Spaces:
Sleeping
Sleeping
| ### اول كود للابيلنق اشتغل بس مافرق بين ريكوند و نت ريكومند | |
| import numpy as np | |
| import streamlit as st | |
| from openai import OpenAI | |
| import os | |
| from dotenv import load_dotenv | |
| import random | |
| # Load environment variables | |
| os.environ["BROWSER_GATHERUSAGESTATS"] = "false" | |
| load_dotenv() | |
| # Initialize the client | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1", | |
| api_key=os.environ.get('GP2') # Replace with your Huggingface token | |
| ) | |
| # Initialize session state variables if they are not already defined | |
| if "labels" not in st.session_state: | |
| st.session_state.labels = [] | |
| if "few_shot_examples" not in st.session_state: | |
| st.session_state.few_shot_examples = [] | |
| if "examples_to_classify" not in st.session_state: | |
| st.session_state.examples_to_classify = [] | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| # Sidebar for model selection and temperature setting | |
| selected_model = st.sidebar.selectbox("Select Model", ["Meta-Llama-3-8B"], key="model_select") | |
| temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5, key="temp_slider") | |
| # Reset conversation button | |
| st.sidebar.button('Reset Chat', on_click=lambda: (st.session_state.update(conversation=[], messages=[])), key="reset_button") | |
| # Main task selection: Data Generation or Data Labeling | |
| task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"], key="task_choice_select") | |
| # Data Generation Section | |
| if task_choice == "Data Generation": | |
| classification_type = st.selectbox( | |
| "Choose Classification Type", | |
| ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], | |
| key="classification_type_select" | |
| ) | |
| # Define labels based on classification type | |
| if classification_type == "Sentiment Analysis": | |
| st.session_state.labels = ["Positive", "Negative", "Neutral"] | |
| st.write("Sentiment Analysis: Positive, Negative, Neutral") | |
| elif classification_type == "Binary Classification": | |
| label_1 = st.text_input("Enter first class", key="binary_class_1") | |
| label_2 = st.text_input("Enter second class", key="binary_class_2") | |
| st.session_state.labels = [label_1, label_2] | |
| elif classification_type == "Multi-Class Classification": | |
| num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_slider") | |
| st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_{i+1}") for i in range(num_classes)] | |
| # Domain selection | |
| domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"], key="domain_select") | |
| if domain == "Custom": | |
| domain = st.text_input("Specify custom domain", key="custom_domain_input") | |
| # Word count selection | |
| min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10, key="min_words_input") | |
| max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90, key="max_words_input") | |
| # Few-shot examples option | |
| few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="few_shot_radio") | |
| if few_shot == "Yes": | |
| num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="num_examples_slider") | |
| st.session_state.few_shot_examples = [ | |
| { | |
| "content": st.text_area(f"Example {i+1} Text", key=f"example_text_{i+1}"), | |
| "label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_{i+1}") | |
| } | |
| for i in range(num_examples) | |
| ] | |
| else: | |
| st.session_state.few_shot_examples = [] | |
| # Number of examples to generate | |
| num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10, key="num_to_generate_input") | |
| # User prompt text field | |
| user_prompt = st.text_area("Enter your prompt to guide example generation", "", key="user_prompt_text_area") | |
| # System prompt generation | |
| system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n" | |
| if st.session_state.few_shot_examples: | |
| system_prompt += "Use the following few-shot examples as a reference:\n" | |
| for example in st.session_state.few_shot_examples: | |
| system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n" | |
| system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n" | |
| system_prompt += f"Each example should have between {min_words} and {max_words} words.\n" | |
| system_prompt += f"Use the labels specified: {', '.join(st.session_state.labels)}.\n" | |
| if user_prompt: | |
| system_prompt += f"Additional instructions: {user_prompt}\n" | |
| st.write("System Prompt:") | |
| st.code(system_prompt) | |
| if st.button("Generate Examples", key="generate_examples_button"): | |
| # Generate examples by concatenating all inputs and sending it to the model | |
| with st.spinner("Generating..."): | |
| st.session_state.messages.append({"role": "system", "content": system_prompt}) | |
| try: | |
| stream = client.chat.completions.create( | |
| model=selected_model, | |
| messages=[ | |
| {"role": m["role"], "content": m["content"]} | |
| for m in st.session_state.messages | |
| ], | |
| temperature=temp_values, | |
| stream=True, | |
| max_tokens=3000, | |
| ) | |
| response = "" | |
| for chunk in stream: | |
| response += chunk['choices'][0]['delta'].get('content', '') | |
| st.write(response) | |
| except Exception as e: | |
| st.error(f"Error during generation: {e}") | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |
| # Data Labeling Section | |
| else: | |
| # Classification Type and Labels Setup | |
| classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_labeling") | |
| if classification_type == "Sentiment Analysis": | |
| st.session_state.labels = ["Positive", "Negative", "Neutral"] | |
| st.write("Sentiment Analysis labels: Positive, Negative, Neutral") | |
| elif classification_type == "Binary Classification": | |
| label_1 = st.text_input("Enter first class", key="binary_class_1_labeling") | |
| label_2 = st.text_input("Enter second class", key="binary_class_2_labeling") | |
| st.session_state.labels = [label_1, label_2] | |
| elif classification_type == "Multi-Class Classification": | |
| num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_labeling") | |
| st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_labeling_{i+1}") for i in range(num_classes)] | |
| # Few-shot examples for labeling | |
| use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="use_few_shot_labeling") | |
| if use_few_shot == "Yes": | |
| num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="few_shot_num_labeling") | |
| st.session_state.few_shot_examples = [ | |
| { | |
| "content": st.text_area(f"Example {i+1} Text", key=f"example_text_labeling_{i+1}"), | |
| "label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_labeling_{i+1}") | |
| } | |
| for i in range(num_examples) | |
| ] | |
| else: | |
| st.session_state.few_shot_examples = [] | |
| # Input Examples for Classification | |
| num_to_classify = st.number_input("How many examples do you want to classify?", min_value=1, max_value=100, value=5, key="num_to_classify_input") | |
| st.session_state.examples_to_classify = [st.text_area(f"Example {i+1} Text", key=f"example_classify_text_{i+1}") for i in range(num_to_classify)] | |
| # Placeholder for classification function (can be replaced with actual API call) | |
| def classify_examples(examples, labels): | |
| classified_results = [{"example": ex, "label": random.choice(labels)} for ex in examples] | |
| return classified_results | |
| # Classification results display | |
| if st.button("Classify Examples", key="classify_button"): | |
| results = classify_examples(st.session_state.examples_to_classify, st.session_state.labels) | |
| st.write("Classification Results:") | |
| for result in results: | |
| st.write(f"Example: {result['example']}\nLabel: {result['label']}\n") | |
| شحح |