Asmit Nayak
Add debug mode functionality with data loading and mock analysis
f784cc0
import os
import shutil
import tempfile
import time
import uuid
from pathlib import Path
import gradio as gr
import pandas as pd
import pybboxes as pbx
from PIL import Image
from huggingface_hub import CommitScheduler
# Import our custom modules
from py_files import yolo
from py_files import dataset_upload
from py_files.ocr import get_text_from_image_doc
# Global debug mode variables
DEBUG_MODE = False
DEBUG_TABLE_DF = None
DEBUG_ORIGINAL_IMAGE = None
DEBUG_ANNOTATED_IMAGE = None
def take_screenshot_and_process(url, gemini_api_key):
"""
Take a screenshot of the provided URL and process it for deceptive pattern detection.
Returns (dataframe, status_message, image_path, eval_dir_for_cleanup)
"""
print(f"\n[CONSOLE] ===== STARTING ANALYSIS PROCESS =====")
print(f"[CONSOLE] URL: {url}")
print(f"[CONSOLE] Gemini API Key provided: {'Yes' if gemini_api_key else 'No'}")
# Check if debug mode is enabled
if DEBUG_MODE:
print(f"[CONSOLE] ===== DEBUG MODE ENABLED =====")
print(f"[CONSOLE] [DEBUG MODE] Using pre-loaded debug data instead of actual analysis")
# Create temporary directory for debug processing
eval_dir = tempfile.mkdtemp()
print(f"[CONSOLE] [DEBUG MODE] Created temporary directory: {eval_dir}")
# Use the mock pipeline with debug data
for result in create_mock_analysis_with_debug_data(
DEBUG_TABLE_DF,
DEBUG_ORIGINAL_IMAGE,
DEBUG_ANNOTATED_IMAGE,
eval_dir
):
yield result
return
# Normal mode - proceed with regular processing
if not url or not (url.startswith("http://") or url.startswith("https://")):
print(f"[CONSOLE] ERROR: Invalid URL format - {url}")
yield (None, "❌ Invalid URL format - please use http:// or https://", None, None)
raise gr.Error("Please enter a valid URL (starting with http:// or https://).")
if not gemini_api_key:
print(f"[CONSOLE] ERROR: No Gemini API key provided")
yield (None, "❌ No Gemini API key provided", None, None)
raise gr.Error("Please provide a Gemini API Key.")
# Set the Gemini API key in the environment
os.environ["GEMINI_API"] = gemini_api_key
print(f"[CONSOLE] Gemini API key set in environment")
# Create temporary directory for processing
eval_dir = tempfile.mkdtemp()
print(f"[CONSOLE] Created temporary directory: {eval_dir}")
try:
# Step 1: Taking screenshot
print(f"[CONSOLE] STEP 1/6: Taking screenshot of the website...")
yield (None, "Step 1/6: Taking screenshot of the website...", None, eval_dir)
screenshots_dir = os.path.join(eval_dir, "screenshots")
ocr_dir = os.path.join(eval_dir, "ocr")
yolo_dir = os.path.join(eval_dir, "yolo")
csv_yolo_dir = os.path.join(eval_dir, "csv_with_yolo")
gemini_fs_dir = os.path.join(eval_dir, "gemini_fs")
for d in [screenshots_dir, ocr_dir, yolo_dir, csv_yolo_dir, gemini_fs_dir]:
os.makedirs(d, exist_ok=True)
print(f"[CONSOLE] Created directory: {d}")
# Take screenshot using Selenium
image_path = os.path.join(screenshots_dir, "screenshot.png")
print(f"[CONSOLE] Taking screenshot, saving to: {image_path}")
image = take_website_screenshot(url, image_path)
print(f"[CONSOLE] Screenshot completed successfully")
# Display the original screenshot immediately
print(f"[CONSOLE] Displaying original screenshot")
yield (None, "πŸ“· Screenshot captured! Starting analysis...", image_path, eval_dir)
# Step 2: Setup directories
print(f"[CONSOLE] STEP 2/6: Setting up processing directories...")
yield (None, "Step 2/6: Setting up processing directories...", image_path, eval_dir)
# Step 3: Run OCR
print(f"[CONSOLE] STEP 3/6: Running OCR analysis...")
yield (None, "Step 3/6: Running OCR analysis...", image_path, eval_dir)
csv_path = os.path.join(ocr_dir, "screenshot.csv")
print(f"[CONSOLE] Running OCR on image...")
ocr_result = get_text_from_image_doc(image)[0]
ocr_df = ocr_result.get_dataframe(image)
ocr_df.to_csv(csv_path, index=False)
print(f"[CONSOLE] OCR completed, saved to: {csv_path}")
print(f"[CONSOLE] OCR found {len(ocr_df)} text elements")
# Step 4: Run YOLO object detection
print(f"[CONSOLE] STEP 4/6: Running YOLO object detection...")
yield (None, "Step 4/6: Running YOLO object detection...", image_path, eval_dir)
yolo_result_path = os.path.join(yolo_dir, "screenshot.txt")
# Use real YOLO ensemble
print(f"[CONSOLE] Loading YOLO ensemble models...")
models = yolo.YoloEnsemble(weights=["models/vision/16.pt", "models/vision/15.pt", "models/vision/14.pt"])
print(f"[CONSOLE] Running YOLO prediction with confidence threshold 0.3...")
results = models.predict(image_path, conf=0.3, verbose=True)
if results[0].boxes is None:
print(f"[CONSOLE] YOLO: No objects detected")
with open(yolo_result_path, 'w') as f:
f.write("")
else:
print(f"[CONSOLE] YOLO: {len(results[0].boxes)} objects detected")
results[0].save_txt(yolo_result_path)
print(f"[CONSOLE] YOLO results saved to: {yolo_result_path}")
# Step 5: Combine OCR and YOLO results
print(f"[CONSOLE] STEP 5/6: Combining OCR and element detection results...")
yield (None, "Step 5/6: Combining OCR and element detection results...", image_path, eval_dir)
combined_csv_path = os.path.join(csv_yolo_dir, "screenshot.csv")
# Combine results using original logic
print(f"[CONSOLE] Combining OCR and YOLO results...")
combined_df = combine_ocr_yolo_results_original(ocr_df, yolo_result_path, image)
combined_df.to_csv(combined_csv_path, index=False)
print(f"[CONSOLE] Combined results saved to: {combined_csv_path}")
print(f"[CONSOLE] Combined dataframe has {len(combined_df)} rows")
# Step 6: Analyze with Gemini
print(f"[CONSOLE] STEP 6/6: Analyzing for deceptive patterns with Gemini...")
yield (None, "Step 6/6: Analyzing for deceptive patterns with Gemini...", image_path, eval_dir)
# Use the generator version for real-time notifications
from py_files.gemini_analysis import few_shots_generator
# Enhanced progress reporting for Gemini analysis
yield (None, "πŸ”§ Preparing data for Gemini analysis...", image_path, eval_dir)
# Save the combined results for few_shots processing
os.makedirs(gemini_fs_dir, exist_ok=True)
print(f"[CONSOLE] Running Gemini few_shots analysis...")
print(f"[CONSOLE] Input file: {combined_csv_path}")
yield (None, f"πŸ“Š Processing {len(combined_df)} UI elements for deceptive pattern analysis...", image_path, eval_dir)
# Use the generator version that yields real-time notifications
final_df = None
try:
for status, data in few_shots_generator(eval_dir=eval_dir, files=[combined_csv_path], api_key=gemini_api_key):
if status == 'notification':
# Yield the notification immediately to the UI
yield None, data, image_path, eval_dir
elif status == 'result':
final_df = data
break
print(f"[CONSOLE] Gemini analysis completed")
except gr.Error:
# Re-raise gr.Error exceptions as they should propagate to the UI
print(f"[CONSOLE] Gemini analysis raised gr.Error, propagating...")
