Spaces:
Running
Running
File size: 19,520 Bytes
9b548a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# import streamlit as st
# from transformers import AutoProcessor, Wav2Vec2ForCTC
# import torch
# import librosa
# import os
# from pydub import AudioSegment
# from moviepy.editor import VideoFileClip
# import google.generativeai as genai
# from google import genai
# from google.genai import types
# # ----------- Configuration -----------
# model_id = "facebook/mms-1b-l1107"
# lang_code = "urd-script_arabic"
# api_key = "AIzaSyBEWWn32PxVEaUsoe67GJOEpF4FQT87Kxo" # β οΈ Replace with st.secrets for production
# # ----------- Load Processor and Model -----------
# @st.cache_resource
# def load_model_and_processor():
# processor = AutoProcessor.from_pretrained(model_id, target_lang=lang_code)
# model = Wav2Vec2ForCTC.from_pretrained(
# model_id,
# target_lang=lang_code,
# ignore_mismatched_sizes=True
# )
# model.load_adapter(lang_code)
# return processor, model
# processor, model = load_model_and_processor()
# # ----------- Audio Conversion -----------
# def get_wav_from_input(file_path, output_path="converted.wav"):
# ext = os.path.splitext(file_path)[-1].lower()
# if ext in [".mp4", ".mkv", ".avi", ".mov"]:
# video = VideoFileClip(file_path)
# video.audio.write_audiofile(output_path, fps=16000)
# elif ext in [".mp3", ".aac", ".flac", ".ogg", ".m4a"]:
# audio = AudioSegment.from_file(file_path)
# audio = audio.set_frame_rate(16000).set_channels(1)
# audio.export(output_path, format="wav")
# elif ext == ".wav":
# audio = AudioSegment.from_wav(file_path)
# audio.export(output_path, format="wav")
# else:
# raise ValueError("Unsupported file format.")
# return output_path
# # ----------- Transcription -----------
# def transcribe(file_path):
# wav_path = get_wav_from_input(file_path)
# audio, sr = librosa.load(wav_path, sr=16000)
# inputs = processor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
# with torch.no_grad():
# logits = model(**inputs).logits
# pred_ids = torch.argmax(logits, dim=-1)
# return processor.batch_decode(pred_ids)[0]
# # ----------- Gemini Analysis -----------
# def analyze_transcript(transcript):
# client = genai.Client(api_key=st.secrets["GEMINI_API_KEY"])
# system_instr = """
# You are a speech analyst. The following transcription is in Urdu and contains no punctuation β your first task is to correct the transcript by segmenting it into grammatically correct sentences.
# Then:
# 1. Translate the corrected Urdu transcript into English.
# 2. Determine whether the transcript involves a single speaker or multiple speakers.
# 3. If multiple speakers are detected, perform diarization by segmenting the transcript with clear speaker labels.
# β οΈ Format the segmented transcript *exactly* like this:
# **Segmented Transcript**
# **Urdu:**
# Person 01:
# [Urdu line here]
# Person 02:
# [Urdu line here]
# ...
# **English:**
# Person 01:
# [English line here]
# Person 02:
# [English line here]
# ...
# After that, provide your analysis in the following format:
# **Speaker-wise Analysis**
# [One or two sentences per speaker about tone, emotion, behavior]
# **Sentiment and Communication Style**
# [Concise overall tone: e.g., friendly, formal, tense, etc.]
# **Summary of Discussion**
# [A 2β3 line summary of what the speakers talked about, in English]
# """
# response = client.models.generate_content(
# model="gemini-2.5-flash",
# contents=[transcript],
# config=types.GenerateContentConfig(
# system_instruction=system_instr,
# temperature=0.0
# )
# )
# return response.text
# # def analyze_transcript(transcript: str):
# # client = genai.Client(api_key=st.secrets["GEMINI_API_KEY"])
# # system_instr = """
# # You are a speech analyst. The following transcription is in Urdu and contains no punctuation β your first task is to correct the transcript by segmenting it into grammatically correct sentences.
