Spaces:
Sleeping
Sleeping
Added model and threshold choosing
Browse files- app.py +45 -18
- flagged/log.csv +0 -2
- best.pt → yolo-8m-dota.pt +0 -0
- yolo-8n-dota.pt +3 -0
- yolo-8s-dota.pt +3 -0
app.py
CHANGED
|
@@ -1,30 +1,57 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from ultralytics import YOLO
|
| 3 |
import numpy as np
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
# Load YOLO model
|
| 7 |
-
model = YOLO('./best.pt')
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
| 10 |
|
| 11 |
-
def process_image(input_image):
|
| 12 |
-
if input_image is
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
im_array = r.plot()
|
| 17 |
-
im_array = im_array.astype(np.uint8)
|
| 18 |
-
return im_array
|
| 19 |
|
| 20 |
-
# Create Gradio Interface
|
| 21 |
iface = gr.Interface(
|
| 22 |
fn=process_image,
|
| 23 |
-
inputs=
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
title="YOLOv8-obb aerial detection",
|
| 26 |
-
description=
|
| 27 |
-
examples=example_list
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
iface.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
from ultralytics import YOLO
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
model_options = ["yolo-8n-dota.pt", "yolo-8s-dota.pt", "yolo-8m-dota.pt"]
|
| 7 |
+
model_names = ["Nano", "Small", "Medium"]
|
| 8 |
+
models = [YOLO(option) for option in model_options]
|
| 9 |
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
| 10 |
|
| 11 |
+
def process_image(input_image, model_name, conf):
|
| 12 |
+
if input_image is None:
|
| 13 |
+
return None, "No image"
|
| 14 |
+
|
| 15 |
+
if model_name is None:
|
| 16 |
+
model_name = model_names[0]
|
| 17 |
+
|
| 18 |
+
if conf is None:
|
| 19 |
+
conf = 0.6
|
| 20 |
+
|
| 21 |
+
model_index = model_names.index(model_name)
|
| 22 |
+
model = models[model_index]
|
| 23 |
+
|
| 24 |
+
results = model.predict(input_image, conf=conf)
|
| 25 |
+
class_counts = {}
|
| 26 |
+
class_counts_str = "Class Counts:\n"
|
| 27 |
+
|
| 28 |
+
for r in results:
|
| 29 |
+
im_array = r.plot()
|
| 30 |
+
im_array = im_array.astype(np.uint8)
|
| 31 |
+
|
| 32 |
+
if len(r.obb.cls) == 0: # If no objects are detected
|
| 33 |
+
return None, "No objects detected."
|
| 34 |
+
|
| 35 |
+
for cls in r.obb.cls:
|
| 36 |
+
class_name = r.names[cls.item()]
|
| 37 |
+
class_counts[class_name] = class_counts.get(class_name, 0) + 1
|
| 38 |
+
|
| 39 |
+
for cls, count in class_counts.items():
|
| 40 |
+
class_counts_str += f"\n{cls}: {count}"
|
| 41 |
|
| 42 |
+
return im_array, class_counts_str
|
|
|
|
|
|
|
|
|
|
| 43 |
|
|
|
|
| 44 |
iface = gr.Interface(
|
| 45 |
fn=process_image,
|
| 46 |
+
inputs=[
|
| 47 |
+
gr.Image(),
|
| 48 |
+
gr.Radio(model_names, label="Choose model", value=model_names[0]),
|
| 49 |
+
gr.Slider(minimum=0.2, maximum=1.0, step=0.1, label="Confidence Threshold", value=0.6)
|
| 50 |
+
],
|
| 51 |
+
outputs=["image", gr.Textbox(label="More info")],
|
| 52 |
title="YOLOv8-obb aerial detection",
|
| 53 |
+
description='''YOLOv8-obb trained on DOTAv1.5''',
|
| 54 |
+
examples=example_list
|
| 55 |
+
)
|
| 56 |
|
| 57 |
+
iface.launch()
|
|
|
flagged/log.csv
DELETED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
name,intensity,output,flag,username,timestamp
|
| 2 |
-
aasd,99,"Hello, aasd!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!",,,2024-02-20 13:01:37.633520
|
|
|
|
|
|
|
|
|
best.pt → yolo-8m-dota.pt
RENAMED
|
File without changes
|
yolo-8n-dota.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ee44108137e10e13a377e2a75175af1476c355e04217cc38e3e8e2f4cb6fd7c
|
| 3 |
+
size 6465538
|
yolo-8s-dota.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4395070f75af8464e3c4d7e7d83eda61d19d6cd5ea6c62ca1898844a8e0ad54c
|
| 3 |
+
size 23169282
|