raise
except Exception as gemini_error:
# Handle any other unexpected errors from Gemini analysis
print(f"[CONSOLE] Unexpected error in Gemini analysis: {str(gemini_error)}")
error_msg = f"❌ Gemini analysis failed: {str(gemini_error)}"
yield (None, error_msg, image_path, eval_dir)
# Don't raise here - let the function continue with final_df = None
if final_df is None:
print(f"[CONSOLE] Gemini analysis failed completely")
yield (None, "❌ Gemini analysis failed - please check your API key and try again", image_path, eval_dir)
if final_df is not None:
print(f"[CONSOLE] Final analysis result: {len(final_df)} rows detected")
deceptive_count = len(final_df[final_df['Deceptive Design Category'].str.lower() != 'non-deceptive']) if 'Deceptive Design Category' in final_df.columns else 0
total_count = len(final_df)
yield (None, f"πŸ“Š Analysis complete! Found {deceptive_count} deceptive patterns out of {total_count} UI elements", image_path, eval_dir)
yield (None, "🎨 Creating annotated screenshot with colored highlights...", image_path, eval_dir)
# Create annotated screenshot
annotated_path = create_annotated_screenshot(image_path, final_df, eval_dir)
print(f"[CONSOLE] Annotated screenshot created at: {annotated_path}")
# Yield the final results with annotated screenshot replacing the original
# annotated_path will always be valid now (either annotated or original as fallback)
status_message = "βœ… Analysis complete! All elements annotated with colored bounding boxes."
if annotated_path == image_path:
status_message = "βœ… Analysis complete! (Note: Screenshot annotation failed, showing original)"
yield (final_df, status_message, annotated_path, eval_dir)
else:
print(f"[CONSOLE] WARNING: Final analysis result is None")
yield (None, "❌ Analysis failed - unable to process results", None, eval_dir)
print(f"[CONSOLE] ===== ANALYSIS PROCESS COMPLETED =====")
except Exception as e:
print(f"[CONSOLE] ERROR in take_screenshot_and_process: {str(e)}")
print(f"[CONSOLE] Exception type: {type(e).__name__}")
# Send notification to user about the error before yielding error state
error_msg = f"❌ Error occurred: {str(e)}"
yield (None, error_msg, None, eval_dir)
raise gr.Error(f"Error processing website: {str(e)}")
def cleanup_temp_directory(eval_dir):
"""
Clean up temporary files after image has been displayed to the frontend.
This should be called after the UI has had time to display the image.
"""
if not eval_dir:
return
try:
print(f"[CONSOLE] Cleaning up temporary directory: {eval_dir}")
if os.path.exists(eval_dir):
shutil.rmtree(eval_dir)
print(f"[CONSOLE] Cleanup completed successfully")
else:
print(f"[CONSOLE] Temp directory {eval_dir} does not exist or was already cleaned up")
except Exception as cleanup_error:
print(f"[CONSOLE] WARNING: Failed to cleanup temp directory: {cleanup_error}")
# Try to clean up individual files if directory removal fails
try:
if eval_dir and os.path.exists(eval_dir):
for root, dirs, files in os.walk(eval_dir):
for file in files:
try:
os.remove(os.path.join(root, file))
print(f"[CONSOLE] Removed individual file: {file}")
except Exception as file_error:
print(f"[CONSOLE] Failed to remove file {file}: {file_error}")
# Try to remove empty directories
for root, dirs, files in os.walk(eval_dir, topdown=False):
for dir in dirs:
try:
os.rmdir(os.path.join(root, dir))
except Exception:
pass
# Try to remove the main directory
os.rmdir(eval_dir)
print(f"[CONSOLE] Manual cleanup completed")
except Exception as manual_cleanup_error:
print(f"[CONSOLE] ERROR: Complete cleanup failure: {manual_cleanup_error}")
print(f"[CONSOLE] Temp directory may not be fully cleaned: {eval_dir}")
def take_website_screenshot(url, output_path):
"""
Take a screenshot of a website using Selenium WebDriver.
"""
print(f"[CONSOLE] take_website_screenshot: Starting selenium screenshot capture for {url}")
print(f"[CONSOLE] Output path: {output_path}")
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import time
try:
# Setup Chrome options for headless mode
print(f"[CONSOLE] Setting up Chrome WebDriver in headless mode...")
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
# chrome_options.add_argument("--disable-gpu")
chrome_options.add_argument("--window-size=1280,1024")
# chrome_options.add_argument("--disable-extensions")
# chrome_options.add_argument("--disable-plugins")
# chrome_options.add_argument("--disable-images") # Faster loading
# chrome_options.add_argument("--disable-javascript") # Faster loading, optional
# Create WebDriver instance
print(f"[CONSOLE] Creating Chrome WebDriver instance...")
css_to_inject = ":root { color-scheme: only light; }"
javascript_code = """
var style = document.createElement('style');
style.type = 'text/css';
style.innerHTML = arguments[0];
document.head.appendChild(style);
"""
driver = webdriver.Chrome(options=chrome_options)
driver.set_window_size(1280, 1024)
driver.execute_script(javascript_code, css_to_inject)
time.sleep(0.5)
try:
# Set page load timeout
driver.set_page_load_timeout(30)
# Navigate to the URL
print(f"[CONSOLE] Navigating to URL: {url}")
driver.get(url)
# Wait a bit for the page to render
print(f"[CONSOLE] Waiting for page to load... (5 secs)")
time.sleep(5)
# Take screenshot
print(f"[CONSOLE] Taking screenshot...")
driver.save_screenshot(output_path)
print(f"[CONSOLE] Screenshot saved to: {output_path}")
# Load and return the image
image = Image.open(output_path)
print(f"[CONSOLE] Screenshot completed successfully, image size: {image.size}")
return image
finally:
# Always close the driver
print(f"[CONSOLE] Closing WebDriver...")
driver.quit()
except Exception as e:
print(f"[CONSOLE] Exception in selenium screenshot: {str(e)}")
print(f"[CONSOLE] Exception type: {type(e).__name__}")
raise Exception(f"Screenshot failed: {str(e)}")
def combine_ocr_yolo_results_original(ocr_df, yolo_result_path, image):
"""
Combine OCR results with YOLO detection results using the original logic.
