|
| 231 |
+
if scale_width < scale_height:
|
| 232 |
+
# fit width
|
| 233 |
+
scale_height = scale_width
|
| 234 |
+
else:
|
| 235 |
+
# fit height
|
| 236 |
+
scale_width = scale_height
|
| 237 |
+
elif self.__resize_method == "minimal":
|
| 238 |
+
# scale as least as possbile
|
| 239 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
| 240 |
+
# fit width
|
| 241 |
+
scale_height = scale_width
|
| 242 |
+
else:
|
| 243 |
+
# fit height
|
| 244 |
+
scale_width = scale_height
|
| 245 |
+
else:
|
| 246 |
+
raise ValueError(
|
| 247 |
+
f"resize_method {self.__resize_method} not implemented"
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
if self.__resize_method == "lower_bound":
|
| 251 |
+
new_height = self.constrain_to_multiple_of(
|
| 252 |
+
scale_height * height, min_val=self.__height
|
| 253 |
+
)
|
| 254 |
+
new_width = self.constrain_to_multiple_of(
|
| 255 |
+
scale_width * width, min_val=self.__width
|
| 256 |
+
)
|
| 257 |
+
elif self.__resize_method == "upper_bound":
|
| 258 |
+
new_height = self.constrain_to_multiple_of(
|
| 259 |
+
scale_height * height, max_val=self.__height
|
| 260 |
+
)
|
| 261 |
+
new_width = self.constrain_to_multiple_of(
|
| 262 |
+
scale_width * width, max_val=self.__width
|
| 263 |
+
)
|
| 264 |
+
elif self.__resize_method == "minimal":
|
| 265 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
| 266 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
| 267 |
+
else:
|
| 268 |
+
raise ValueError(
|
| 269 |
+
f"resize_method {self.__resize_method} not implemented")
|
| 270 |
+
|
| 271 |
+
return (new_width, new_height)
|
| 272 |
+
|
| 273 |
+
def make_letter_box(self, sample):
|
| 274 |
+
top = bottom = (self.__height - sample.shape[0]) // 2
|
| 275 |
+
left = right = (self.__width - sample.shape[1]) // 2
|
| 276 |
+
sample = cv2.copyMakeBorder(
|
| 277 |
+
sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0)
|
| 278 |
+
return sample
|
| 279 |
+
|
| 280 |
+
def __call__(self, sample):
|
| 281 |
+
width, height = self.get_size(
|
| 282 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# resize sample
|
| 286 |
+
sample["image"] = cv2.resize(
|
| 287 |
+
sample["image"],
|
| 288 |
+
(width, height),
|
| 289 |
+
interpolation=self.__image_interpolation_method,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
if self.__letter_box:
|
| 293 |
+
sample["image"] = self.make_letter_box(sample["image"])
|
| 294 |
+
|
| 295 |
+
if self.__resize_target:
|
| 296 |
+
if "disparity" in sample:
|
| 297 |
+
sample["disparity"] = cv2.resize(
|
| 298 |
+
sample["disparity"],
|
| 299 |
+
(width, height),
|
| 300 |
+
interpolation=cv2.INTER_NEAREST,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
if self.__letter_box:
|
| 304 |
+
sample["disparity"] = self.make_letter_box(
|
| 305 |
+
sample["disparity"])
|
| 306 |
+
|
| 307 |
+
if "depth" in sample:
|
| 308 |
+
sample["depth"] = cv2.resize(
|
| 309 |
+
sample["depth"], (width,
|
| 310 |
+
height), interpolation=cv2.INTER_NEAREST
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
if self.__letter_box:
|
| 314 |
+
sample["depth"] = self.make_letter_box(sample["depth"])
|
| 315 |
+
|
| 316 |
+
sample["mask"] = cv2.resize(
|
| 317 |
+
sample["mask"].astype(np.float32),
|
| 318 |
+
(width, height),
|
| 319 |
+
interpolation=cv2.INTER_NEAREST,
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
if self.__letter_box:
|
| 323 |
+
sample["mask"] = self.make_letter_box(sample["mask"])
|
| 324 |
+
|
| 325 |
+
sample["mask"] = sample["mask"].astype(bool)
|
| 326 |
+
|
| 327 |
+
return sample
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class ResizeFixed(object):
|
| 331 |
+
def __init__(self, size):
|
| 332 |
+
self.__size = size
|
| 333 |
+
|
| 334 |
+
def __call__(self, sample):
|
| 335 |
+
sample["image"] = cv2.resize(
|
| 336 |
+
sample["image"], self.__size[::-1], interpolation=cv2.INTER_LINEAR
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
sample["disparity"] = cv2.resize(
|
| 340 |
+
sample["disparity"], self.__size[::-
|
| 341 |
+
1], interpolation=cv2.INTER_NEAREST
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
sample["mask"] = cv2.resize(
|
| 345 |
+
sample["mask"].astype(np.float32),
|
| 346 |
+
self.__size[::-1],
|
| 347 |
+
interpolation=cv2.INTER_NEAREST,
|
| 348 |
+
)
|
| 349 |
+
sample["mask"] = sample["mask"].astype(bool)
|
| 350 |
+
|
| 351 |
+
return sample
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class Rescale(object):
|
| 355 |
+
"""Rescale target values to the interval [0, max_val].
