Spaces:
Running
Running
| """ | |
| Gradio UI for Text-to-Speech using HiggsAudioServeEngine | |
| """ | |
| import argparse | |
| import base64 | |
| import os | |
| import uuid | |
| import json | |
| from typing import Optional | |
| import gradio as gr | |
| from loguru import logger | |
| import numpy as np | |
| import time | |
| from functools import lru_cache | |
| import re | |
| import spaces | |
| import torch | |
| # Import HiggsAudio components | |
| from higgs_audio.serve.serve_engine import HiggsAudioServeEngine | |
| from higgs_audio.data_types import ChatMLSample, AudioContent, Message | |
| # Global engine instance | |
| engine = None | |
| # Set up default paths and resources | |
| EXAMPLES_DIR = os.path.join(os.path.dirname(__file__), "examples") | |
| os.makedirs(EXAMPLES_DIR, exist_ok=True) | |
| # Default model configuration | |
| DEFAULT_MODEL_PATH = "bosonai/higgs-audio-v2-generation-3B-staging" | |
| DEFAULT_AUDIO_TOKENIZER_PATH = "bosonai/higgs-audio-v2-tokenizer-staging" | |
| SAMPLE_RATE = 24000 | |
| DEFAULT_SYSTEM_PROMPT = ( | |
| "Generate audio following instruction.\n\n" | |
| "<|scene_desc_start|>\n" | |
| "Audio is recorded from a quiet room.\n" | |
| "<|scene_desc_end|>" | |
| ) | |
| DEFAULT_STOP_STRINGS = ["<|end_of_text|>", "<|eot_id|>"] | |
| # Predefined examples for system and input messages | |
| PREDEFINED_EXAMPLES = { | |
| "None": {"system_prompt": "", "input_text": "", "description": "Default example"}, | |
| "multispeaker-interleave": { | |
| "system_prompt": "Generate audio following instruction.\n\n" | |
| "<|scene_desc_start|>\n" | |
| "SPEAKER0: vocal fry;feminism;slightly fast\n" | |
| "SPEAKER1: masculine;moderate;moderate pitch;monotone;mature\n" | |
| "In this scene, a group of adventurers is debating whether to investigate a potentially dangerous situation.\n" | |
| "<|scene_desc_end|>", | |
| "input_text": "<|generation_instruction_start|>\nGenerate interleaved transcript and audio that lasts for around 10 seconds.\n<|generation_instruction_end|>", | |
| "description": "Multispeaker interleave example", | |
| }, | |
| "single-speaker": { | |
| "system_prompt": "Generate audio following instruction.\n\n" | |
| "<|scene_desc_start|>\n" | |
| "SPEAKER0: british accent\n" | |
| "<|scene_desc_end|>", | |
| "input_text": "Hey, everyone! Welcome back to Tech Talk Tuesdays.\n" | |
| "It's your host, Alex, and today, we're diving into a topic that's become absolutely crucial in the tech world — deep learning.\n" | |
| "And let's be honest, if you've been even remotely connected to tech, AI, or machine learning lately, you know that deep learning is everywhere.\n" | |
| "\n" | |
| "So here's the big question: Do you want to understand how deep learning works?\n", | |
| "description": "Single speaker example", | |
| }, | |
| "single-speaker-zh": { | |
| "system_prompt": "Generate audio following instruction.\n\n" | |
| "<|scene_desc_start|>\n" | |
| "\nAudio is recorded from a quiet room.\n" | |
| "\nSPEAKER0: feminine\n" | |
| "<|scene_desc_end|>", | |
| "input_text": "大家好, 欢迎收听本期的跟李沐学AI. 今天沐哥在忙着洗数据, 所以由我, 希格斯主播代替他讲这期视频.\n" | |
| "今天我们要聊的是一个你绝对不能忽视的话题: 多模态学习.\n" | |
| "那么, 问题来了, 你真的了解多模态吗? 你知道如何自己动手构建多模态大模型吗.\n" | |
| "或者说, 你能察觉到我其实是个机器人吗?", | |
| "description": "Single speaker with Chinese text", | |
| }, | |
| } | |
| def encode_audio_file(file_path): | |
| """Encode an audio file to base64.""" | |
| with open(file_path, "rb") as audio_file: | |