"""
W, H = image.size
# Load YOLO results
if not os.path.exists(yolo_result_path) or os.path.getsize(yolo_result_path) == 0:
# If no YOLO results, just add Element Type column and return
ocr_df['Element Type'] = 'text'
return ocr_df
# Read YOLO results
yolo_df = pd.read_csv(yolo_result_path, sep=" ", names=["class", "x1", "y1", "x2", "y2"])
# Convert YOLO format to pixel coordinates
for j in range(len(yolo_df)):
scaled = pbx.convert_bbox(
[yolo_df.iloc[j]['x1'], yolo_df.iloc[j]['y1'], yolo_df.iloc[j]['x2'], yolo_df.iloc[j]['y2']],
from_type="yolo", to_type="voc", image_size=(W, H)
)
yolo_df.iat[j, 1], yolo_df.iat[j, 2], yolo_df.iat[j, 3], yolo_df.iat[j, 4] = scaled
# Class mapping
cls_dict = {
0: "button", 1: "checked checkbox", 2: "unchecked checkbox",
3: "checked radio button", 4: "unchecked radio button",
5: "checked switch", 6: "unchecked switch"
}
# Ensure coordinate columns exist and are strings before processing
if 'Top Co-ordinates' not in ocr_df.columns or 'Bottom Co-ordinates' not in ocr_df.columns:
ocr_df['Element Type'] = 'text'
return ocr_df
# Create coordinates column for easier processing
ocr_df['Coordinates'] = (
ocr_df['Top Co-ordinates'].astype(str).str.replace('(', '', regex=False).str.replace(')', '', regex=False) + ', ' +
ocr_df['Bottom Co-ordinates'].astype(str).str.replace('(', '', regex=False).str.replace(')', '', regex=False)
)
ele_types = ["text"] * len(ocr_df)
bboxes = yolo_df[['x1', 'y1', 'x2', 'y2']].values.tolist()
clss = yolo_df['class'].tolist()
if not isinstance(clss, list):
clss = [clss]
coords = ocr_df['Coordinates'].tolist()
# Match YOLO detections with OCR text
for ele_cls, ele_rect in zip(clss, bboxes):
distance_dict = {}
for ci, coord in enumerate(coords):
try:
rect_text = list(map(float, coord.split(',')))
except (ValueError, AttributeError):
continue # Skip if coordinate string is invalid
if ele_cls == 0: # button
if yolo.do_rectangles_overlap(ele_rect, rect_text):
ele_types[ci] = cls_dict[ele_cls]
break
elif ele_cls in [1, 2, 3, 4]: # checkbox or radio
e_y1, e_y2 = ele_rect[1], ele_rect[3]
r_y1, r_y2 = rect_text[1], rect_text[3]
text_mid_y = (r_y1 + r_y2) / 2
if e_y1 < text_mid_y < e_y2 and rect_text[0] > ele_rect[0] and rect_text[0] - ele_rect[2] < 100:
distance_dict[rect_text[0] - ele_rect[2]] = ci
if ele_cls > 0 and len(distance_dict) > 0:
ele_types[sorted(distance_dict.items(), key=lambda x: x[0])[0][1]] = cls_dict[ele_cls]
ocr_df['Element Type'] = ele_types
ocr_df = ocr_df.drop(columns=['Coordinates'])
# Reorder columns
cols = ocr_df.columns.tolist()
cols = cols[:1] + cols[-1:] + cols[1:-1]
ocr_df = ocr_df[cols]
return ocr_df
def create_result_display(df):
"""
Create a display of the analysis results.
"""
if df is None or df.empty:
return "No results to display."
# Count deceptive patterns
if 'Deceptive Design Category' in df.columns:
deceptive_count = len(df[df['Deceptive Design Category'].str.lower() != 'non-deceptive'])
total_count = len(df)
html_output = f"""
<div style="padding: 20px; border: 1px solid var(--border-color-primary); border-radius: 8px; background-color: var(--block-background-fill); color: var(--body-text-color);">
<h3 style="color: var(--body-text-color); margin-top: 0;">Analysis Results</h3>
<p style="color: var(--body-text-color);"><strong>Total elements analyzed:</strong> {total_count}</p>
<p style="color: var(--body-text-color);"><strong>Potentially deceptive elements:</strong> {deceptive_count}</p>
<p style="color: var(--body-text-color);"><strong>Non-deceptive elements:</strong> {total_count - deceptive_count}</p>
</div>
"""
return html_output
else:
return "Analysis completed, but results format is unexpected."
def create_annotated_screenshot(image_path, df, eval_dir=None):
"""
Create an annotated screenshot with bounding boxes for deceptive patterns.
"""
from PIL import Image, ImageDraw, ImageFont
import tempfile
print(f"[CONSOLE] Creating annotated screenshot from: {image_path}")
try:
# Load the original image
image = Image.open(image_path)
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
# Define colors for different deceptive pattern categories
color_map = {
'forced-action': '#FF0000', # Red
'interface-interference': '#FF8C00', # Dark Orange
'obstruction': '#800080', # Purple
'sneaking': '#FF1493', # Deep Pink
'confirmshaming': '#FF4500', # Orange Red
'nudge': '#32CD32', # Lime Green
'fake-scarcity-fake-urgency': '#FFD700', # Gold
'hard-to-cancel': '#DC143C', # Crimson
'pre-selection': '#8A2BE2', # Blue Violet
'visual-interference': '#FF6347', # Tomato
'jargon': '#4169E1', # Royal Blue
'hidden-subscription': '#B22222', # Fire Brick
'hidden-costs': '#CD5C5C', # Indian Red
'disguised-ads': '#FF69B4', # Hot Pink
'trick-wording': '#FF7F50', # Coral
'non-deceptive': '#90EE90' # Light Green (for non-deceptive elements)
}
# Default color for unknown categories
default_color = '#FFFF00' # Yellow
# Try to load a bigger font (at least 2x size)
try:
font = ImageFont.truetype("arial.ttf", 18)
except:
try:
font = ImageFont.load_default().font_variant(size=18)
except:
font = ImageFont.load_default()
deceptive_count = 0
non_deceptive_count = 0
# Track used text positions to avoid overlaps
used_text_regions = []
# Draw bounding boxes for each element
for idx, row in df.iterrows():
if 'Deceptive Design Category' not in df.columns:
continue
category = str(row.get('Deceptive Design Category', '')).lower().strip()
subtype = str(row.get('Deceptive Design Subtype', '')).lower().strip()
# Count deceptive vs non-deceptive elements
if category == 'non-deceptive' or category == 'not-applicable':
non_deceptive_count += 1
else:
deceptive_count += 1
# Get bounding box coordinates
x1, y1, x2, y2 = None, None, None, None
# Method 1: Try to extract from 'Top Co-ordinates' and 'Bottom Co-ordinates' columns
try:
top_coords = row.get('Top Co-ordinates')
bottom_coords = row.get('Bottom Co-ordinates')
if top_coords is not None and bottom_coords is not None:
# Parse tuple strings like "(10, 20)" or tuple objects
if isinstance(top_coords, str):
top_coords = top_coords.strip('()')
x1, y1 = map(float, top_coords.split(','))
elif isinstance(top_coords, (tuple, list)):
x1, y1 = float(top_coords[0]), float(top_coords[1])
if isinstance(bottom_coords, str):
bottom_coords = bottom_coords.strip('()')
x2, y2 = map(float, bottom_coords.split(','))
elif isinstance(bottom_coords, (tuple, list)):
x2, y2 = float(bottom_coords[0]), float(bottom_coords[1])
except (ValueError, TypeError, AttributeError):
# Method 2: Try direct coordinate columns (x1, y1, x2, y2)
try:
x1 = float(row.get('x1', 0))
y1 = float(row.get('y1', 0))
x2 = float(row.get('x2', 0))
y2 = float(row.get('y2', 0))
except (ValueError, TypeError):
# Method 3: Try alternative coordinate column names (X1, Y1, X2, Y2)
try:
x1 = float(row.get('X1', 0))
y1 = float(row.get('Y1', 0))
x2 = float(row.get('X2', 0))
y2 = float(row.get('Y2', 0))
except (ValueError, TypeError):
print(f"[CONSOLE] Warning: Could not extract coordinates for row {idx}")
continue
# Validate that all coordinates were successfully extracted
if any(coord is None for coord in [x1, y1, x2, y2]):
print(f"[CONSOLE] Warning: Missing coordinates for row {idx}")
continue
