Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,20 +28,19 @@ DIST_THRESHOLD = float(os.getenv("DIST_THRESHOLD", 1.0))
|
|
| 28 |
MAX_CTX_WORDS = int(os.getenv("MAX_CTX_WORDS", 200))
|
| 29 |
|
| 30 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
| 31 |
-
|
| 32 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 33 |
|
| 34 |
-
print(f"
|
| 35 |
|
| 36 |
# ββ 2. Helpers ββ
|
| 37 |
def make_context_snippets(contexts, max_words=MAX_CTX_WORDS):
|
| 38 |
-
|
| 39 |
for c in contexts:
|
| 40 |
words = c.split()
|
| 41 |
if len(words) > max_words:
|
| 42 |
c = " ".join(words[:max_words]) + " ... [truncated]"
|
| 43 |
-
|
| 44 |
-
return
|
| 45 |
|
| 46 |
def chunk_text(text, max_tokens, stride=None):
|
| 47 |
words = text.split()
|
|
@@ -57,20 +56,25 @@ def chunk_text(text, max_tokens, stride=None):
|
|
| 57 |
# ββ 3. Load & preprocess passages ββ
|
| 58 |
def load_passages():
|
| 59 |
# 3.1 load raw corpora
|
| 60 |
-
|
| 61 |
-
|
| 62 |
trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
for ex in trivia_ds:
|
| 65 |
for fld in ("wiki_context", "search_context"):
|
| 66 |
txt = ex.get(fld) or ""
|
| 67 |
-
if txt:
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 72 |
-
max_tokens = tokenizer.model_max_length
|
| 73 |
|
|
|
|
|
|
|
|
|
|
| 74 |
chunks = []
|
| 75 |
for p in all_passages:
|
| 76 |
toks = tokenizer.tokenize(p)
|
|
@@ -86,20 +90,24 @@ def load_passages():
|
|
| 86 |
|
| 87 |
# ββ 4. Build or load FAISS ββ
|
| 88 |
def load_faiss_index(passages):
|
| 89 |
-
# sentenceβtransformers embedder + crossβencoder
|
| 90 |
embedder = SentenceTransformer(EMBEDDER_MODEL)
|
| 91 |
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
| 92 |
|
| 93 |
if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
|
| 94 |
-
print("Loading FAISS index & embeddings
|
| 95 |
-
index
|
| 96 |
embeddings = np.load(EMB_PATH)
|
| 97 |
else:
|
| 98 |
-
print("Encoding passages & building FAISS index
|
| 99 |
-
embeddings = embedder.encode(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
| 101 |
|
| 102 |
-
dim
|
| 103 |
index = faiss.IndexFlatIP(dim)
|
| 104 |
index.add(embeddings)
|
| 105 |
|
|
@@ -108,9 +116,8 @@ def load_faiss_index(passages):
|
|
| 108 |
|
| 109 |
return embedder, reranker, index
|
| 110 |
|
| 111 |
-
# ββ 5.
|
| 112 |
def setup_rag():
|
| 113 |
-
# 5.1 load or build index + embedder/reranker
|
| 114 |
if os.path.exists(PCTX_PATH):
|
| 115 |
with open(PCTX_PATH, "rb") as f:
|
| 116 |
passages = pickle.load(f)
|
|
@@ -119,8 +126,7 @@ def setup_rag():
|
|
| 119 |
|
| 120 |
embedder, reranker, index = load_faiss_index(passages)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 124 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
| 125 |
qa_pipe = hf_pipeline(
|
| 126 |
"text2text-generation",
|
|
@@ -129,28 +135,28 @@ def setup_rag():
|
|
| 129 |
device=DEVICE,
|
| 130 |
truncation=True,
|
| 131 |
max_length=512,
|
| 132 |
-
num_beams=4,
|
| 133 |
early_stopping=True
|
| 134 |
)
|
| 135 |
|
| 136 |
return passages, embedder, reranker, index, qa_pipe
|
| 137 |
|
| 138 |
-
# ββ 6. Retrieval
|
| 139 |
def retrieve(question, passages, embedder, index, k=20, rerank_k=5):
|
| 140 |
-
q_emb
|
| 141 |
distances, idxs = index.search(q_emb, k)
|
| 142 |
|
| 143 |
-
cands
|
| 144 |
scores = reranker.predict([[question, c] for c in cands])
|
| 145 |
-
top
|
| 146 |
|
| 147 |
-
|
| 148 |
-
final_dists = [distances[0][i] for i in top]