| return base64.b64encode(audio_file.read()).decode("utf-8") | |
| def get_current_device(): | |
| """Get the current device.""" | |
| return "cuda" if torch.cuda.is_available() else "cpu" | |
| def load_voice_presets(): | |
| """Load the voice presets from the voice_examples directory.""" | |
| try: | |
| with open( | |
| os.path.join(os.path.dirname(__file__), "voice_examples", "config.json"), | |
| "r", | |
| ) as f: | |
| voice_dict = json.load(f) | |
| voice_presets = {k: v["transcript"] for k, v in voice_dict.items()} | |
| voice_presets["EMPTY"] = "No reference voice" | |
| logger.info(f"Loaded voice presets: {list(voice_presets.keys())}") | |
| return voice_presets | |
| except FileNotFoundError: | |
| logger.warning("Voice examples config file not found. Using empty voice presets.") | |
| return {"EMPTY": "No reference voice"} | |
| except Exception as e: | |
| logger.error(f"Error loading voice presets: {e}") | |
| return {"EMPTY": "No reference voice"} | |
| def get_voice_present(voice_preset): | |
| """Get the voice path and text for a given voice preset.""" | |
| voice_path = os.path.join(os.path.dirname(__file__), "voice_examples", f"{voice_preset}.wav") | |
| if not os.path.exists(voice_path): | |
| logger.warning(f"Voice preset file not found: {voice_path}") | |
| return None, "Voice preset not found" | |
| text = VOICE_PRESETS.get(voice_preset, "No transcript available") | |
| return voice_path, text | |
| def initialize_engine(model_path, audio_tokenizer_path) -> bool: | |
| """Initialize the HiggsAudioServeEngine.""" | |
| global engine | |
| try: | |
| logger.info(f"Initializing engine with model: {model_path} and audio tokenizer: {audio_tokenizer_path}") | |
| engine = HiggsAudioServeEngine( | |
| model_name_or_path=model_path, | |
| audio_tokenizer_name_or_path=audio_tokenizer_path, | |
| device=get_current_device(), | |
| ) | |
| logger.info(f"Successfully initialized HiggsAudioServeEngine with model: {model_path}") | |
| return True | |
| except Exception as e: | |
| logger.error(f"Failed to initialize engine: {e}") | |
| return False | |
| def check_return_audio(audio_wv: np.ndarray): | |
| # check if the audio returned is all silent | |
| if np.all(audio_wv == 0): | |
| logger.warning("Audio is silent, returning None") | |
| def process_text_output(text_output: str): | |
| # remove all the continuous <|AUDIO_OUT|> tokens with a single <|AUDIO_OUT|> | |
| text_output = re.sub(r"(<\|AUDIO_OUT\|>)+", r"<|AUDIO_OUT|>", text_output) | |
| return text_output | |
| def prepare_chatml_sample( | |
| voice_present: str, | |
| text: str, | |
| reference_audio: Optional[str] = None, | |
| reference_text: Optional[str] = None, | |
| system_prompt: str = DEFAULT_SYSTEM_PROMPT, | |
| ): | |
| """Prepare a ChatMLSample for the HiggsAudioServeEngine.""" | |
| messages = [] | |
| # Add system message if provided | |
| if len(system_prompt) > 0: | |
| messages.append(Message(role="system", content=system_prompt)) | |
| # Add reference audio if provided | |
| audio_base64 = None | |
| ref_text = "" | |
| if reference_audio: | |
| # Custom reference audio | |
| audio_base64 = encode_audio_file(reference_audio) | |
| ref_text = reference_text or "" | |
| elif voice_present != "EMPTY": | |
| # Voice preset | |
| voice_path, ref_text = get_voice_present(voice_present) | |
| if voice_path is None: | |
| logger.warning(f"Voice preset {voice_present} not found, skipping reference audio") | |
| else: | |