# Ensure coordinates are within image bounds
x1 = max(0, min(x1, image.width))
x2 = max(0, min(x2, image.width))
y1 = max(0, min(y1, image.height))
y2 = max(0, min(y2, image.height))
# Ensure x1 <= x2 and y1 <= y2 (swap if necessary)
if x1 > x2:
x1, x2 = x2, x1
if y1 > y2:
y1, y2 = y2, y1
# Skip if box is too small or invalid
if (x2 - x1) < 5 or (y2 - y1) < 5:
continue
# Choose color based on category or subtype
color = color_map.get(category, color_map.get(subtype, default_color))
# Draw bounding box
draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
# Draw label
text = f"{category}"
if subtype and subtype != 'not-applicable' and subtype != 'n/a':
text = f"{category}: {subtype}"
# Get text dimensions
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# Function to check if a rectangle overlaps with any used regions
def check_overlap(x, y, w, h, used_regions):
new_rect = (x, y, x + w, y + h)
for used_rect in used_regions:
if not (new_rect[2] < used_rect[0] or new_rect[0] > used_rect[2] or
new_rect[3] < used_rect[1] or new_rect[1] > used_rect[3]):
return True
return False
# Try different positions for the text to avoid overlaps
text_x = x1
text_y = None
padding = 4
# Position 1: Above the bounding box
candidate_y = y1 - text_height - padding
if candidate_y >= 0: # Within image bounds
# Adjust x position to stay within image bounds
if text_x + text_width > image.width:
text_x = image.width - text_width
if text_x < 0:
text_x = 0
# Check for overlaps
if not check_overlap(text_x, candidate_y, text_width, text_height, used_text_regions):
text_y = candidate_y
# Position 2: Below the bounding box (if above didn't work)
if text_y is None:
candidate_y = y2 + padding
if candidate_y + text_height <= image.height: # Within image bounds
# Adjust x position to stay within image bounds
text_x = x1
if text_x + text_width > image.width:
text_x = image.width - text_width
if text_x < 0:
text_x = 0
# Check for overlaps
if not check_overlap(text_x, candidate_y, text_width, text_height, used_text_regions):
text_y = candidate_y
# Position 3: To the right of the bounding box
if text_y is None:
candidate_x = x2 + padding
if candidate_x + text_width <= image.width: # Within image bounds
candidate_y = y1
if candidate_y + text_height > image.height:
candidate_y = image.height - text_height
if candidate_y < 0:
candidate_y = 0
# Check for overlaps
if not check_overlap(candidate_x, candidate_y, text_width, text_height, used_text_regions):
text_x = candidate_x
text_y = candidate_y
# Position 4: To the left of the bounding box
if text_y is None:
candidate_x = x1 - text_width - padding
if candidate_x >= 0: # Within image bounds
candidate_y = y1
if candidate_y + text_height > image.height:
candidate_y = image.height - text_height
if candidate_y < 0:
candidate_y = 0
# Check for overlaps
if not check_overlap(candidate_x, candidate_y, text_width, text_height, used_text_regions):
text_x = candidate_x
text_y = candidate_y
# Position 5: Find any available space (fallback)
if text_y is None:
# Try to find space by scanning the image in a grid pattern
step_size = 20
found = False
for scan_y in range(0, image.height - text_height, step_size):
if found:
break
for scan_x in range(0, image.width - text_width, step_size):
if not check_overlap(scan_x, scan_y, text_width, text_height, used_text_regions):
text_x = scan_x
text_y = scan_y
found = True
break
# Last resort: place at top-left corner (may overlap)
if text_y is None:
text_x = 0
text_y = 0
# Draw text background rectangle
draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
fill=color, outline=color)
# Draw text
draw.text((text_x, text_y), text, fill='white', font=font)
# Add this text region to used regions to prevent future overlaps
used_text_regions.append((text_x, text_y, text_x + text_width, text_y + text_height))
print(f"[CONSOLE] Annotated screenshot created with {deceptive_count} deceptive patterns and {non_deceptive_count} non-deceptive elements highlighted")
# Save annotated image to temporary file
if eval_dir:
# Create in the managed temp directory that will be cleaned up
temp_filename = os.path.join(eval_dir, "annotated_screenshot.png")
annotated_image.save(temp_filename)
return temp_filename
else:
# Fallback to system temp directory
temp_file = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
annotated_image.save(temp_file.name)
return temp_file.name
except Exception as e:
print(f"[CONSOLE] Error creating annotated screenshot: {e}")
print(f"[CONSOLE] Falling back to original image: {image_path}")
# Return the original image path as fallback
return image_path
def load_debug_table_data(repo_id, split_name):
"""Load pre-analyzed table from HuggingFace dataset."""
from datasets import load_dataset
print(f"[CONSOLE] [DEBUG MODE] Loading table data from repo: {repo_id}, split: {split_name}")
try:
dataset = load_dataset(repo_id, split=split_name)
df = dataset.to_pandas()
df = df[["Text", "Element Type", "Top Co-ordinates", "Bottom Co-ordinates", "Font Size", "Background Color", "Font Color", "Deceptive Design Category", "Deceptive Design Subtype", "Reasoning"]]
print(f"[CONSOLE] [DEBUG MODE] Loaded table with {len(df)} rows")
return df
except Exception as e:
print(f"[CONSOLE] [DEBUG MODE] Error loading table data: {e}")
# Return a dummy dataframe as fallback
return pd.DataFrame({
'Text': ['Sample Button', 'Sample Checkbox'],
'Element Type': ['button', 'checked checkbox'],
'Top Co-ordinates': ['(100, 100)', '(200, 200)'],
'Bottom Co-ordinates': ['(200, 150)', '(250, 230)'],
'Deceptive Design Category': ['forced-action', 'non-deceptive'],
'Deceptive Design Subtype': ['obstruction', 'not-applicable']
})
def load_debug_images(repo_id, image_id):
"""Load original and annotated images from HuggingFace dataset."""
from datasets import load_dataset
print(f"[CONSOLE] [DEBUG MODE] Loading images from repo: {repo_id}, image_id: {image_id}")
try:
dataset = load_dataset(repo_id, split='train')
# Find the record with matching ID
for record in dataset:
if record.get('id') == image_id:
original_image = record.get('image')
annotated_image = record.get('annotated')
# Save images to temporary files
original_path = None
annotated_path = None
if original_image:
temp_original = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
if hasattr(original_image, 'save'):
original_image.save(temp_original.name)
original_path = temp_original.name
print(f"[CONSOLE] [DEBUG MODE] Original image saved to: {original_path}")
if annotated_image:
temp_annotated = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
if hasattr(annotated_image, 'save'):
annotated_image.save(temp_annotated.name)
annotated_path = temp_annotated.name
print(f"[CONSOLE] [DEBUG MODE] Annotated image saved to: {annotated_path}")
return original_path, annotated_path
print(f"[CONSOLE] [DEBUG MODE] Image ID '{image_id}' not found in dataset")
return None, None
except Exception as e:
print(f"[CONSOLE] [DEBUG MODE] Error loading images: {e}")
return None, None
def create_mock_analysis_with_debug_data(debug_table_df, debug_original_image, debug_annotated_image, eval_dir):
"""
Simulate the analysis pipeline using debug data with time delays.
Yields progress updates like the real function.