# # Then:
# # 1. Translate the corrected Urdu transcript into English.
# # 2. Determine whether the transcript involves a single speaker or multiple speakers.
# # 3. If multiple speakers are detected, perform diarization by segmenting the transcript with clear speaker labels.
# # β οΈ Format the segmented transcript *exactly* like this:
# # **Segmented Transcript**
# # **Urdu:**
# # Person 01:
# # [Urdu line here]
# # Person 02:
# # [Urdu line here]
# # ...
# # **English:**
# # Person 01:
# # [English line here]
# # Person 02:
# # [English line here]
# # ...
# # After that, provide your analysis in the following format:
# # **Speaker-wise Analysis**
# # [One or two sentences per speaker about tone, emotion, behavior]
# # **Sentiment and Communication Style**
# # [Concise overall tone: e.g., friendly, formal, tense, etc.]
# # **Summary of Discussion**
# # [A 2β3 line summary of what the speakers talked about, in English]
# # """
# # resp = client.models.generate_content(
# # model="gemini-2.5-flash",
# # contents=[transcript],
# # config=types.GenerateContentConfig(
# # system_instruction=system_instr,
# # temperature=0.0
# # ),
# # )
# # return resp.text
# # ----------- Format Display Helper -----------
# def format_transcript_block(text: str) -> str:
# lines = text.split("Person ")
# formatted = ""
# for line in lines:
# line = line.strip()
# if not line:
# continue
# if line.startswith("01:") or line.startswith("02:"):
# formatted += f"\n**Person {line[:2]}**:\n{line[3:].strip()}\n\n"
# else:
# formatted += f"{line.strip()}\n\n"
# return formatted
# # ----------- Streamlit UI -----------
# # Styled Header
# st.markdown("""
# <div style="text-align: left; padding-bottom: 1rem;">
# <h1 style='color:#1f77b4; font-size: 2.5em; font-weight: 800; margin-bottom: 0.2em;'>
# ποΈ Urdu Audio & Video Speech Analyzer
# </h1>
# <p style='color: #CCCCCC; font-size: 1.05em; margin-top: 0;'>
# Upload Urdu audio or video to get structured transcription, speaker diarization, and smart AI analysis.
# </p>
# </div>
# """, unsafe_allow_html=True)
# # File Upload
# st.markdown("### π Upload an audio or video file")
# with st.container():
# uploaded_file = st.file_uploader(
# label="",
# type=["mp3", "mp4", "wav", "mkv", "aac", "ogg", "m4a", "flac"],
# label_visibility="collapsed"
# )
# if uploaded_file is not None:
# with st.spinner("β³ Transcribing..."):
# file_name = uploaded_file.name
# temp_path = f"temp_input{os.path.splitext(file_name)[-1]}"
# with open(temp_path, "wb") as f:
# f.write(uploaded_file.read())
# transcript = transcribe(temp_path)
# st.markdown("### π Raw Urdu Transcription")
# st.text(transcript)
# with st.spinner("π Analyzing with Gemini..."):
# report = analyze_transcript(transcript)
# # Extract Segmented Urdu and English
# segmented_urdu = ""
# segmented_english = ""
# analysis_only = ""
# if "Urdu:" in report and "English:" in report:
# urdu_start = report.find("Urdu:")
# english_start = report.find("English:")
# segmented_urdu = report[urdu_start + len("Urdu:"):english_start].strip()
# english_section = report[english_start + len("English:"):].strip()
# if "**Speaker-wise Analysis**" in english_section:
# parts = english_section.split("**Speaker-wise Analysis**")
# segmented_english = parts[0].strip()
# analysis_only = "**Speaker-wise Analysis**" + parts[1].strip()
# else:
# segmented_english = english_section.strip()
# analysis_only = "β οΈ Could not extract structured analysis."
# # Show Segmented Transcript
# if segmented_urdu and segmented_english:
# st.markdown("### π£οΈ Segmented Transcript")
# col1, col2 = st.columns(2)
# with col1:
# st.markdown("#### Urdu")
# st.markdown(format_transcript_block(segmented_urdu))
# with col2:
# st.markdown("#### English")
# st.markdown(format_transcript_block(segmented_english))
# # Show Gemini Analysis Only (No transcript repeat)
# if analysis_only:
# st.markdown("### π§ Gemini Analysis Summary")
# st.markdown(analysis_only)
import io, os, numpy as np, streamlit as st, librosa, torch, soundfile as sf
from transformers import AutoProcessor, Wav2Vec2ForCTC
from pydub import AudioSegment