| audio_base64 = encode_audio_file(voice_path) | |
| # Only add reference audio if we have it | |
| if audio_base64 is not None: | |
| # Add user message with reference text | |
| messages.append(Message(role="user", content=ref_text)) | |
| # Add assistant message with audio content | |
| audio_content = AudioContent(raw_audio=audio_base64, audio_url="") | |
| messages.append(Message(role="assistant", content=[audio_content])) | |
| # Add the main user message | |
| messages.append(Message(role="user", content=text)) | |
| return ChatMLSample(messages=messages) | |
| def text_to_speech( | |
| text, | |
| voice_preset, | |
| reference_audio=None, | |
| reference_text=None, | |
| max_completion_tokens=1024, | |
| temperature=1.0, | |
| top_p=0.95, | |
| top_k=50, | |
| system_prompt=DEFAULT_SYSTEM_PROMPT, | |
| stop_strings=None, | |
| ): | |
| """Convert text to speech using HiggsAudioServeEngine.""" | |
| global engine | |
| if engine is None: | |
| initialize_engine(DEFAULT_MODEL_PATH, DEFAULT_AUDIO_TOKENIZER_PATH) | |
| try: | |
| # Prepare ChatML sample | |
| chatml_sample = prepare_chatml_sample(voice_preset, text, reference_audio, reference_text, system_prompt) | |
| # Convert stop strings format | |
| if stop_strings is None: | |
| stop_list = DEFAULT_STOP_STRINGS | |
| else: | |
| stop_list = [s for s in stop_strings["stops"] if s.strip()] | |
| request_id = f"tts-playground-{str(uuid.uuid4())}" | |
| logger.info( | |
| f"{request_id}: Generating speech for text: {text[:100]}..., \n" | |
| f"with parameters: temperature={temperature}, top_p={top_p}, top_k={top_k}, stop_list={stop_list}" | |
| ) | |
| start_time = time.time() | |
| # Generate using the engine | |
| response = engine.generate( | |
| chat_ml_sample=chatml_sample, | |
| max_new_tokens=max_completion_tokens, | |
| temperature=temperature, | |
| top_k=top_k if top_k > 0 else None, | |
| top_p=top_p, | |
| stop_strings=stop_list, | |
| ) | |
| generation_time = time.time() - start_time | |
| logger.info(f"{request_id}: Generated audio in {generation_time:.3f} seconds") | |
| gr.Info(f"Generated audio in {generation_time:.3f} seconds") | |
| # Process the response | |
| text_output = process_text_output(response.generated_text) | |
| if response.audio is not None: | |
| # Convert to int16 for Gradio | |
| audio_data = (response.audio * 32767).astype(np.int16) | |
| check_return_audio(audio_data) | |
| return text_output, (response.sampling_rate, audio_data) | |
| else: | |
| logger.warning("No audio generated") | |
| return text_output, None | |
| except Exception as e: | |
| error_msg = f"Error generating speech: {e}" | |
| logger.error(error_msg) | |
| gr.Error(error_msg) | |
| return f"❌ {error_msg}", None | |
| def create_ui(): | |
| my_theme = "JohnSmith9982/small_and_pretty" | |
| # Add custom CSS to disable focus highlighting on textboxes | |
| custom_css = """ | |
| .gradio-container input:focus, | |
| .gradio-container textarea:focus, | |
| .gradio-container select:focus, | |
| .gradio-container .gr-input:focus, | |
| .gradio-container .gr-textarea:focus, | |
| .gradio-container .gr-textbox:focus, | |
| .gradio-container .gr-textbox:focus-within, | |
| .gradio-container .gr-form:focus-within, | |
| .gradio-container *:focus { | |
| box-shadow: none !important; | |
| border-color: var(--border-color-primary) !important; | |
| outline: none !important; | |
| background-color: var(--input-background-fill) !important; | |
| } | |