"""
print(f"[CONSOLE] [DEBUG MODE] Starting mock analysis pipeline")
try:
# Create necessary directories
screenshots_dir = os.path.join(eval_dir, "screenshots")
ocr_dir = os.path.join(eval_dir, "ocr")
yolo_dir = os.path.join(eval_dir, "yolo")
csv_yolo_dir = os.path.join(eval_dir, "csv_with_yolo")
gemini_fs_dir = os.path.join(eval_dir, "gemini_fs")
for d in [screenshots_dir, ocr_dir, yolo_dir, csv_yolo_dir, gemini_fs_dir]:
os.makedirs(d, exist_ok=True)
# Step 1: Taking screenshot
print(f"[CONSOLE] [DEBUG MODE] STEP 1/6: Mock screenshot capture")
yield (None, "Step 1/6: Taking screenshot of the website...", None, eval_dir)
time.sleep(2)
# Copy debug original image to screenshots directory
screenshot_path = os.path.join(screenshots_dir, "screenshot.png")
if debug_original_image and os.path.exists(debug_original_image):
shutil.copy(debug_original_image, screenshot_path)
print(f"[CONSOLE] [DEBUG MODE] Copied original image to: {screenshot_path}")
yield (None, "πŸ“· Screenshot captured! Starting analysis...", screenshot_path, eval_dir)
# Step 2: Setup directories
print(f"[CONSOLE] [DEBUG MODE] STEP 2/6: Setting up directories")
yield (None, "Step 2/6: Setting up processing directories...", screenshot_path, eval_dir)
time.sleep(0.5)
# Step 3: Run OCR (mock)
print(f"[CONSOLE] [DEBUG MODE] STEP 3/6: Mock OCR analysis")
yield (None, "Step 3/6: Running OCR analysis...", screenshot_path, eval_dir)
time.sleep(0.2)
print(f"[CONSOLE] [DEBUG MODE] Mock OCR completed")
# Step 4: Run YOLO (mock)
print(f"[CONSOLE] [DEBUG MODE] STEP 4/6: Mock YOLO detection")
yield (None, "Step 4/6: Running YOLO object detection...", screenshot_path, eval_dir)
time.sleep(1)
print(f"[CONSOLE] [DEBUG MODE] Mock YOLO completed")
# Step 5: Combine results (mock)
print(f"[CONSOLE] [DEBUG MODE] STEP 5/6: Mock combining results")
yield (None, "Step 5/6: Combining OCR and element detection results...", screenshot_path, eval_dir)
time.sleep(0.3)
print(f"[CONSOLE] [DEBUG MODE] Mock combining completed")
# Step 6: Gemini analysis (mock)
print(f"[CONSOLE] [DEBUG MODE] STEP 6/6: Mock Gemini analysis")
yield (None, "Step 6/6: Analyzing for deceptive patterns with Gemini...", screenshot_path, eval_dir)
yield (None, "πŸ”§ Preparing data for Gemini analysis...", screenshot_path, eval_dir)
total_elements = len(debug_table_df) if debug_table_df is not None else 0
yield (None, f"πŸ“Š Processing {total_elements} UI elements for deceptive pattern analysis...", screenshot_path, eval_dir)
time.sleep(0.4)
print(f"[CONSOLE] [DEBUG MODE] Mock Gemini analysis completed")
# Return the debug data
deceptive_count = 0
if debug_table_df is not None and 'Deceptive Design Category' in debug_table_df.columns:
deceptive_count = len(debug_table_df[debug_table_df['Deceptive Design Category'].str.lower() != 'non-deceptive'])
yield (None, f"πŸ“Š Analysis complete! Found {deceptive_count} deceptive patterns out of {total_elements} UI elements", screenshot_path, eval_dir)
yield (None, "🎨 Creating annotated screenshot with colored highlights...", screenshot_path, eval_dir)
# Use the debug annotated image
annotated_path = screenshot_path
if debug_annotated_image and os.path.exists(debug_annotated_image):
annotated_path = os.path.join(eval_dir, "annotated_screenshot.png")
shutil.copy(debug_annotated_image, annotated_path)
print(f"[CONSOLE] [DEBUG MODE] Copied annotated image to: {annotated_path}")
status_message = "βœ… Analysis complete! All elements annotated with colored bounding boxes."
yield (debug_table_df, status_message, annotated_path, eval_dir)
print(f"[CONSOLE] [DEBUG MODE] Mock analysis pipeline completed successfully")
except Exception as e:
print(f"[CONSOLE] [DEBUG MODE] Error in mock analysis: {str(e)}")
yield (None, f"❌ Error in debug mode: {str(e)}", None, eval_dir)
raise gr.Error(f"Debug mode error: {str(e)}")
# Create the Gradio interface
def create_interface():
global scheduler, dataset_dir, jsonl_path
with gr.Blocks(title="Deceptive Pattern Detector", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 30px;">
<h1>πŸ” Deceptive Pattern Detector</h1>
<p style="font-size: 18px; color: #666;">
Enter a website URL to analyze for deceptive design patterns
</p>
<div style="margin-top: 12px;">
<a href="https://arxiv.org/abs/2411.07441" target="_blank" rel="noopener noreferrer" aria-label="Read our arXiv paper"
style="display: inline-block; padding: 10px 14px; border-radius: 999px; background: #2563eb; color: white; text-decoration: none; font-weight: 600; box-shadow: 0 6px 16px rgba(37, 99, 235, 0.35);">
πŸ“„ Read our paper on arXiv
</a>
</div>
</div>
""")
# How to Use section - collapsible accordion with tab format
with gr.Tabs():
with gr.TabItem("πŸ”’ Privacy Policy"):
gr.HTML("""
<div style="padding: 20px; background-color: var(--block-background-fill); border-radius: 8px; border-left: 4px solid #28a745; border: 1px solid var(--border-color-primary);">
<div style="display: flex; gap: 20px; flex-wrap: wrap; align-items: stretch;">
<!-- Left Column: Privacy Highlights -->
<div style="flex: 1; min-width: 300px; display: flex; flex-direction: column;">
<div style="margin-bottom: 16px; padding: 16px; background-color: var(--block-background-fill); border-radius: 6px; border: 1px solid #10b981; opacity: 0.9;">
<div style="margin-bottom: 12px;">
<strong style="color: #10b981;">πŸ” API Keys:</strong> <span style="color: var(--body-text-color); font-size: 14px; line-height: 1.6;">We <strong style="color: #dc2626;">NEVER</strong> save or store your Gemini API keys. They are only used temporarily in memory during your analysis session and are immediately discarded.</span>
</div>
<div style="margin-bottom: 0;">
<strong style="color: #8b5cf6;">🚫 No PII Storage:</strong> <span style="color: var(--body-text-color); font-size: 14px; line-height: 1.6;">We do not store any Personally Identifiable Information (PII), including API keys, user identifiers, or sensitive data from analyzed websites.</span>
</div>
</div>
</div>
<!-- Right Column: Data Usage -->
<div style="flex: 1; min-width: 300px; display: flex; flex-direction: column; gap: 12px;">
<div style="padding: 16px; background-color: var(--block-background-fill); border-radius: 6px; border: 1px solid #f59e0b; opacity: 0.9; flex-grow: 1;">
<strong style="color: #f59e0b;">🌐 Website URLs & Classifications:</strong>
<ul style="margin: 8px 0; padding-left: 20px; color: var(--body-text-color); font-size: 14px; line-height: 1.6;">
<li style="margin-bottom: 6px;">We <strong style="color: #f59e0b;">may</strong> save the websites you analyze (URLs only) and their corresponding deceptive pattern classifications</li>
<li style="margin-bottom: 6px;">This data helps us improve our detection system and fine-tune our framework</li>
<li style="margin-bottom: 6px;">No personal information is linked to this data</li>
<li>This data is used solely for research and system improvement purposes</li>
</ul>
</div>
</div>
</div>
<div style="margin-top: 20px; padding: 15px; background-color: var(--block-background-fill); border-radius: 6px; border: 1px solid #10b981; text-align: center;">
<strong style="color: #10b981;">βœ… Summary:</strong> <span style="color: var(--body-text-color); font-size: 14px;">Your API keys are never stored. Anonymized URL and classification data may be retained for system improvement.</span>
</div>
</div>
""")
with gr.TabItem("ℹ️ How to Use"):
gr.HTML("""
<div style="padding: 20px; background-color: var(--block-background-fill); border-radius: 8px; border-left: 4px solid #2196F3; border: 1px solid var(--border-color-primary);">
<div style="display: flex; gap: 20px; flex-wrap: wrap; align-items: stretch;">
<!-- Left Column: Steps -->