|
| 149 |
-
return final_ctxs, final_dists
|
| 150 |
|
| 151 |
def generate(question, contexts, qa_pipe):
|
| 152 |
-
lines = [
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
prompt = (
|
| 155 |
"You are a helpful assistant. Use ONLY the following contexts to answer. "
|
| 156 |
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
|
|
@@ -160,20 +166,18 @@ def generate(question, contexts, qa_pipe):
|
|
| 160 |
return qa_pipe(prompt)[0]["generated_text"].strip()
|
| 161 |
|
| 162 |
def retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe):
|
| 163 |
-
|
| 164 |
-
if not
|
| 165 |
return "Sorry, I don't know.", []
|
| 166 |
-
|
| 167 |
-
return ans, ctxs
|
| 168 |
|
| 169 |
-
def answer_and_contexts(question,
|
| 170 |
-
passages, embedder, reranker, index, qa_pipe):
|
| 171 |
ans, ctxs = retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe)
|
| 172 |
if not ctxs:
|
| 173 |
return ans, ""
|
| 174 |
snippets = [
|
| 175 |
-
f"Context {i+1}: {s}"
|
| 176 |
-
for i,s in enumerate(make_context_snippets(ctxs))
|
| 177 |
]
|
| 178 |
return ans, "\n\n---\n\n".join(snippets)
|
| 179 |
|
|
@@ -191,7 +195,8 @@ def main():
|
|
| 191 |
"When was Abraham Lincoln inaugurated?",
|
| 192 |
"What is the capital of France?",
|
| 193 |
"Who wrote '1984'?"
|
| 194 |
-
]
|
|
|
|
| 195 |
)
|
| 196 |
demo.launch()
|
| 197 |
|
|
|
|
| 28 |
MAX_CTX_WORDS = int(os.getenv("MAX_CTX_WORDS", 200))
|
| 29 |
|
| 30 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
|
|
|
| 31 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 32 |
|
| 33 |
+
print(f"MODEL={MODEL_NAME}, EMBEDDER={EMBEDDER_MODEL}, DEVICE={'GPU' if DEVICE==0 else 'CPU'}")
|
| 34 |
|
| 35 |
# ββ 2. Helpers ββ
|
| 36 |
def make_context_snippets(contexts, max_words=MAX_CTX_WORDS):
|
| 37 |
+
snippets = []
|
| 38 |
for c in contexts:
|
| 39 |
words = c.split()
|
| 40 |
if len(words) > max_words:
|
| 41 |
c = " ".join(words[:max_words]) + " ... [truncated]"
|
| 42 |
+
snippets.append(c)
|
| 43 |
+
return snippets
|
| 44 |
|
| 45 |
def chunk_text(text, max_tokens, stride=None):
|
| 46 |
words = text.split()
|
|
|
|
| 56 |
# ββ 3. Load & preprocess passages ββ
|
| 57 |
def load_passages():
|
| 58 |
# 3.1 load raw corpora
|
| 59 |
+
wiki_ds = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus", split="passages")
|
| 60 |
+
squad_ds = load_dataset("rajpurkar/squad_v2", split="train[:100]")
|
| 61 |
trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")
|
| 62 |
+
|
| 63 |
+
wiki_passages = wiki_ds["passage"]
|
| 64 |
+
squad_passages = [ex["context"] for ex in squad_ds]
|
| 65 |
+
trivia_passages = []
|
| 66 |
for ex in trivia_ds:
|
| 67 |
for fld in ("wiki_context", "search_context"):
|
| 68 |
txt = ex.get(fld) or ""
|
| 69 |
+
if txt:
|
| 70 |
+
trivia_passages.append(txt)
|
| 71 |
|
| 72 |
+
# dedupe
|
| 73 |
+
all_passages = list(dict.fromkeys(wiki_passages + squad_passages + trivia_passages))
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
# chunk long passages
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 77 |
+
max_tokens = tokenizer.model_max_length
|
| 78 |
chunks = []
|
| 79 |
for p in all_passages:
|
| 80 |
toks = tokenizer.tokenize(p)
|
|
|
|
| 90 |
|
| 91 |
# ββ 4. Build or load FAISS ββ
|
| 92 |
def load_faiss_index(passages):
|
|
|
|
| 93 |
embedder = SentenceTransformer(EMBEDDER_MODEL)
|
| 94 |
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
| 95 |