| /* Override any hover effects as well */ | |
| .gradio-container input:hover, | |
| .gradio-container textarea:hover, | |
| .gradio-container select:hover, | |
| .gradio-container .gr-input:hover, | |
| .gradio-container .gr-textarea:hover, | |
| .gradio-container .gr-textbox:hover { | |
| border-color: var(--border-color-primary) !important; | |
| background-color: var(--input-background-fill) !important; | |
| } | |
| /* Style for checked checkbox */ | |
| .gradio-container input[type="checkbox"]:checked { | |
| background-color: var(--primary-500) !important; | |
| border-color: var(--primary-500) !important; | |
| } | |
| """ | |
| """Create the Gradio UI.""" | |
| with gr.Blocks(theme=my_theme, css=custom_css) as demo: | |
| gr.Markdown("# Higgs Audio Text-to-Speech Playground") | |
| # Main UI section | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| # Template selection dropdown | |
| template_dropdown = gr.Dropdown( | |
| label="Message examples", | |
| choices=list(PREDEFINED_EXAMPLES.keys()), | |
| value="None", | |
| info="Select a predefined example for system and input messages. Voice preset will be set to EMPTY when a example is selected.", | |
| ) | |
| system_prompt = gr.TextArea( | |
| label="System Prompt", | |
| placeholder="Enter system prompt to guide the model...", | |
| value=DEFAULT_SYSTEM_PROMPT, | |
| lines=2, | |
| ) | |
| input_text = gr.TextArea( | |
| label="Input Text", | |
| placeholder="Type the text you want to convert to speech...", | |
| lines=5, | |
| ) | |
| voice_preset = gr.Dropdown( | |
| label="Voice Preset", | |
| choices=list(VOICE_PRESETS.keys()), | |
| value="EMPTY", | |
| ) | |
| with gr.Accordion("Custom Reference (Optional)", open=False): | |
| reference_audio = gr.Audio(label="Reference Audio", type="filepath") | |
| reference_text = gr.TextArea( | |
| label="Reference Text (transcript of the reference audio)", | |
| placeholder="Enter the transcript of your reference audio...", | |
| lines=3, | |
| ) | |
| with gr.Accordion("Advanced Parameters", open=False): | |
| max_completion_tokens = gr.Slider( | |
| minimum=128, | |
| maximum=4096, | |
| value=1024, | |
| step=10, | |
| label="Max Completion Tokens", | |
| ) | |
| temperature = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.5, | |
| value=1.0, | |
| step=0.1, | |
| label="Temperature", | |
| ) | |
| top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top P") | |
| top_k = gr.Slider(minimum=-1, maximum=100, value=50, step=1, label="Top K") | |
| # Add stop strings component | |
| stop_strings = gr.Dataframe( | |
| label="Stop Strings", | |
| headers=["stops"], | |
| datatype=["str"], | |
| value=[[s] for s in DEFAULT_STOP_STRINGS], | |
| interactive=True, | |
| col_count=(1, "fixed"), | |
| ) | |
| submit_btn = gr.Button("Generate Speech", variant="primary", scale=1) | |
| with gr.Column(scale=2): | |
| output_text = gr.TextArea(label="Model Response", lines=2) | |
| # Audio output | |
| output_audio = gr.Audio(label="Generated Audio", interactive=False, autoplay=True) | |
| stop_btn = gr.Button("Stop Playback", variant="primary") | |
| # Example voice | |
| with gr.Row(): | |
| voice_samples_table = gr.Dataframe( | |
| headers=["Voice Preset", "Sample Text"], | |
| datatype=["str", "str"], | |
| value=[[preset, text] for preset, text in VOICE_PRESETS.items() if preset != "EMPTY"], | |
| interactive=False, | |
| ) | |
| sample_audio = gr.Audio(label="Voice Sample", visible=True) | |