<div style="flex: 1; min-width: 300px; display: flex; flex-direction: column;">
<ol style="margin: 0; color: var(--body-text-color); line-height: 1.6; flex-grow: 1;">
<li style="margin-bottom: 12px;"><strong>Enter URL:</strong> Provide the website URL you want to analyze (must start with http:// or https://)</li>
<li style="margin-bottom: 12px;"><strong>API Key:</strong> Enter your Google Gemini API key (get a free one at <a href="https://makersuite.google.com/app/apikey" target="_blank" style="color: #2196F3;">Google AI Studio</a>). We may make 1-2 Gemini-2.5-Pro API calls per analysis.</li>
<li style="margin-bottom: 12px;"><strong>Analyze:</strong> Click the analyze button and watch as the screenshot appears and the analysis runs</li>
<li style="margin-bottom: 12px;"><strong>Review:</strong> The annotated screenshot will show all elements with colored bounding boxes (light green for non-deceptive, various colors for deceptive patterns). Rerun the analysis if the detailed results and annotation mismatch.</li>
<li style="margin-bottom: 12px;"><strong>Note:</strong> E2E Analysis time may range from <5 sec to 5 mins based on various factors such as cloud infrastructure, demand, amount of text on page</li>
</ol>
</div>
<!-- Right Column: Disclaimer and Technical Info -->
<div style="flex: 1; min-width: 300px; display: flex; flex-direction: column; gap: 12px;">
<div style="padding: 12px; background-color: var(--block-background-fill); border-radius: 4px; border: 1px solid var(--border-color-accent); opacity: 0.9; flex-grow: 1;">
<strong style="color: #ff9800;">⚠️ Disclaimer:</strong> <span style="color: var(--body-text-color); font-size: 14px; line-height: 1.6;">This tool uses AI analysis and may not catch all deceptive patterns or may flag legitimate design elements. Use as a supplementary guide only.</span>
</div>
<div style="padding: 12px; background-color: var(--block-background-fill); border-radius: 4px; border: 1px solid var(--border-color-accent); opacity: 0.9; flex-grow: 1;">
<strong style="color: var(--body-text-color);">πŸ“· Screenshot Method:</strong>
<ul style="margin: 8px 0; padding-left: 20px; color: var(--body-text-color); font-size: 14px; line-height: 1.6;">
<li style="margin-bottom: 6px;"><strong>Selenium WebDriver:</strong> Automatic screenshots using Chrome in headless mode (~1280x1080)</li>
<li><span style="color: #dc2626; font-weight: bold;">Static capture of front page only (no scrolling), with 5 second wait from initial page load</span></li>
</ul>
</div>
</div>
</div>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
# Input section
gr.Markdown("### 🌐 Website Analysis")
# with gr.Tabs():
# with gr.TabItem("πŸ“± URL Analysis"):
url_input = gr.Textbox(
type="text",
label="Website URL (Required)",
placeholder="https://example.com"
)
gemini_api_key = gr.Textbox(
type="password",
label="Gemini API Key (Required)",
placeholder="Enter your Google Gemini API key...",
info='Create your free API key by visiting <a href="https://makersuite.google.com/app/apikey" target="_blank" style="color: #2196F3;">Google AI Studio</a>'
)
# Expandable guide for getting API key
with gr.Accordion("❓ How to get a free Gemini API key (Step-by-step guide)", open=False):
gr.HTML("""
<div style="padding: 15px; background-color: var(--block-background-fill); border-radius: 8px; border-left: 4px solid #4CAF50;">
<h4 style="color: var(--body-text-color); margin-top: 0; margin-bottom: 15px;">πŸ”‘ Get Your Free Google Gemini API Key:</h4>
<div style="margin-bottom: 20px;">
<ol style="color: var(--body-text-color); line-height: 1.8; margin: 0; padding-left: 20px;">
<li style="margin-bottom: 10px;">
<strong>Visit Google AI Studio:</strong> Go to
<a href="https://makersuite.google.com/app/apikey" target="_blank" style="color: #2196F3; text-decoration: underline;">
https://makersuite.google.com/app/apikey
</a>
</li>
<li style="margin-bottom: 10px;">
<strong>Sign in:</strong> Use your Google account to sign in (create one if needed)
</li>
<li style="margin-bottom: 10px;">
<strong>Create API Key:</strong> Click the "Create API Key" button
</li>
<li style="margin-bottom: 10px;">
<strong>Select Project:</strong> Choose an existing Google Cloud project or create a new one
</li>
<li style="margin-bottom: 10px;">
<strong>Copy Key:</strong> Once generated, copy the API key to your clipboard
</li>
<li style="margin-bottom: 10px;">
<strong>Paste Here:</strong> Paste the API key into the field above and start analyzing!
</li>
</ol>
</div>
<div style="padding: 12px; background-color: var(--background-fill-secondary); border-radius: 6px; border: 1px solid var(--border-color-accent);">
<div style="display: flex; align-items: center; gap: 8px; margin-bottom: 8px;">
<span style="font-size: 16px;">πŸ’‘</span>
<strong style="color: var(--body-text-color);">Pro Tips:</strong>
</div>
<ul style="color: var(--body-text-color); font-size: 14px; line-height: 1.6; margin: 0; padding-left: 20px;">
<li style="margin-bottom: 6px;">This tool typically uses 1-2 API calls per analysis</li>
<li>Your API key is never <strong>STORED</strong> by this application</li>
</ul>
</div>
</div>
""")
analyze_url_btn = gr.Button(
"πŸ” Analyze Website URL",
variant="primary",
size="lg"
)
# Status moved to left column
gr.Markdown("### πŸ“Š Analysis Status")
status_text = gr.Textbox(
label="Status",
value="Ready to analyze...",
lines=2,
interactive=False
)
# Results display moved to left column
results_display = gr.HTML(
value="<div style='text-align: center; padding: 40px; color: var(--body-text-color); opacity: 0.7;'>Enter a URL and click analyze to see results here.</div>"
)
with gr.Column(scale=3):
# Screenshot section - only screenshot in right column
gr.Markdown("### πŸ“· Website Screenshot")
# Placeholder container for screenshot
screenshot_placeholder = gr.HTML(
value="""
<div style="
border: 2px dashed var(--border-color-primary);
border-radius: 12px;
padding: 60px 20px;
text-align: center;
background-color: var(--block-background-fill);
background-image:
radial-gradient(circle at 20% 50%, var(--border-color-accent) 0%, transparent 50%),
radial-gradient(circle at 80% 50%, var(--border-color-accent) 0%, transparent 50%);
background-size: 100px 100px;
background-position: 0 0, 50px 50px;
min-height: 400px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
opacity: 0.8;
">
<div style="
background-color: var(--block-background-fill);
padding: 20px 30px;
border-radius: 8px;
border: 1px solid var(--border-color-primary);
backdrop-filter: blur(10px);
">
<h3 style="
color: var(--body-text-color);
margin: 0 0 10px 0;
font-size: 20px;
">πŸ“· Screenshot Preview Area</h3>
<p style="
color: var(--body-text-color);
margin: 0;
opacity: 0.8;
font-size: 16px;
line-height: 1.5;
">
Website screenshots will appear here during analysis.<br>
<span style="font-size: 14px; opacity: 0.7;">
Original screenshot β†’ Annotated with deceptive pattern highlights
</span>
</p>
</div>
</div>
""",
visible=True
)
screenshot_display = gr.Image(
label="Website Screenshot",
visible=False,
interactive=False
)
# Detailed results table spanning both columns (full width)
results_dataframe = gr.Dataframe(
label="Detailed Results (Scroll right to see all columns)",
visible=False,
wrap=True,
column_widths=["14%", "5%", "8%", "8%", "3%", "11%", "11%", "9%", "9%", "19%"] # First column (Text) gets 15% width, others auto-sized
)
# Download button for results CSV
download_btn = gr.DownloadButton(
label="πŸ“₯ Download Results as CSV",
visible=False,
variant="secondary"
)
# Event handlers
def save_results_to_csv(df, url):
"""Save the results dataframe to a CSV file named after the analyzed site."""