|
| 356 |
+
If input is constant, values are set to max_val / 2.
|
| 357 |
+
"""
|
| 358 |
+
|
| 359 |
+
def __init__(self, max_val=1.0, use_mask=True):
|
| 360 |
+
"""Init.
|
| 361 |
+
|
| 362 |
+
Args:
|
| 363 |
+
max_val (float, optional): Max output value. Defaults to 1.0.
|
| 364 |
+
use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True.
|
| 365 |
+
"""
|
| 366 |
+
self.__max_val = max_val
|
| 367 |
+
self.__use_mask = use_mask
|
| 368 |
+
|
| 369 |
+
def __call__(self, sample):
|
| 370 |
+
disp = sample["disparity"]
|
| 371 |
+
|
| 372 |
+
if self.__use_mask:
|
| 373 |
+
mask = sample["mask"]
|
| 374 |
+
else:
|
| 375 |
+
mask = np.ones_like(disp, dtype=np.bool)
|
| 376 |
+
|
| 377 |
+
if np.sum(mask) == 0:
|
| 378 |
+
return sample
|
| 379 |
+
|
| 380 |
+
min_val = np.min(disp[mask])
|
| 381 |
+
max_val = np.max(disp[mask])
|
| 382 |
+
|
| 383 |
+
if max_val > min_val:
|
| 384 |
+
sample["disparity"][mask] = (
|
| 385 |
+
(disp[mask] - min_val) / (max_val - min_val) * self.__max_val
|
| 386 |
+
)
|
| 387 |
+
else:
|
| 388 |
+
sample["disparity"][mask] = np.ones_like(
|
| 389 |
+
disp[mask]) * self.__max_val / 2.0
|
| 390 |
+
|
| 391 |
+
return sample
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 395 |
+
class NormalizeImage(object):
|
| 396 |
+
"""Normlize image by given mean and std.
|
| 397 |
+
"""
|
| 398 |
+
|
| 399 |
+
def __init__(self, mean, std):
|
| 400 |
+
self.__mean = mean
|
| 401 |
+
self.__std = std
|
| 402 |
+
|
| 403 |
+
def __call__(self, sample):
|
| 404 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
| 405 |
+
|
| 406 |
+
return sample
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
class DepthToDisparity(object):
|
| 410 |
+
"""Convert depth to disparity. Removes depth from sample.
|
| 411 |
+
"""
|
| 412 |
+
|
| 413 |
+
def __init__(self, eps=1e-4):
|
| 414 |
+
self.__eps = eps
|
| 415 |
+
|
| 416 |
+
def __call__(self, sample):
|
| 417 |
+
assert "depth" in sample
|
| 418 |
+
|
| 419 |
+
sample["mask"][sample["depth"] < self.__eps] = False
|
| 420 |
+
|
| 421 |
+
sample["disparity"] = np.zeros_like(sample["depth"])
|
| 422 |
+
sample["disparity"][sample["depth"] >= self.__eps] = (
|
| 423 |
+
1.0 / sample["depth"][sample["depth"] >= self.__eps]
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
del sample["depth"]
|
| 427 |
+
|
| 428 |
+
return sample
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
class DisparityToDepth(object):
|
| 432 |
+
"""Convert disparity to depth. Removes disparity from sample.