|
| 96 |
if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
|
| 97 |
+
print("Loading FAISS index & embeddingsβ¦")
|
| 98 |
+
index = faiss.read_index(INDEX_PATH)
|
| 99 |
embeddings = np.load(EMB_PATH)
|
| 100 |
else:
|
| 101 |
+
print("Encoding passages & building FAISS indexβ¦")
|
| 102 |
+
embeddings = embedder.encode(
|
| 103 |
+
passages,
|
| 104 |
+
show_progress_bar=True,
|
| 105 |
+
convert_to_numpy=True,
|
| 106 |
+
batch_size=32
|
| 107 |
+
)
|
| 108 |
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
| 109 |
|
| 110 |
+
dim = embeddings.shape[1]
|
| 111 |
index = faiss.IndexFlatIP(dim)
|
| 112 |
index.add(embeddings)
|
| 113 |
|
|
|
|
| 116 |
|
| 117 |
return embedder, reranker, index
|
| 118 |
|
| 119 |
+
# ββ 5. Initialize RAG components ββ
|
| 120 |
def setup_rag():
|
|
|
|
| 121 |
if os.path.exists(PCTX_PATH):
|
| 122 |
with open(PCTX_PATH, "rb") as f:
|
| 123 |
passages = pickle.load(f)
|
|
|
|
| 126 |
|
| 127 |
embedder, reranker, index = load_faiss_index(passages)
|
| 128 |
|
| 129 |
+
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
|
| 130 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
| 131 |
qa_pipe = hf_pipeline(
|
| 132 |
"text2text-generation",
|
|
|
|
| 135 |
device=DEVICE,
|
| 136 |
truncation=True,
|
| 137 |
max_length=512,
|
| 138 |
+
num_beams=4,
|
| 139 |
early_stopping=True
|
| 140 |
)
|
| 141 |
|
| 142 |
return passages, embedder, reranker, index, qa_pipe
|
| 143 |
|
| 144 |
+
# ββ 6. Retrieval & generation ββ
|
| 145 |
def retrieve(question, passages, embedder, index, k=20, rerank_k=5):
|
| 146 |
+
q_emb = embedder.encode([question], convert_to_numpy=True)
|
| 147 |
distances, idxs = index.search(q_emb, k)
|
| 148 |
|
| 149 |
+
cands = [passages[i] for i in idxs[0]]
|
| 150 |
scores = reranker.predict([[question, c] for c in cands])
|
| 151 |
+
top = np.argsort(scores)[-rerank_k:][::-1]
|
| 152 |
|
| 153 |
+
return [cands[i] for i in top], [distances[0][i] for i in top]
|
|
|
|
|
|
|
| 154 |
|
| 155 |
def generate(question, contexts, qa_pipe):
|
| 156 |
+
lines = [
|
| 157 |
+
f"Context {i+1}: {s}"
|
| 158 |
+
for i, s in enumerate(make_context_snippets(contexts))
|
| 159 |
+
]
|
| 160 |
prompt = (
|
| 161 |
"You are a helpful assistant. Use ONLY the following contexts to answer. "
|
| 162 |
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
|
|
|
|
| 166 |
return qa_pipe(prompt)[0]["generated_text"].strip()
|
| 167 |
|
| 168 |
def retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe):
|
| 169 |
+
contexts, dists = retrieve(question, passages, embedder, index)
|
| 170 |
+
if not contexts or dists[0] > DIST_THRESHOLD:
|
| 171 |
return "Sorry, I don't know.", []
|
| 172 |
+
return generate(question, contexts, qa_pipe), contexts
|
|
|
|
| 173 |
|
| 174 |
+
def answer_and_contexts(question, passages, embedder, reranker, index, qa_pipe):
|
|
|
|
| 175 |
ans, ctxs = retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe)
|
| 176 |
if not ctxs:
|
| 177 |
return ans, ""
|
| 178 |
snippets = [
|
| 179 |
+
f"Context {i+1}: {s}"
|
| 180 |
+
for i, s in enumerate(make_context_snippets(ctxs))
|
| 181 |
]
|
| 182 |
return ans, "\n\n---\n\n".join(snippets)
|
| 183 |
|
|
|
|
| 195 |
"When was Abraham Lincoln inaugurated?",
|
| 196 |
"What is the capital of France?",
|
| 197 |
"Who wrote '1984'?"
|
| 198 |
+
],
|
| 199 |
+
allow_flagging="never",
|
| 200 |
)
|
| 201 |
demo.launch()
|
| 202 |
|