if df is None or (isinstance(df, pd.DataFrame) and df.empty):
return None
# Create a safe filename from the URL
safe_filename = url.lower().replace("http://", "").replace("https://", "").strip().replace("www.", "") \
.replace(".", "_") \
.replace("/", "_") \
.replace("-", "_") \
.replace("=", "_") \
.replace("?", "_") \
.replace("&", "_") \
.replace("%", "_") \
.replace(":", "_") \
.replace("#", "_") \
.replace("'", "_") \
.replace('"', "_") \
.replace("*", "_") \
.replace("<", "_") \
.replace(">", "_") \
.replace("|", "_") \
.replace(" ", "_")
# Trim if too long and ensure it doesn't end with underscore
safe_filename = safe_filename[:100].rstrip("_")
# Create final filename
csv_filename = f"{safe_filename}.csv"
# Create a temporary file for download
temp_csv = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv', prefix='analysis_')
csv_path = temp_csv.name
temp_csv.close()
# Save dataframe to CSV
if isinstance(df, pd.DataFrame):
df.to_csv(csv_path, index=False)
else:
# If it's not a DataFrame, try to convert it
pd.DataFrame(df).to_csv(csv_path, index=False)
# Rename to the site-specific filename for download
final_path = os.path.join(os.path.dirname(csv_path), csv_filename)
shutil.copy(csv_path, final_path)
os.remove(csv_path)
print(f"[CONSOLE] CSV file created for download: {final_path} (filename: {csv_filename})")
return final_path
def handle_url_analysis(url, api_key):
"""Handle URL analysis with screenshot capture."""
print(f"[CONSOLE] handle_url_analysis called with URL: {url}")
print(f"[CONSOLE] API key provided: {'Yes' if api_key else 'No'}")
eval_dir_for_cleanup = None # Track eval_dir for cleanup
try:
print(f"[CONSOLE] Starting analysis generator for URL: {url}")
# Clear any previous error messages at the start of new analysis
yield (
"πŸš€ Starting new analysis...",
gr.update(visible=True), # Show placeholder initially
gr.update(visible=False), # Hide screenshot initially
"<div style='text-align: center; padding: 20px; color: var(--body-text-color); opacity: 0.7;'>Preparing analysis...</div>", # Clear previous errors
gr.update(visible=False), # Hide dataframe
gr.update(visible=False) # Hide download button
)
analysis_generator = take_screenshot_and_process(url, api_key)
final_result = None
final_image = None
original_image = None # Track original screenshot separately for dataset upload
print(f"[CONSOLE] Processing generator results...")
for result_tuple in analysis_generator:
if len(result_tuple) == 4:
dataframe_result, status_update, image_path, eval_dir = result_tuple
eval_dir_for_cleanup = eval_dir # Store for cleanup
if dataframe_result is None:
# Progress update - show screenshot if available and clear any previous error messages
if image_path:
# Store the first image as original (before annotation)
if original_image is None:
original_image = image_path
final_image = image_path # Update the current image for display
yield (
status_update,
gr.update(visible=False), # Hide placeholder
gr.update(value=image_path, visible=True, label="πŸ“· Original Screenshot"), # Show original screenshot
"<div style='text-align: center; padding: 20px; color: var(--body-text-color); opacity: 0.7;'>Analysis in progress...</div>", # Clear previous errors
gr.update(visible=False),
gr.update(visible=False) # Hide download button
)
else:
yield (
status_update,
gr.update(visible=True), # Keep placeholder visible
gr.update(visible=False), # Hide screenshot
"<div style='text-align: center; padding: 20px; color: var(--body-text-color); opacity: 0.7;'>Analysis in progress...</div>", # Clear previous errors
gr.update(visible=False),
gr.update(visible=False) # Hide download button
)
else:
print(f"[CONSOLE] Received final result with {len(dataframe_result)} rows")
final_result = dataframe_result
final_status = status_update
final_image = image_path # This will be the annotated image for display
# Store the first image as original if not already set
if original_image is None:
original_image = image_path
# Clear any previous errors when we get successful results
yield (
final_status,
gr.update(visible=False), # Hide placeholder
gr.update(value=final_image, visible=True, label="🎯 Annotated Screenshot (Analysis Complete)") if final_image else gr.update(visible=False),
"<div style='text-align: center; padding: 20px; color: var(--body-text-color); opacity: 0.7;'>Processing results...</div>", # Clear previous errors
gr.update(visible=False),
gr.update(visible=False) # Hide download button
)
break
# Generator approach provides real-time notifications automatically
if final_result is not None:
print(f"[CONSOLE] Creating result display HTML")
results_html = create_result_display(final_result)
print(f"[CONSOLE] Yielding final results to UI")
save_url = url.lower().replace("http://", "").replace("https://", "").strip().replace("www.", "") \
.replace(".", "_x01x_") \
.replace("/", "_x02x_") \
.replace("-", "_x03x_") \
.replace("=", "_x04x_") \
.replace("?", "_x05x_") \
.replace("&", "_x06x_") \
.replace("%", "_x07x_") \
.replace(":", "_x08x_") \
.replace("#", "_x09x_") \
.replace("'", "_x10x_") \
.replace('"', "_x11x_") \
.replace("*", "_x12x_") \
.replace("<", "_x13x_") \
.replace(">", "_x14x_") \
.replace("|", "_x15x_")
save_url = save_url + "__" + str(uuid.uuid4()).replace("-", "_")
save_dict = {
save_url: final_result
}
# Create DataFrame for image dataset with "id" and "image" columns
# Use original screenshot (not annotated) for dataset upload
dataset_image_path = original_image if original_image else final_image
annotated_image_path = final_image if final_image else original_image
print(f"[CONSOLE] Using image for dataset upload: {dataset_image_path} (original: {original_image}, final: {final_image})")
print(f"[CONSOLE] Using annotated image for display: {annotated_image_path} (original: {original_image}, final: {final_image})")
if dataset_image_path and os.path.exists(dataset_image_path) and annotated_image_path and os.path.exists(annotated_image_path):
try:
# Load the original image using PIL
pil_image = Image.open(dataset_image_path)
pil_final = Image.open(annotated_image_path)
# Convert to RGB if needed (removes alpha channel if present)
if pil_image.mode != 'RGB':
pil_image = pil_image.convert('RGB')
if pil_final.mode != 'RGB':
pil_final = pil_final.convert('RGB')
image_df = pd.DataFrame([{"id": save_url, "image": pil_image, "annotated_image": pil_final}])
print(f"[CONSOLE] Loaded original image for dataset: {dataset_image_path} -> PIL Image {pil_image.size}")