|
| 433 |
+
"""
|
| 434 |
+
|
| 435 |
+
def __init__(self, eps=1e-4):
|
| 436 |
+
self.__eps = eps
|
| 437 |
+
|
| 438 |
+
def __call__(self, sample):
|
| 439 |
+
assert "disparity" in sample
|
| 440 |
+
|
| 441 |
+
disp = np.abs(sample["disparity"])
|
| 442 |
+
sample["mask"][disp < self.__eps] = False
|
| 443 |
+
|
| 444 |
+
# print(sample["disparity"])
|
| 445 |
+
# print(sample["mask"].sum())
|
| 446 |
+
# exit()
|
| 447 |
+
|
| 448 |
+
sample["depth"] = np.zeros_like(disp)
|
| 449 |
+
sample["depth"][disp >= self.__eps] = (
|
| 450 |
+
1.0 / disp[disp >= self.__eps]
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
del sample["disparity"]
|
| 454 |
+
|
| 455 |
+
return sample
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
class PrepareForNet(object):
|
| 459 |
+
"""Prepare sample for usage as network input.
|
| 460 |
+
"""
|
| 461 |
+
|
| 462 |
+
def __init__(self):
|
| 463 |
+
pass
|
| 464 |
+
|
| 465 |
+
def __call__(self, sample):
|
| 466 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
| 467 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
| 468 |
+
|
| 469 |
+
if "mask" in sample:
|
| 470 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
| 471 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
| 472 |
+
|
| 473 |
+
if "disparity" in sample:
|
| 474 |
+
disparity = sample["disparity"].astype(np.float32)
|
| 475 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
| 476 |
+
|
| 477 |
+
if "depth" in sample:
|
| 478 |
+
depth = sample["depth"].astype(np.float32)
|
| 479 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
| 480 |
+
|
| 481 |
+
return sample
|
annotator/zoe/zoedepth/data/vkitti.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import torch
|
| 26 |
+
from torch.utils.data import Dataset, DataLoader
|
| 27 |
+
from torchvision import transforms
|
| 28 |
+
import os
|
| 29 |
+
|
| 30 |
+
from PIL import Image
|
| 31 |
+
import numpy as np
|
| 32 |
+
import cv2
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ToTensor(object):
|
| 36 |
+
def __init__(self):
|
| 37 |
+
self.normalize = transforms.Normalize(
|
| 38 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 39 |
+
# self.resize = transforms.Resize((375, 1242))
|
| 40 |
+
|
| 41 |
+
def __call__(self, sample):
|
| 42 |
+
image, depth = sample['image'], sample['depth']
|
| 43 |
+
|
| 44 |
+
image = self.to_tensor(image)
|
| 45 |
+
image = self.normalize(image)
|
| 46 |
+
depth = self.to_tensor(depth)
|
| 47 |
+
|
| 48 |
+
# image = self.resize(image)
|
| 49 |
+
|
| 50 |
+
return {'image': image, 'depth': depth, 'dataset': "vkitti"}
|
| 51 |
+
|
| 52 |
+
def to_tensor(self, pic):
|
| 53 |
+
|
| 54 |
+
if isinstance(pic, np.ndarray):
|
| 55 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 56 |
+
return img
|
| 57 |
+
|
| 58 |
+
# # handle PIL Image
|
| 59 |
+
if pic.mode == 'I':
|
| 60 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 61 |
+
elif pic.mode == 'I;16':
|
| 62 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 63 |
+
else:
|
| 64 |
+
img = torch.ByteTensor(
|
| 65 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 66 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 67 |
+
if pic.mode == 'YCbCr':
|
| 68 |
+
nchannel = 3
|
| 69 |
+
elif pic.mode == 'I;16':
|
| 70 |
+
nchannel = 1
|
| 71 |
+
else:
|
| 72 |
+
nchannel = len(pic.mode)
|
| 73 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 74 |
+
|
| 75 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 76 |
+