| # Function to play voice sample when clicking on a row | |
| def play_voice_sample(evt: gr.SelectData): | |
| try: | |
| # Get the preset name from the clicked row | |
| preset_names = [preset for preset in VOICE_PRESETS.keys() if preset != "EMPTY"] | |
| if evt.index[0] < len(preset_names): | |
| preset = preset_names[evt.index[0]] | |
| voice_path, _ = get_voice_present(preset) | |
| if voice_path and os.path.exists(voice_path): | |
| return voice_path | |
| else: | |
| gr.Warning(f"Voice sample file not found for preset: {preset}") | |
| return None | |
| else: | |
| gr.Warning("Invalid voice preset selection") | |
| return None | |
| except Exception as e: | |
| logger.error(f"Error playing voice sample: {e}") | |
| gr.Error(f"Error playing voice sample: {e}") | |
| return None | |
| voice_samples_table.select(fn=play_voice_sample, outputs=[sample_audio]) | |
| # Function to handle template selection | |
| def apply_template(template_name): | |
| if template_name in PREDEFINED_EXAMPLES: | |
| template = PREDEFINED_EXAMPLES[template_name] | |
| return ( | |
| template["system_prompt"], # system_prompt | |
| template["input_text"], # input_text | |
| "EMPTY", # voice_preset (always set to EMPTY for examples) | |
| ) | |
| else: | |
| return ( | |
| gr.update(), | |
| gr.update(), | |
| gr.update(), | |
| ) # No change if template not found | |
| # Set up event handlers | |
| # Connect template dropdown to handler | |
| template_dropdown.change( | |
| fn=apply_template, | |
| inputs=[template_dropdown], | |
| outputs=[system_prompt, input_text, voice_preset], | |
| ) | |
| # Connect submit button to the TTS function | |
| submit_btn.click( | |
| fn=text_to_speech, | |
| inputs=[ | |
| input_text, | |
| voice_preset, | |
| reference_audio, | |
| reference_text, | |
| max_completion_tokens, | |
| temperature, | |
| top_p, | |
| top_k, | |
| system_prompt, | |
| stop_strings, | |
| ], | |
| outputs=[output_text, output_audio], | |
| api_name="generate_speech", | |
| ) | |
| # Stop button functionality | |
| stop_btn.click( | |
| fn=lambda: None, | |
| inputs=[], | |
| outputs=[output_audio], | |
| js="() => {const audio = document.querySelector('audio'); if(audio) audio.pause(); return null;}", | |
| ) | |
| return demo | |
| def main(): | |
| """Main function to parse arguments and launch the UI.""" | |
| global DEFAULT_MODEL_PATH, DEFAULT_AUDIO_TOKENIZER_PATH, VOICE_PRESETS | |
| parser = argparse.ArgumentParser(description="Gradio UI for Text-to-Speech using HiggsAudioServeEngine") | |
| parser.add_argument( | |
| "--device", | |
| type=str, | |
| default="cuda", | |
| choices=["cuda", "cpu"], | |
| help="Device to run the model on.", | |
| ) | |
| parser.add_argument("--host", type=str, default="0.0.0.0", help="Host for the Gradio interface.") | |
| parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio interface.") | |
| args = parser.parse_args() | |
| # Update default values if provided via command line | |
| VOICE_PRESETS = load_voice_presets() | |
| # Load model on startup | |
| result = initialize_engine(DEFAULT_MODEL_PATH, DEFAULT_AUDIO_TOKENIZER_PATH) | |
| # Exit if model loading failed | |
| if not result: | |
| logger.error("Failed to load model. Exiting.") | |
| return | |
| logger.info(f"Model loaded: {DEFAULT_MODEL_PATH}") | |
| # Create and launch the UI | |
| demo = create_ui() | |
| demo.launch(server_name=args.host, server_port=args.port) | |
| if __name__ == "__main__": | |
| main() | |