from moviepy.editor import VideoFileClip
from google import genai
from google.genai import types
# β
programmatic Start/Stop mic (no WebRTC)
from streamlit_mic_recorder import mic_recorder
# ---------------- Config ----------------
st.set_page_config(page_title="Urdu Speech Analyzer", page_icon="ποΈ", layout="wide")
PAGE_TITLE = "ποΈ Urdu Audio & Video Speech Analyzer"
model_id = "facebook/mms-1b-l1107"
lang_code = "urd-script_arabic"
api_key = "AIzaSyBEWWn32PxVEaUsoe67GJOEpF4FQT87Kxo" # hard-coded as requested
# ---------------- Model ----------------
@st.cache_resource
def load_model_and_processor():
processor = AutoProcessor.from_pretrained(model_id, target_lang=lang_code)
model = Wav2Vec2ForCTC.from_pretrained(
model_id, target_lang=lang_code, ignore_mismatched_sizes=True
)
model.load_adapter(lang_code)
return processor, model
processor, model = load_model_and_processor()
# ---------------- Helpers ----------------
def get_wav_from_input(file_path, output_path="converted.wav"):
ext = os.path.splitext(file_path)[-1].lower()
if ext in [".mp4", ".mkv", ".avi", ".mov"]:
video = VideoFileClip(file_path)
video.audio.write_audiofile(output_path, fps=16000)
elif ext in [".mp3", ".aac", ".flac", ".ogg", ".m4a"]:
audio = AudioSegment.from_file(file_path)
audio = audio.set_frame_rate(16000).set_channels(1)
audio.export(output_path, format="wav")
elif ext == ".wav":
audio = AudioSegment.from_wav(file_path)
audio = audio.set_frame_rate(16000).set_channels(1)
audio.export(output_path, format="wav")
else:
raise ValueError("Unsupported file format.")
return output_path
def save_wav_resampled(audio_f32: np.ndarray, sr_in: int, path: str):
if sr_in != 16000:
audio_f32 = librosa.resample(audio_f32, orig_sr=sr_in, target_sr=16000)
audio_f32 = librosa.util.normalize(audio_f32)
sf.write(path, audio_f32.astype(np.float32), 16000)
def transcribe(wav_path) -> str:
audio, sr = librosa.load(wav_path, sr=16000, mono=True)
inputs = processor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(**inputs).logits
pred_ids = torch.argmax(logits, dim=-1)
return processor.batch_decode(pred_ids)[0]
def analyze_transcript(transcript: str) -> str:
client = genai.Client(api_key=api_key)
system_instr = """
You are a speech analyst. The following transcription is in Urdu and contains no punctuation β your first task is to correct the transcript by segmenting it into grammatically correct sentences.
Then:
1. Translate the corrected Urdu transcript into English.
2. Determine whether the transcript involves a single speaker or multiple speakers.
3. If multiple speakers are detected, perform diarization by segmenting the transcript with clear speaker labels.
β οΈ Format the segmented transcript *exactly* like this:
**Segmented Transcript**
**Urdu:**
Person 01:
[Urdu line here]
Person 02:
[Urdu line here]
...
**English:**
Person 01:
[English line here]
Person 02:
[English line here]
...
After that, provide your analysis in the following format:
**Speaker-wise Analysis**
[One or two sentences per speaker about tone, emotion, behavior]
**Sentiment and Communication Style**
[Concise overall tone: e.g., friendly, formal, tense, etc.]
**Summary of Discussion**
[A 2β3 line summary of what the speakers talked about, in English]
"""
resp = client.models.generate_content(
model="gemini-2.5-flash",
contents=[transcript],
config=types.GenerateContentConfig(system_instruction=system_instr, temperature=0.0)
)
return resp.text
def format_transcript_block(text: str) -> str:
lines = text.split("Person ")
out = ""
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith("01:") or line.startswith("02:"):
out += f"\n**Person {line[:2]}**:\n{line[3:].strip()}\n\n"
else:
out += f"{line}\n\n"
return out
# ---------------- Header ----------------
st.markdown(f"""
<div style="text-align: left; padding-bottom: 1rem;">
<h1 style='color:#1f77b4; font-size: 2.5em; font-weight: 800; margin-bottom: 0.2em;'>
{PAGE_TITLE}
</h1>
<p style='color: #7c8a98; font-size: 1.05em; margin-top: 0;'>
Record or upload Urdu speech for structured transcription, diarization, and smart AI analysis.