if isinstance(img, torch.ByteTensor):
|
| 77 |
+
return img.float()
|
| 78 |
+
else:
|
| 79 |
+
return img
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class VKITTI(Dataset):
|
| 83 |
+
def __init__(self, data_dir_root, do_kb_crop=True):
|
| 84 |
+
import glob
|
| 85 |
+
# image paths are of the form <data_dir_root>/{HR, LR}/<scene>/{color, depth_filled}/*.png
|
| 86 |
+
self.image_files = glob.glob(os.path.join(
|
| 87 |
+
data_dir_root, "test_color", '*.png'))
|
| 88 |
+
self.depth_files = [r.replace("test_color", "test_depth")
|
| 89 |
+
for r in self.image_files]
|
| 90 |
+
self.do_kb_crop = True
|
| 91 |
+
self.transform = ToTensor()
|
| 92 |
+
|
| 93 |
+
def __getitem__(self, idx):
|
| 94 |
+
image_path = self.image_files[idx]
|
| 95 |
+
depth_path = self.depth_files[idx]
|
| 96 |
+
|
| 97 |
+
image = Image.open(image_path)
|
| 98 |
+
depth = Image.open(depth_path)
|
| 99 |
+
depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR |
|
| 100 |
+
cv2.IMREAD_ANYDEPTH)
|
| 101 |
+
print("dpeth min max", depth.min(), depth.max())
|
| 102 |
+
|
| 103 |
+
# print(np.shape(image))
|
| 104 |
+
# print(np.shape(depth))
|
| 105 |
+
|
| 106 |
+
# depth[depth > 8] = -1
|
| 107 |
+
|
| 108 |
+
if self.do_kb_crop and False:
|
| 109 |
+
height = image.height
|
| 110 |
+
width = image.width
|
| 111 |
+
top_margin = int(height - 352)
|
| 112 |
+
left_margin = int((width - 1216) / 2)
|
| 113 |
+
depth = depth.crop(
|
| 114 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
| 115 |
+
image = image.crop(
|
| 116 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
| 117 |
+
# uv = uv[:, top_margin:top_margin + 352, left_margin:left_margin + 1216]
|
| 118 |
+
|
| 119 |
+
image = np.asarray(image, dtype=np.float32) / 255.0
|
| 120 |
+
# depth = np.asarray(depth, dtype=np.uint16) /1.
|
| 121 |
+
depth = depth[..., None]
|
| 122 |
+
sample = dict(image=image, depth=depth)
|
| 123 |
+
|
| 124 |
+
# return sample
|
| 125 |
+
sample = self.transform(sample)
|
| 126 |
+
|
| 127 |
+
if idx == 0:
|
| 128 |
+
print(sample["image"].shape)
|
| 129 |
+
|
| 130 |
+
return sample
|
| 131 |
+
|
| 132 |
+
def __len__(self):
|
| 133 |
+
return len(self.image_files)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def get_vkitti_loader(data_dir_root, batch_size=1, **kwargs):
|
| 137 |
+
dataset = VKITTI(data_dir_root)
|
| 138 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
loader = get_vkitti_loader(
|
| 143 |
+
data_dir_root="/home/bhatsf/shortcuts/datasets/vkitti_test")
|
| 144 |
+
print("Total files", len(loader.dataset))
|
| 145 |
+
for i, sample in enumerate(loader):
|
| 146 |
+
print(sample["image"].shape)
|
| 147 |
+
print(sample["depth"].shape)
|
| 148 |
+
print(sample["dataset"])
|
| 149 |
+
print(sample['depth'].min(), sample['depth'].max())
|
| 150 |
+
if i > 5:
|
| 151 |
+
break
|
annotator/zoe/zoedepth/data/vkitti2.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
import cv2
|
| 28 |
+
import numpy as np
|
| 29 |
+
import torch
|
| 30 |
+
from PIL import Image
|
| 31 |
+
from torch.utils.data import DataLoader, Dataset
|
| 32 |
+
from torchvision import transforms
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ToTensor(object):
|
| 36 |
+
def __init__(self):
|
| 37 |
+
# self.normalize = transforms.Normalize(
|
| 38 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 39 |
+
self.normalize = lambda x: x
|
| 40 |
+
# self.resize = transforms.Resize((375, 1242))
|
| 41 |
+
|
| 42 |
+
def __call__(self, sample):
|
| 43 |
+