except Exception as e:
print(f"[CONSOLE] Error loading image {dataset_image_path}: {e}")
# Fallback to path if image loading fails
image_df = pd.DataFrame([{"id": save_url, "image": dataset_image_path, "annotated_image": annotated_image_path}])
else:
print(f"[CONSOLE] Warning: Image path not found or invalid: {dataset_image_path}")
image_df = pd.DataFrame([{"id": save_url, "image": None, "annotated_image": None}])
if not DEBUG_MODE:
dataset_upload.update_dataset_with_new_splits(save_dict)
dataset_upload.update_dataset_with_new_images(image_df, scheduler=scheduler, dataset_dir=dataset_dir, jsonl_path=jsonl_path)
# Prepare CSV for download
csv_file_path = save_results_to_csv(final_result, url)
# Show final results with annotated screenshot
yield (
final_status,
gr.update(visible=False), # Hide placeholder
gr.update(value=final_image, visible=True, label="🎯 Annotated Screenshot (Analysis Complete)") if final_image else gr.update(visible=False),
results_html,
gr.update(value=final_result, visible=True),
gr.update(value=csv_file_path, visible=True) if csv_file_path else gr.update(visible=False)
)
# Clean up temporary files after successful display
# Add small delay to let frontend finish loading images before cleanup
time.sleep(5) # Give frontend time to load the images
cleanup_temp_directory(eval_dir_for_cleanup)
else:
print(f"[CONSOLE] No final result generated, analysis failed")
# Clean up temp files even on failure
cleanup_temp_directory(eval_dir_for_cleanup)
yield (
"❌ Analysis failed - no results generated",
gr.update(visible=True), # Show placeholder again
gr.update(visible=False, label="Website Screenshot"), # Hide screenshot and reset label
"<div style='color: #ef4444; text-align: center; background-color: var(--block-background-fill); padding: 15px; border-radius: 8px; border: 1px solid #ef4444; opacity: 0.9;'>Analysis failed. Please check your Gemini API key and try again.</div>",
gr.update(visible=False),
gr.update(visible=False) # Hide download button
)
except Exception as e:
print(f"[CONSOLE] Exception in handle_url_analysis: {str(e)}")
print(f"[CONSOLE] Exception type: {type(e).__name__}")
# Clean up temp files on exception
cleanup_temp_directory(eval_dir_for_cleanup)
error_msg = f"❌ Error: {str(e)}"
yield (
error_msg,
gr.update(visible=True), # Show placeholder again
gr.update(visible=False, label="Website Screenshot"), # Hide screenshot and reset label
f"<div style='color: #ef4444; text-align: center; background-color: var(--block-background-fill); padding: 15px; border-radius: 8px; border: 1px solid #ef4444; opacity: 0.9;'>{error_msg}</div>",
gr.update(visible=False),
gr.update(visible=False) # Hide download button
)
if e.__class__ == gr.exceptions.Error:
raise e
# Connect the analyze buttons
print(f"[CONSOLE] Setting up button click handlers")
analyze_url_btn.click(
fn=handle_url_analysis,
inputs=[url_input, gemini_api_key],
outputs=[status_text, screenshot_placeholder, screenshot_display, results_display, results_dataframe, download_btn],
show_progress="full"
)
return demo
# Create unique directory for this session using temp directory
session_id = str(uuid.uuid4())[:8]
temp_base = Path(tempfile.gettempdir()) / "deceptive_pattern_images"
dataset_dir = temp_base / f"{session_id}"
dataset_dir.mkdir(parents=True, exist_ok=True)
jsonl_path = dataset_dir / "metadata.jsonl"
scheduler = CommitScheduler(
repo_id=os.environ["IMAGE_REPO_ID"],
repo_type="dataset",
folder_path=dataset_dir,
path_in_repo=dataset_dir.name,
token=os.environ["HF_TOKEN"],
every=1
)
# Create and launch the interface
if __name__ == "__main__":
# import torch
#
# print(f"Is CUDA available: {torch.cuda.is_available()}")
# print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
from py_files.utils import decrypt_system_prompts
if os.path.exists("./system_prompt.txt") and os.path.exists("./system_prompt_thinking.txt"):
print(f"[CONSOLE] System prompts already decrypted, skipping decryption step")
else:
print(f"[CONSOLE] Decrypting system prompts...")
if not decrypt_system_prompts():
print(f"[CONSOLE] Failed to decrypt system prompts, exiting...")
exit(1)
# ===== DEBUG MODE CONFIGURATION =====
# Check if debug mode is enabled via environment variable
debug_mode_env = os.environ.get("DEBUG_MODE", "false").lower()
if debug_mode_env in ["true", "1", "yes", "on"]:
DEBUG_MODE = True
print(f"[CONSOLE] ===== DEBUG MODE ENABLED =====")
# Get debug configuration from environment variables
debug_table_split = os.environ.get("DEBUG_TABLE_SPLIT", "")
debug_image_id = os.environ.get("DEBUG_TABLE_SPLIT", "")
print(f"[CONSOLE] [DEBUG MODE] Table Split: {debug_table_split}")
print(f"[CONSOLE] [DEBUG MODE] Image ID: {debug_image_id}")
# Load debug data from HuggingFace datasets
try:
repo_id = os.environ.get("REPO_ID")
image_repo_id = os.environ.get("IMAGE_REPO_ID")
if not repo_id or not image_repo_id:
print(f"[CONSOLE] [DEBUG MODE] ERROR: REPO_ID or IMAGE_REPO_ID not set in environment")
print(f"[CONSOLE] [DEBUG MODE] REPO_ID: {repo_id}")
print(f"[CONSOLE] [DEBUG MODE] IMAGE_REPO_ID: {image_repo_id}")
else:
print(f"[CONSOLE] [DEBUG MODE] Loading data from REPO_ID: {repo_id}")
print(f"[CONSOLE] [DEBUG MODE] Loading images from IMAGE_REPO_ID: {image_repo_id}")
# Load table data
DEBUG_TABLE_DF = load_debug_table_data(repo_id, debug_table_split)
print(f"[CONSOLE] [DEBUG MODE] Table loaded: {len(DEBUG_TABLE_DF) if DEBUG_TABLE_DF is not None else 0} rows")
# Load images
DEBUG_ORIGINAL_IMAGE, DEBUG_ANNOTATED_IMAGE = load_debug_images(image_repo_id, debug_image_id)
print(f"[CONSOLE] [DEBUG MODE] Original image: {DEBUG_ORIGINAL_IMAGE}")
print(f"[CONSOLE] [DEBUG MODE] Annotated image: {DEBUG_ANNOTATED_IMAGE}")
if DEBUG_TABLE_DF is None or DEBUG_ORIGINAL_IMAGE is None:
print(f"[CONSOLE] [DEBUG MODE] WARNING: Failed to load debug data, debug mode may not work correctly")
except Exception as e:
print(f"[CONSOLE] [DEBUG MODE] ERROR loading debug data: {e}")
print(f"[CONSOLE] [DEBUG MODE] Debug mode will use fallback dummy data")
else:
print(f"[CONSOLE] Debug mode is OFF (set DEBUG_MODE=true to enable)")
print(f"[CONSOLE] ===== STARTING GRADIO APPLICATION =====")
print(f"[CONSOLE] Creating Gradio interface...")
demo = create_interface()
print(f"[CONSOLE] Interface created successfully")
print(f"[CONSOLE] Launching server on 0.0.0.0:7860...")
demo.queue().launch(server_name="0.0.0.0", server_port=7860)