Spaces:
Sleeping
Sleeping
| ## update of aap7.py | |
| import os | |
| import streamlit as st | |
| from openai import OpenAI | |
| from dotenv import load_dotenv | |
| from langchain_core.prompts import PromptTemplate | |
| # Load environment variables | |
| load_dotenv() | |
| ##openai_api_key = os.getenv("OPENAI_API_KEY") | |
| # Initialize the client | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1", | |
| api_key=os.environ.get('TOKEN2') # Add your Huggingface token here | |
| ) | |
| # Initialize the OpenAI client | |
| ##client = OpenAI( | |
| ##base_url="https://api-inference.huggingface.co/v1", | |
| ##api_key=openai_api_key | |
| ##) | |
| # Define reset function for the conversation | |
| def reset_conversation(): | |
| st.session_state.conversation = [] | |
| st.session_state.messages = [] | |
| # Streamlit interface setup | |
| st.title("🤖 Text Data Generation & Labeling App") | |
| st.sidebar.title("Settings") | |
| # Sidebar settings | |
| selected_model = st.sidebar.selectbox("Select Model", ["meta-llama/Meta-Llama-3-8B-Instruct"]) | |
| temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5) | |
| st.sidebar.button("Reset Conversation", on_click=reset_conversation) | |
| st.sidebar.write(f"You're now chatting with **{selected_model}**") | |
| st.sidebar.markdown("*Note: Generated content may be inaccurate or false.*") | |
| # Initialize conversation state | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| # Display conversation | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| # Main logic: choose between Data Generation and Data Labeling | |
| task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"]) | |
| if task_choice == "Data Generation": | |
| classification_type = st.selectbox( | |
| "Choose Classification Type", | |
| ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"] | |
| ) | |
| if classification_type == "Sentiment Analysis": | |
| labels = ["Positive", "Negative", "Neutral"] | |
| elif classification_type == "Binary Classification": | |
| label_1 = st.text_input("Enter first class") | |
| label_2 = st.text_input("Enter second class") | |
| labels = [label_1, label_2] | |
| else: # Multi-Class Classification | |
| num_classes = st.slider("How many classes?", 3, 10, 3) | |
| labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)] | |
| domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"]) | |
| if domain == "Custom": | |
| domain = st.text_input("Specify custom domain") | |
| min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10) | |
| max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90) | |
| use_few_shot = st.radio("Use few-shot examples?", ["Yes", "No"]) | |
| few_shot_examples = [] | |
| if use_few_shot == "Yes": | |
| num_examples = st.slider("Number of few-shot examples", 1, 5, 1) | |
| for i in range(num_examples): | |
| content = st.text_area(f"Example {i+1} Content") | |
| label = st.selectbox(f"Example {i+1} Label", labels) | |
| few_shot_examples.append({"content": content, "label": label}) | |
| num_to_generate = st.number_input("Number of examples to generate", 1, 100, 10) | |
| user_prompt = st.text_area("Enter additional instructions", "") | |
| # Construct the LangChain prompt | |
| prompt_template = PromptTemplate( | |
| input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"], | |
| template=( | |
| "You are a professional {classification_type} expert tasked with generating examples for {domain}.\n" | |
| "Use the following parameters:\n" | |
| "- Number of examples: {num_examples}\n" | |
| "- Word range: {min_words}-{max_words}\n" | |
| "- Labels: {labels}\n" | |
| "{user_prompt}" | |
| ) | |
| ) | |
| system_prompt = prompt_template.format( | |
| classification_type=classification_type, | |
| domain=domain, | |
| num_examples=num_to_generate, | |
| min_words=min_words, | |
| max_words=max_words, | |
| labels=", ".join(labels), | |
| user_prompt=user_prompt | |