image, depth = sample['image'], sample['depth']
|
| 44 |
+
|
| 45 |
+
image = self.to_tensor(image)
|
| 46 |
+
image = self.normalize(image)
|
| 47 |
+
depth = self.to_tensor(depth)
|
| 48 |
+
|
| 49 |
+
# image = self.resize(image)
|
| 50 |
+
|
| 51 |
+
return {'image': image, 'depth': depth, 'dataset': "vkitti"}
|
| 52 |
+
|
| 53 |
+
def to_tensor(self, pic):
|
| 54 |
+
|
| 55 |
+
if isinstance(pic, np.ndarray):
|
| 56 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
| 57 |
+
return img
|
| 58 |
+
|
| 59 |
+
# # handle PIL Image
|
| 60 |
+
if pic.mode == 'I':
|
| 61 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
| 62 |
+
elif pic.mode == 'I;16':
|
| 63 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
| 64 |
+
else:
|
| 65 |
+
img = torch.ByteTensor(
|
| 66 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
| 67 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
| 68 |
+
if pic.mode == 'YCbCr':
|
| 69 |
+
nchannel = 3
|
| 70 |
+
elif pic.mode == 'I;16':
|
| 71 |
+
nchannel = 1
|
| 72 |
+
else:
|
| 73 |
+
nchannel = len(pic.mode)
|
| 74 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
| 75 |
+
|
| 76 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 77 |
+
if isinstance(img, torch.ByteTensor):
|
| 78 |
+
return img.float()
|
| 79 |
+
else:
|
| 80 |
+
return img
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class VKITTI2(Dataset):
|
| 84 |
+
def __init__(self, data_dir_root, do_kb_crop=True, split="test"):
|
| 85 |
+
import glob
|
| 86 |
+
|
| 87 |
+
# image paths are of the form <data_dir_root>/rgb/<scene>/<variant>/frames/<rgb,depth>/Camera<0,1>/rgb_{}.jpg
|
| 88 |
+
self.image_files = glob.glob(os.path.join(
|
| 89 |
+
data_dir_root, "rgb", "**", "frames", "rgb", "Camera_0", '*.jpg'), recursive=True)
|
| 90 |
+
self.depth_files = [r.replace("/rgb/", "/depth/").replace(
|
| 91 |
+
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
|
| 92 |
+
self.do_kb_crop = True
|
| 93 |
+
self.transform = ToTensor()
|
| 94 |
+
|
| 95 |
+
# If train test split is not created, then create one.
|
| 96 |
+
# Split is such that 8% of the frames from each scene are used for testing.
|
| 97 |
+
if not os.path.exists(os.path.join(data_dir_root, "train.txt")):
|
| 98 |
+
import random
|
| 99 |
+
scenes = set([os.path.basename(os.path.dirname(
|
| 100 |
+
os.path.dirname(os.path.dirname(f)))) for f in self.image_files])
|
| 101 |
+
train_files = []
|
| 102 |
+
test_files = []
|
| 103 |
+
for scene in scenes:
|
| 104 |
+
scene_files = [f for f in self.image_files if os.path.basename(
|
| 105 |
+
os.path.dirname(os.path.dirname(os.path.dirname(f)))) == scene]
|
| 106 |
+
random.shuffle(scene_files)
|
| 107 |
+
train_files.extend(scene_files[:int(len(scene_files) * 0.92)])
|
| 108 |
+
test_files.extend(scene_files[int(len(scene_files) * 0.92):])
|
| 109 |
+
with open(os.path.join(data_dir_root, "train.txt"), "w") as f:
|
| 110 |
+
f.write("\n".join(train_files))
|
| 111 |
+
with open(os.path.join(data_dir_root, "test.txt"), "w") as f:
|
| 112 |
+
f.write("\n".join(test_files))
|
| 113 |
+
|
| 114 |
+
if split == "train":
|
| 115 |
+
with open(os.path.join(data_dir_root, "train.txt"), "r") as f:
|
| 116 |
+
self.image_files = f.read().splitlines()
|
| 117 |
+
self.depth_files = [r.replace("/rgb/", "/depth/").replace(
|
| 118 |
+
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
|
| 119 |
+
elif split == "test":
|
| 120 |
+
with open(os.path.join(data_dir_root, "test.txt"), "r") as f:
|
| 121 |
+
