Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +116 -0
- assets/Inpainting mask.png +0 -0
- assets/rocket.png +3 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/rocket.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import spaces
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from diffusers import FluxFillPipeline
|
| 8 |
+
|
| 9 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 10 |
+
|
| 11 |
+
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16)
|
| 12 |
+
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
| 13 |
+
trigger_word = "Super Realism"
|
| 14 |
+
pipe.load_lora_weights(lora_repo)
|
| 15 |
+
pipe.to("cuda")
|
| 16 |
+
|
| 17 |
+
# reference https://huggingface.co/spaces/black-forest-labs/FLUX.1-Fill-dev/blob/main/app.py
|
| 18 |
+
def calculate_optimal_dimensions(image):
|
| 19 |
+
# Extract the original dimensions
|
| 20 |
+
original_width, original_height = image.size
|
| 21 |
+
|
| 22 |
+
# Set constants
|
| 23 |
+
MIN_ASPECT_RATIO = 9 / 16
|
| 24 |
+
MAX_ASPECT_RATIO = 16 / 9
|
| 25 |
+
FIXED_DIMENSION = 1024
|
| 26 |
+
|
| 27 |
+
# Calculate the aspect ratio of the original image
|
| 28 |
+
original_aspect_ratio = original_width / original_height
|
| 29 |
+
|
| 30 |
+
# Determine which dimension to fix
|
| 31 |
+
if original_aspect_ratio > 1: # Wider than tall
|
| 32 |
+
width = FIXED_DIMENSION
|
| 33 |
+
height = round(FIXED_DIMENSION / original_aspect_ratio)
|
| 34 |
+
else: # Taller than wide
|
| 35 |
+
height = FIXED_DIMENSION
|
| 36 |
+
width = round(FIXED_DIMENSION * original_aspect_ratio)
|
| 37 |
+
|
| 38 |
+
# Ensure dimensions are multiples of 8
|
| 39 |
+
width = (width // 8) * 8
|
| 40 |
+
height = (height // 8) * 8
|
| 41 |
+
|
| 42 |
+
# Enforce aspect ratio limits
|
| 43 |
+
calculated_aspect_ratio = width / height
|
| 44 |
+
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
| 45 |
+
width = (height * MAX_ASPECT_RATIO // 8) * 8
|
| 46 |
+
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
| 47 |
+
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
| 48 |
+
|
| 49 |
+
# Ensure width and height remain above the minimum dimensions
|
| 50 |
+
width = max(width, 576) if width == FIXED_DIMENSION else width
|
| 51 |
+
height = max(height, 576) if height == FIXED_DIMENSION else height
|
| 52 |
+
|
| 53 |
+
return width, height
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@spaces.GPU(duration=30)
|
| 57 |
+
def inpaint(
|
| 58 |
+
image,
|
| 59 |
+
mask,
|
| 60 |
+
prompt="",
|
| 61 |
+
seed=0,
|
| 62 |
+
num_inference_steps=28,
|
| 63 |
+
guidance_scale=50,
|
| 64 |
+
):
|
| 65 |
+
image = image.convert("RGB")
|
| 66 |
+
mask = mask.convert("L")
|
| 67 |
+
width, height = calculate_optimal_dimensions(image)
|
| 68 |
+
|
| 69 |
+
if trigger_word:
|
| 70 |
+
prompt = f"{trigger_word} {prompt}"
|
| 71 |
+
|
| 72 |
+
if not isinstance(seed, int) or seed <= 0:
|
| 73 |
+
seed = random.randint(0, MAX_SEED)
|
| 74 |
+
|
| 75 |
+
result = pipe(
|
| 76 |
+
image=image,
|
| 77 |
+
mask_image=mask,
|
| 78 |
+
prompt=prompt,
|
| 79 |
+
width=width,
|
| 80 |
+
height=height,
|
| 81 |
+
num_inference_steps=num_inference_steps,
|
| 82 |
+
guidance_scale=guidance_scale,
|
| 83 |
+
generator = torch.Generator().manual_seed(seed)
|
| 84 |
+
).images[0]
|
| 85 |
+
|
| 86 |
+
result = result.convert("RGBA")
|
| 87 |
+
|
| 88 |
+
return result, seed
|
| 89 |
+
|
| 90 |
+
demo = gr.Interface(
|
| 91 |
+
fn=inpaint,
|
| 92 |
+
inputs=[
|
| 93 |
+
gr.Image(label="image", type="pil"),
|
| 94 |
+
gr.Image(label="mask", type="pil"),
|
| 95 |
+
gr.Text(label="prompt", lines=4),
|
| 96 |
+
gr.Slider(
|
| 97 |
+
label="Seed",
|
| 98 |
+
minimum=0,
|
| 99 |
+
maximum=MAX_SEED,
|
| 100 |
+
step=1,
|
| 101 |
+
value=0,
|
| 102 |
+
info="(0 = Random)"
|
| 103 |
+
),
|
| 104 |
+
gr.Number(value=40, label="num_inference_steps"),
|
| 105 |
+
gr.Number(value=28, label="guidance_scale"),
|
| 106 |
+
],
|
| 107 |
+
outputs=[
|
| 108 |
+
gr.Image(label="Result"),
|
| 109 |
+
gr.Number(label="Seed")
|
| 110 |
+
],
|
| 111 |
+
api_name="inpaint",
|
| 112 |
+
examples=[["./assets/rocket.png", "./assets/Inpainting mask.png"]],
|
| 113 |
+
cache_examples=False
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
demo.launch()
|
assets/Inpainting mask.png
ADDED
|
assets/rocket.png
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers
|
| 2 |
+
transformers
|
| 3 |
+
git+https://github.com/huggingface/peft.git
|
| 4 |
+
git+https://github.com/huggingface/accelerate.git
|
| 5 |
+
spaces
|
| 6 |
+
sentencepiece
|
| 7 |
+
accelerate
|