Spaces:
Runtime error
Runtime error
| # REF: https://gradio.app/named_entity_recognition/ | |
| from transformers import pipeline | |
| import gradio as gr | |
| model_name="xlm-roberta-base" | |
| # model_name="roberta-large" | |
| from transformers import AutoTokenizer, AutoModelForTokenClassification | |
| label_list= ['literal',"metaphoric"] | |
| label_dict_relations={ i : l for i, l in enumerate(label_list) } | |
| PATH = "./saved-models/my_model" | |
| model_metaphor_detection = AutoModelForTokenClassification.from_pretrained(PATH, id2label=label_dict_relations) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| pipeline_metaphors=pipeline("ner", model=model_metaphor_detection, tokenizer=tokenizer, aggregation_strategy="simple") | |
| examples = [ | |
| "It would change the trajectory of your legal career.", | |
| "Washington and the media just explodes on you, you just don’t know where you are at the moment", | |
| "Those statements are deeply concerning.", | |
| ] | |
| def ner(text): | |
| output = pipeline_metaphors(text) | |
| # change name | |
| for x in output: | |
| x['entity'] = x['entity_group'] | |
| return {"text": text, "entities": output} | |
| demo = gr.Interface(ner, | |
| gr.Textbox(placeholder="Enter sentence here..."), | |
| gr.HighlightedText(), | |
| examples=examples) | |
| demo.launch(share=True) |