self.image_files = f.read().splitlines()
|
| 122 |
+
self.depth_files = [r.replace("/rgb/", "/depth/").replace(
|
| 123 |
+
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
|
| 124 |
+
|
| 125 |
+
def __getitem__(self, idx):
|
| 126 |
+
image_path = self.image_files[idx]
|
| 127 |
+
depth_path = self.depth_files[idx]
|
| 128 |
+
|
| 129 |
+
image = Image.open(image_path)
|
| 130 |
+
# depth = Image.open(depth_path)
|
| 131 |
+
depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR |
|
| 132 |
+
cv2.IMREAD_ANYDEPTH) / 100.0 # cm to m
|
| 133 |
+
depth = Image.fromarray(depth)
|
| 134 |
+
# print("dpeth min max", depth.min(), depth.max())
|
| 135 |
+
|
| 136 |
+
# print(np.shape(image))
|
| 137 |
+
# print(np.shape(depth))
|
| 138 |
+
|
| 139 |
+
if self.do_kb_crop:
|
| 140 |
+
if idx == 0:
|
| 141 |
+
print("Using KB input crop")
|
| 142 |
+
height = image.height
|
| 143 |
+
width = image.width
|
| 144 |
+
top_margin = int(height - 352)
|
| 145 |
+
left_margin = int((width - 1216) / 2)
|
| 146 |
+
depth = depth.crop(
|
| 147 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
| 148 |
+
image = image.crop(
|
| 149 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
| 150 |
+
# uv = uv[:, top_margin:top_margin + 352, left_margin:left_margin + 1216]
|
| 151 |
+
|
| 152 |
+
image = np.asarray(image, dtype=np.float32) / 255.0
|
| 153 |
+
# depth = np.asarray(depth, dtype=np.uint16) /1.
|
| 154 |
+
depth = np.asarray(depth, dtype=np.float32) / 1.
|
| 155 |
+
depth[depth > 80] = -1
|
| 156 |
+
|
| 157 |
+
depth = depth[..., None]
|
| 158 |
+
sample = dict(image=image, depth=depth)
|
| 159 |
+
|
| 160 |
+
# return sample
|
| 161 |
+
sample = self.transform(sample)
|
| 162 |
+
|
| 163 |
+
if idx == 0:
|
| 164 |
+
print(sample["image"].shape)
|
| 165 |
+
|
| 166 |
+
return sample
|
| 167 |
+
|
| 168 |
+
def __len__(self):
|
| 169 |
+
return len(self.image_files)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def get_vkitti2_loader(data_dir_root, batch_size=1, **kwargs):
|
| 173 |
+
dataset = VKITTI2(data_dir_root)
|
| 174 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
if __name__ == "__main__":
|
| 178 |
+
loader = get_vkitti2_loader(
|
| 179 |
+
data_dir_root="/home/bhatsf/shortcuts/datasets/vkitti2")
|
| 180 |
+
print("Total files", len(loader.dataset))
|
| 181 |
+
for i, sample in enumerate(loader):
|
| 182 |
+
print(sample["image"].shape)
|
| 183 |
+
print(sample["depth"].shape)
|
| 184 |
+
print(sample["dataset"])
|
| 185 |
+
print(sample['depth'].min(), sample['depth'].max())
|
| 186 |
+
if i > 5:
|
| 187 |
+
break
|
annotator/zoe/zoedepth/models/__init__.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Shariq Farooq Bhat
|
| 24 |
+
|
annotator/zoe/zoedepth/models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (165 Bytes). View file
|
|
|
annotator/zoe/zoedepth/models/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (167 Bytes). View file
|
|
|
annotator/zoe/zoedepth/models/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (167 Bytes). View file
|
|
|
annotator/zoe/zoedepth/models/__pycache__/depth_model.cpython-310.pyc
ADDED
|
Binary file (6.26 kB). View file
|
|
|
annotator/zoe/zoedepth/models/__pycache__/depth_model.cpython-38.pyc
ADDED
|
Binary file (6.33 kB). View file
|
|
|
annotator/zoe/zoedepth/models/__pycache__/depth_model.cpython-39.pyc
ADDED
|
Binary file (6.31 kB). View file
|
|
|
annotator/zoe/zoedepth/models/__pycache__/model_io.cpython-310.pyc
ADDED
|
Binary file (2.27 kB). View file
|
|
|