</p>
</div>
""", unsafe_allow_html=True)
# ================= Mic: true Start/Stop + narrow Analyze =================
st.markdown("### π€ Live recording")
# The component renders **Start** and **Stop** buttons and keeps recording until you press Stop.
rec = mic_recorder(
start_prompt="βΆοΈ Start",
stop_prompt="βΉοΈ Stop",
just_once=False, # allow multiple recordings in a session
key="recorder",
format="wav" # returns WAV bytes
)
# `rec` returns after Stop. Different versions return bytes or a dict β handle both.
audio_bytes, sr_in = None, 44100
if rec is not None:
if isinstance(rec, dict) and "bytes" in rec:
audio_bytes = rec["bytes"]
sr_in = int(rec.get("sample_rate", 44100))
elif isinstance(rec, (bytes, bytearray)):
audio_bytes = rec
sr_in = 44100 # component default
else:
# fallback: try to extract .get("audio") etc if lib changes
audio_bytes = rec.get("audio") if isinstance(rec, dict) else None
if audio_bytes:
st.success("Audio captured.")
# Convert to mono float32
data, sr_read = sf.read(io.BytesIO(audio_bytes), dtype="float32", always_2d=False)
if data.ndim > 1:
data = data.mean(axis=1)
if sr_read: # prefer the rate embedded in the WAV
sr_in = sr_read
# Save as 16 kHz mono for the model
tmp_wav = "mic_recording.wav"
save_wav_resampled(data, sr_in, tmp_wav)
# Minimal playback (no waveform)
st.audio(audio_bytes, format="audio/wav")
st.caption(f"Duration: {data.size / sr_in:.2f} s")
# Slim Analyze button (not full width)
if st.button("π Analyze", type="primary"):
with st.spinner("β³ Transcribing & analyzing..."):
transcript = transcribe(tmp_wav) # raw not displayed
report = analyze_transcript(transcript)
segmented_urdu = segmented_english = analysis_only = ""
if "Urdu:" in report and "English:" in report:
u0 = report.find("Urdu:")
e0 = report.find("English:")
segmented_urdu = report[u0 + len("Urdu:"):e0].strip()
english_section = report[e0 + len("English:"):].strip()
if "**Speaker-wise Analysis**" in english_section:
parts = english_section.split("**Speaker-wise Analysis**")
segmented_english = parts[0].strip()
analysis_only = "**Speaker-wise Analysis**" + parts[1].strip()
else:
segmented_english = english_section.strip()
analysis_only = "β οΈ Could not extract structured analysis."
if segmented_urdu or segmented_english:
st.markdown("### π£οΈ Segmented Transcript")
c1, c2 = st.columns(2)
with c1:
st.markdown("#### Urdu")
st.markdown(format_transcript_block(segmented_urdu) if segmented_urdu else "_(none)_")
with c2:
st.markdown("#### English")
st.markdown(format_transcript_block(segmented_english) if segmented_english else "_(none)_")
if analysis_only:
st.markdown("### π§ Gemini Analysis Summary")
st.markdown(analysis_only)
st.markdown("---")
# ================= Upload (unchanged) =================
st.markdown("### π Or upload an audio/video file")
uploaded_file = st.file_uploader(
label="",
type=["mp3", "mp4", "wav", "mkv", "aac", "ogg", "m4a", "flac"],
label_visibility="collapsed"
)
if uploaded_file is not None:
with st.spinner("β³ Transcribing..."):
file_name = uploaded_file.name
temp_path = f"temp_input{os.path.splitext(file_name)[-1]}"
with open(temp_path, "wb") as f:
f.write(uploaded_file.read())
wav_path = get_wav_from_input(temp_path)
transcript = transcribe(wav_path)
with st.spinner("π Analyzing with Gemini..."):
report = analyze_transcript(transcript)
segmented_urdu = segmented_english = analysis_only = ""
if "Urdu:" in report and "English:" in report:
u0 = report.find("Urdu:")
e0 = report.find("English:")
segmented_urdu = report[u0 + len("Urdu:"):e0].strip()
english_section = report[e0 + len("English:"):].strip()
if "**Speaker-wise Analysis**" in english_section:
parts = english_section.split("**Speaker-wise Analysis**")
segmented_english = parts[0].strip()
analysis_only = "**Speaker-wise Analysis**" + parts[1].strip()
else:
segmented_english = english_section.strip()
analysis_only = "β οΈ Could not extract structured analysis."
if segmented_urdu or segmented_english:
st.markdown("### π£οΈ Segmented Transcript")
c1, c2 = st.columns(2)
with c1:
st.markdown("#### Urdu")
st.markdown(format_transcript_block(segmented_urdu) if segmented_urdu else "_(none)_")
with c2:
st.markdown("#### English")
st.markdown(format_transcript_block(segmented_english) if segmented_english else "_(none)_")
if analysis_only:
st.markdown("### π§ Gemini Analysis Summary")
st.markdown(analysis_only)
|