| ) | |
| st.write("System Prompt:") | |
| st.code(system_prompt) | |
| if st.button("Generate Examples"): | |
| with st.spinner("Generating..."): | |
| st.session_state.messages.append({"role": "system", "content": system_prompt}) | |
| try: | |
| stream = client.chat.completions.create( | |
| model=selected_model, | |
| messages=[{"role": "system", "content": system_prompt}], | |
| temperature=temperature, | |
| stream=True, | |
| max_tokens=3000, | |
| ) | |
| response = st.write_stream(stream) | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |
| except Exception as e: | |
| st.error("An error occurred during generation.") | |
| st.error(f"Details: {e}") | |
| elif task_choice == "Data Labeling": | |
| # Labeling logic | |
| labeling_type = st.selectbox( | |
| "Classification Type for Labeling", | |
| ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"] | |
| ) | |
| if labeling_type == "Sentiment Analysis": | |
| labels = ["Positive", "Negative", "Neutral"] | |
| elif labeling_type == "Binary Classification": | |
| label_1 = st.text_input("First label for classification") | |
| label_2 = st.text_input("Second label for classification") | |
| labels = [label_1, label_2] | |
| else: # Multi-Class Classification | |
| num_classes = st.slider("Number of labels", 3, 10, 3) | |
| labels = [st.text_input(f"Label {i+1}") for i in range(num_classes)] | |
| use_few_shot_labeling = st.radio("Add few-shot examples for labeling?", ["Yes", "No"]) | |
| few_shot_labeling_examples = [] | |
| if use_few_shot_labeling == "Yes": | |
| num_labeling_examples = st.slider("Number of few-shot labeling examples", 1, 5, 1) | |
| for i in range(num_labeling_examples): | |
| content = st.text_area(f"Labeling Example {i+1} Content") | |
| label = st.selectbox(f"Label for Example {i+1}", labels) | |
| few_shot_labeling_examples.append({"content": content, "label": label}) | |
| text_to_classify = st.text_area("Enter text to classify") | |
| if st.button("Classify Text"): | |
| if text_to_classify: | |
| # Construct the labeling prompt | |
| labeling_prompt_template = PromptTemplate( | |
| input_variables=["labeling_type", "labels", "few_shot_examples", "text_to_classify"], | |
| template=( | |
| "You are an expert in {labeling_type} classification. " | |
| "Classify the following text using: {labels}.\n\n" | |
| "DO NO write additional information or commentary" | |
| "use user {few_shot_examples} as guidance in labeling process\n" | |
| "Write calassifaication as {text_to_classify}. Label: [Label] \n" | |
| "Classify this: {text_to_classify}" | |
| ) | |
| ) | |
| # Prepare few-shot examples for the prompt | |
| few_shot_examples_text = "" | |
| if few_shot_labeling_examples: | |
| few_shot_examples_text += "Example classifications:\n" | |
| for ex in few_shot_labeling_examples: | |
| few_shot_examples_text += f"Text: {ex['content']} - Label: {ex['label']}\n" | |
| # Format the prompt with the user's input | |
| labeling_prompt = labeling_prompt_template.format( | |
| labeling_type=labeling_type.lower(), | |
| labels=", ".join(labels), | |
| few_shot_examples=few_shot_examples_text.strip(), | |
| text_to_classify=text_to_classify | |
| ) | |
| with st.spinner("Classifying..."): | |
| st.session_state.messages.append({"role": "system", "content": labeling_prompt}) | |
| try: | |
| stream = client.chat.completions.create( | |
| model=selected_model, | |
| messages=[{"role": "system", "content": labeling_prompt}], | |
| temperature=temperature, | |
| stream=True, | |
| max_tokens=3000, | |
| ) | |
| labeling_response = st.write_stream(stream) | |
| # Format response to match desired output | |
| formatted_response = f"Label: {labeling_response}" | |
| st.write(formatted_response) | |
| except Exception as e: | |
| st.error("An error occurred during classification.") | |
| st.error(f"Details: {e}") | |
| else: | |
| st.warning("Please enter text to classify.") | |